Symshapes - gives codegen ability to evaluate same algo on envs with different ob/ac shapes (#262)

* finish cherry-pick td3 test commit

* removed graph simplification error ingore

* merge delayed logger config

* merge updated baselines logger

* lazy_mpi load

* cleanups

* use lazy mpi imports in codegen

* more lazy mpi

* don't pretend that class is a module, just use it as a class

* mass-replace mpi4py imports

* flake8

* fix previous lazy_mpi imports

* removed extra printouts from TdLayer op

* silly recursion

* running codegen cc experiment

* wip

* more wip

* use actor is input for critic targets, instead of the action taken

* batch size 100

* tweak update parameters

* tweaking td3 runs

* wip

* use nenvs=2 for contcontrol (to be comparable with ppo_metal)

* wip. Doubts about usefulness of actor in critic target

* delayed actor in ActorLoss

* score is average of last 100

* skip lack of losses or too many action distributions

* 16 envs for contcontrol, replay buffer size equal to horizon (no point in making it longer)

* syntax

* microfixes

* minifixes

* run in process logic to bypass tensorflow freezes/failures (per Oleg's suggestion)

* random physics for mujoco

* random parts sizes with range 0.4

* add notebook with results into x/peterz

* variations of ant

* roboschool use gym.make kwargs

* use float as lowest score after rank transform

* rcall from master

* wip

* re-enable dynamic routing

* wip

* squash-merge master, resolve conflicts

* remove erroneous file

* restore normal MPI imports

* move wrappers around a little bit

* autopep8

* cleanups

* cleanup mpi_eda, autopep8

* make activation function of action distribution customizable

* cleanups; preparation for a pr

* syntax

* merge latest master, resolve conflicts

* wrap MPI import with try/except

* allow import of modules through env id im baselines cmd_util

* flake8 complaints

* only wrap box action spaces with ClipActionsWrapper

* flake8

* fixes to algo_prob according to Oleg's suggestions

* use apply_without_scope flag in ActorLoss

* remove extra line in algo/core.py

* multi-task support

* autopep8

* symbolic suffix-shapes (not B,T yet)

* test_with_mpi -> with_mpi rename

* remove extra blank lines in algo/core

* remove extra blank lines in algo/core

* remove more blank lines

* symbolify shapes in existing algorithms

* minor output changes

* cleaning up merge conflicts

* cleaning up merge conflicts

* cleaning up more merge conflicts

* restore mpi_map.py from master
This commit is contained in:
pzhokhov
2019-03-01 17:11:47 -08:00
committed by Jacob Hilton
parent dadc2c2eb6
commit f2654082b2
3 changed files with 10 additions and 5 deletions

View File

@@ -21,6 +21,7 @@ from baselines.common.wrappers import ClipActionsWrapper
def make_vec_env(env_id, env_type, num_env, seed,
wrapper_kwargs=None,
env_kwargs=None,
start_index=0,
reward_scale=1.0,
flatten_dict_observations=True,
@@ -29,6 +30,7 @@ def make_vec_env(env_id, env_type, num_env, seed,
Create a wrapped, monitored SubprocVecEnv for Atari and MuJoCo.
"""
wrapper_kwargs = wrapper_kwargs or {}
env_kwargs = env_kwargs or {}
mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0
seed = seed + 10000 * mpi_rank if seed is not None else None
logger_dir = logger.get_dir()
@@ -43,6 +45,7 @@ def make_vec_env(env_id, env_type, num_env, seed,
gamestate=gamestate,
flatten_dict_observations=flatten_dict_observations,
wrapper_kwargs=wrapper_kwargs,
env_kwargs=env_kwargs,
logger_dir=logger_dir
)
@@ -53,15 +56,15 @@ def make_vec_env(env_id, env_type, num_env, seed,
return DummyVecEnv([make_thunk(start_index)])
def make_env(env_id, env_type, mpi_rank=0, subrank=0, seed=None, reward_scale=1.0, gamestate=None, flatten_dict_observations=True, wrapper_kwargs=None, logger_dir=None):
def make_env(env_id, env_type, mpi_rank=0, subrank=0, seed=None, reward_scale=1.0, gamestate=None, flatten_dict_observations=True, wrapper_kwargs=None, env_kwargs=None, logger_dir=None):
wrapper_kwargs = wrapper_kwargs or {}
env_kwargs = env_kwargs or {}
if ':' in env_id:
import re
import importlib
module_name = re.sub(':.*','',env_id)
env_id = re.sub('.*:', '', env_id)
importlib.import_module(module_name)
if env_type == 'atari':
env = make_atari(env_id)
elif env_type == 'retro':
@@ -69,7 +72,7 @@ def make_env(env_id, env_type, mpi_rank=0, subrank=0, seed=None, reward_scale=1.
gamestate = gamestate or retro.State.DEFAULT
env = retro_wrappers.make_retro(game=env_id, max_episode_steps=10000, use_restricted_actions=retro.Actions.DISCRETE, state=gamestate)
else:
env = gym.make(env_id)
env = gym.make(env_id, **env_kwargs)
if flatten_dict_observations and isinstance(env.observation_space, gym.spaces.Dict):
keys = env.observation_space.spaces.keys()

View File

@@ -1,10 +1,10 @@
from baselines.common import mpi_util
from mpi4py import MPI
from baselines import logger
from baselines.common.tests.test_with_mpi import with_mpi
from baselines.common import mpi_util
@with_mpi()
def test_mpi_weighted_mean():
from mpi4py import MPI
comm = MPI.COMM_WORLD
with logger.scoped_configure(comm=comm):
if comm.rank == 0:

View File

@@ -217,7 +217,9 @@ def learn(network, env,
stats = agent.get_stats()
combined_stats = stats.copy()
combined_stats['rollout/return'] = np.mean(epoch_episode_rewards)
combined_stats['rollout/return_std'] = np.std(epoch_episode_rewards)
combined_stats['rollout/return_history'] = np.mean(episode_rewards_history)
combined_stats['rollout/return_history_std'] = np.std(episode_rewards_history)
combined_stats['rollout/episode_steps'] = np.mean(epoch_episode_steps)
combined_stats['rollout/actions_mean'] = np.mean(epoch_actions)
combined_stats['rollout/Q_mean'] = np.mean(epoch_qs)