Compare commits
1 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
0e423a0108 |
@@ -11,7 +11,7 @@ WORKDIR $CODE_DIR/baselines
|
||||
# Clean up pycache and pyc files
|
||||
RUN rm -rf __pycache__ && \
|
||||
find . -name "*.pyc" -delete && \
|
||||
pip install 'tensorflow < 2' && \
|
||||
pip install tensorflow && \
|
||||
pip install -e .[test]
|
||||
|
||||
|
||||
|
12
README.md
12
README.md
@@ -1,4 +1,4 @@
|
||||
**Status:** Maintenance (expect bug fixes and minor updates)
|
||||
**Status:** Active (under active development, breaking changes may occur)
|
||||
|
||||
<img src="data/logo.jpg" width=25% align="right" /> [](https://travis-ci.org/openai/baselines)
|
||||
|
||||
@@ -40,7 +40,7 @@ More thorough tutorial on virtualenvs and options can be found [here](https://vi
|
||||
|
||||
|
||||
## Tensorflow versions
|
||||
The master branch supports Tensorflow from version 1.4 to 1.14. For Tensorflow 2.0 support, please use tf2 branch.
|
||||
The master branch supports Tensorflow from version 1.4 to 1.14. For Tensorflow 2.0 support, please use tf-2 branch.
|
||||
|
||||
## Installation
|
||||
- Clone the repo and cd into it:
|
||||
@@ -48,15 +48,15 @@ The master branch supports Tensorflow from version 1.4 to 1.14. For Tensorflow 2
|
||||
git clone https://github.com/openai/baselines.git
|
||||
cd baselines
|
||||
```
|
||||
- If you don't have TensorFlow installed already, install your favourite flavor of TensorFlow. In most cases, you may use
|
||||
- If you don't have TensorFlow installed already, install your favourite flavor of TensorFlow. In most cases,
|
||||
```bash
|
||||
pip install tensorflow-gpu==1.14 # if you have a CUDA-compatible gpu and proper drivers
|
||||
pip install tensorflow-gpu # if you have a CUDA-compatible gpu and proper drivers
|
||||
```
|
||||
or
|
||||
```bash
|
||||
pip install tensorflow==1.14
|
||||
pip install tensorflow
|
||||
```
|
||||
to install Tensorflow 1.14, which is the latest version of Tensorflow supported by the master branch. Refer to [TensorFlow installation guide](https://www.tensorflow.org/install/)
|
||||
should be sufficient. Refer to [TensorFlow installation guide](https://www.tensorflow.org/install/)
|
||||
for more details.
|
||||
|
||||
- Install baselines package
|
||||
|
@@ -6,7 +6,7 @@ from baselines import logger
|
||||
|
||||
from baselines.common import set_global_seeds
|
||||
from baselines.common.policies import build_policy
|
||||
from baselines.common.tf_util import get_session, save_variables, load_variables
|
||||
from baselines.common.tf_util import get_session, save_variables
|
||||
from baselines.common.vec_env.vec_frame_stack import VecFrameStack
|
||||
|
||||
from baselines.a2c.utils import batch_to_seq, seq_to_batch
|
||||
@@ -216,8 +216,7 @@ class Model(object):
|
||||
|
||||
|
||||
self.train = train
|
||||
self.save = functools.partial(save_variables, sess=sess)
|
||||
self.load = functools.partial(load_variables, sess=sess)
|
||||
self.save = functools.partial(save_variables, sess=sess, variables=params)
|
||||
self.train_model = train_model
|
||||
self.step_model = step_model
|
||||
self._step = _step
|
||||
@@ -359,9 +358,6 @@ def learn(network, env, seed=None, nsteps=20, total_timesteps=int(80e6), q_coef=
|
||||
total_timesteps=total_timesteps, lrschedule=lrschedule, c=c,
|
||||
trust_region=trust_region, alpha=alpha, delta=delta)
|
||||
|
||||
if load_path is not None:
|
||||
model.load(load_path)
|
||||
|
||||
runner = Runner(env=env, model=model, nsteps=nsteps)
|
||||
if replay_ratio > 0:
|
||||
buffer = Buffer(env=env, nsteps=nsteps, size=buffer_size)
|
||||
|
@@ -77,7 +77,6 @@ class Monitor(Wrapper):
|
||||
self.total_steps += 1
|
||||
|
||||
def close(self):
|
||||
super(Monitor, self).close()
|
||||
if self.f is not None:
|
||||
self.f.close()
|
||||
|
||||
|
@@ -9,7 +9,7 @@ except ImportError:
|
||||
MPI = None
|
||||
|
||||
import gym
|
||||
from gym.wrappers import FlattenObservation, FilterObservation
|
||||
from gym.wrappers import FlattenDictWrapper
|
||||
from baselines import logger
|
||||
from baselines.bench import Monitor
|
||||
from baselines.common import set_global_seeds
|
||||
@@ -81,7 +81,8 @@ def make_env(env_id, env_type, mpi_rank=0, subrank=0, seed=None, reward_scale=1.
|
||||
env = gym.make(env_id, **env_kwargs)
|
||||
|
||||
if flatten_dict_observations and isinstance(env.observation_space, gym.spaces.Dict):
|
||||
env = FlattenObservation(env)
|
||||
keys = env.observation_space.spaces.keys()
|
||||
env = gym.wrappers.FlattenDictWrapper(env, dict_keys=list(keys))
|
||||
|
||||
env.seed(seed + subrank if seed is not None else None)
|
||||
env = Monitor(env,
|
||||
@@ -127,7 +128,7 @@ def make_robotics_env(env_id, seed, rank=0):
|
||||
"""
|
||||
set_global_seeds(seed)
|
||||
env = gym.make(env_id)
|
||||
env = FlattenObservation(FilterObservation(env, ['observation', 'desired_goal']))
|
||||
env = FlattenDictWrapper(env, ['observation', 'desired_goal'])
|
||||
env = Monitor(
|
||||
env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)),
|
||||
info_keywords=('is_success',))
|
||||
|
@@ -26,7 +26,7 @@ def worker(remote, parent_remote, env_fn_wrappers):
|
||||
remote.close()
|
||||
break
|
||||
elif cmd == 'get_spaces_spec':
|
||||
remote.send(CloudpickleWrapper((envs[0].observation_space, envs[0].action_space, envs[0].spec)))
|
||||
remote.send((envs[0].observation_space, envs[0].action_space, envs[0].spec))
|
||||
else:
|
||||
raise NotImplementedError
|
||||
except KeyboardInterrupt:
|
||||
@@ -68,7 +68,7 @@ class SubprocVecEnv(VecEnv):
|
||||
remote.close()
|
||||
|
||||
self.remotes[0].send(('get_spaces_spec', None))
|
||||
observation_space, action_space, self.spec = self.remotes[0].recv().x
|
||||
observation_space, action_space, self.spec = self.remotes[0].recv()
|
||||
self.viewer = None
|
||||
VecEnv.__init__(self, nenvs, observation_space, action_space)
|
||||
|
||||
|
@@ -23,7 +23,7 @@ from baselines.gail.dataset.mujoco_dset import Mujoco_Dset
|
||||
|
||||
def argsparser():
|
||||
parser = argparse.ArgumentParser("Tensorflow Implementation of Behavior Cloning")
|
||||
parser.add_argument('--env_id', help='environment ID', default='Hopper-v2')
|
||||
parser.add_argument('--env_id', help='environment ID', default='Hopper-v1')
|
||||
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
|
||||
parser.add_argument('--expert_path', type=str, default='data/deterministic.trpo.Hopper.0.00.npz')
|
||||
parser.add_argument('--checkpoint_dir', help='the directory to save model', default='checkpoint')
|
||||
@@ -73,7 +73,7 @@ def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4,
|
||||
savedir_fname = tempfile.TemporaryDirectory().name
|
||||
else:
|
||||
savedir_fname = osp.join(ckpt_dir, task_name)
|
||||
U.save_variables(savedir_fname, variables=pi.get_variables())
|
||||
U.save_state(savedir_fname, var_list=pi.get_variables())
|
||||
return savedir_fname
|
||||
|
||||
|
||||
|
@@ -165,7 +165,7 @@ def runner(env, policy_func, load_model_path, timesteps_per_batch, number_trajs,
|
||||
U.initialize()
|
||||
# Prepare for rollouts
|
||||
# ----------------------------------------
|
||||
U.load_variables(load_model_path)
|
||||
U.load_state(load_model_path)
|
||||
|
||||
obs_list = []
|
||||
acs_list = []
|
||||
|
@@ -226,7 +226,7 @@ def main(args):
|
||||
state = model.initial_state if hasattr(model, 'initial_state') else None
|
||||
dones = np.zeros((1,))
|
||||
|
||||
episode_rew = np.zeros(env.num_envs) if isinstance(env, VecEnv) else np.zeros(1)
|
||||
episode_rew = 0
|
||||
while True:
|
||||
if state is not None:
|
||||
actions, _, state, _ = model.step(obs,S=state, M=dones)
|
||||
@@ -234,13 +234,13 @@ def main(args):
|
||||
actions, _, _, _ = model.step(obs)
|
||||
|
||||
obs, rew, done, _ = env.step(actions)
|
||||
episode_rew += rew
|
||||
episode_rew += rew[0] if isinstance(env, VecEnv) else rew
|
||||
env.render()
|
||||
done_any = done.any() if isinstance(done, np.ndarray) else done
|
||||
if done_any:
|
||||
for i in np.nonzero(done)[0]:
|
||||
print('episode_rew={}'.format(episode_rew[i]))
|
||||
episode_rew[i] = 0
|
||||
done = done.any() if isinstance(done, np.ndarray) else done
|
||||
if done:
|
||||
print('episode_rew={}'.format(episode_rew))
|
||||
episode_rew = 0
|
||||
obs = env.reset()
|
||||
|
||||
env.close()
|
||||
|
||||
|
Reference in New Issue
Block a user