Files
baselines/baselines/deepq/build_graph.py

450 lines
20 KiB
Python

"""Deep Q learning graph
The functions in this file can are used to create the following functions:
======= act ========
Function to chose an action given an observation
Parameters
----------
observation: object
Observation that can be feed into the output of make_obs_ph
stochastic: bool
if set to False all the actions are always deterministic (default False)
update_eps_ph: float
update epsilon a new value, if negative not update happens
(default: no update)
Returns
-------
Tensor of dtype tf.int64 and shape (BATCH_SIZE,) with an action to be performed for
every element of the batch.
======= act (in case of parameter noise) ========
Function to chose an action given an observation
Parameters
----------
observation: object
Observation that can be feed into the output of make_obs_ph
stochastic: bool
if set to False all the actions are always deterministic (default False)
update_eps_ph: float
update epsilon a new value, if negative not update happens
(default: no update)
reset_ph: bool
reset the perturbed policy by sampling a new perturbation
update_param_noise_threshold_ph: float
the desired threshold for the difference between non-perturbed and perturbed policy
update_param_noise_scale_ph: bool
whether or not to update the scale of the noise for the next time it is re-perturbed
Returns
-------
Tensor of dtype tf.int64 and shape (BATCH_SIZE,) with an action to be performed for
every element of the batch.
======= train =======
Function that takes a transition (s,a,r,s') and optimizes Bellman equation's error:
td_error = Q(s,a) - (r + gamma * max_a' Q(s', a'))
loss = huber_loss[td_error]
Parameters
----------
obs_t: object
a batch of observations
action: np.array
actions that were selected upon seeing obs_t.
dtype must be int32 and shape must be (batch_size,)
reward: np.array
immediate reward attained after executing those actions
dtype must be float32 and shape must be (batch_size,)
obs_tp1: object
observations that followed obs_t
done: np.array
1 if obs_t was the last observation in the episode and 0 otherwise
obs_tp1 gets ignored, but must be of the valid shape.
dtype must be float32 and shape must be (batch_size,)
weight: np.array
imporance weights for every element of the batch (gradient is multiplied
by the importance weight) dtype must be float32 and shape must be (batch_size,)
Returns
-------
td_error: np.array
a list of differences between Q(s,a) and the target in Bellman's equation.
dtype is float32 and shape is (batch_size,)
======= update_target ========
copy the parameters from optimized Q function to the target Q function.
In Q learning we actually optimize the following error:
Q(s,a) - (r + gamma * max_a' Q'(s', a'))
Where Q' is lagging behind Q to stablize the learning. For example for Atari
Q' is set to Q once every 10000 updates training steps.
"""
import tensorflow as tf
import baselines.common.tf_util as U
def scope_vars(scope, trainable_only=False):
"""
Get variables inside a scope
The scope can be specified as a string
Parameters
----------
scope: str or VariableScope
scope in which the variables reside.
trainable_only: bool
whether or not to return only the variables that were marked as trainable.
Returns
-------
vars: [tf.Variable]
list of variables in `scope`.
"""
return tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES if trainable_only else tf.GraphKeys.GLOBAL_VARIABLES,
scope=scope if isinstance(scope, str) else scope.name
)
def scope_name():
"""Returns the name of current scope as a string, e.g. deepq/q_func"""
return tf.get_variable_scope().name
def absolute_scope_name(relative_scope_name):
"""Appends parent scope name to `relative_scope_name`"""
return scope_name() + "/" + relative_scope_name
def default_param_noise_filter(var):
if var not in tf.trainable_variables():
# We never perturb non-trainable vars.
return False
if "fully_connected" in var.name:
# We perturb fully-connected layers.
return True
# The remaining layers are likely conv or layer norm layers, which we do not wish to
# perturb (in the former case because they only extract features, in the latter case because
# we use them for normalization purposes). If you change your network, you will likely want
# to re-consider which layers to perturb and which to keep untouched.
return False
def build_act(make_obs_ph, q_func, num_actions, scope="deepq", reuse=None):
"""Creates the act function:
Parameters
----------
make_obs_ph: str -> tf.placeholder or TfInput
a function that take a name and creates a placeholder of input with that name
q_func: (tf.Variable, int, str, bool) -> tf.Variable
the model that takes the following inputs:
observation_in: object
the output of observation placeholder
num_actions: int
number of actions
scope: str
reuse: bool
should be passed to outer variable scope
and returns a tensor of shape (batch_size, num_actions) with values of every action.
num_actions: int
number of actions.
scope: str or VariableScope
optional scope for variable_scope.
reuse: bool or None
whether or not the variables should be reused. To be able to reuse the scope must be given.
Returns
-------
act: (tf.Variable, bool, float) -> tf.Variable
function to select and action given observation.
` See the top of the file for details.
"""
with tf.variable_scope(scope, reuse=reuse):
observations_ph = make_obs_ph("observation")
stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
q_values = q_func(observations_ph.get(), num_actions, scope="q_func")
deterministic_actions = tf.argmax(q_values, axis=1)
batch_size = tf.shape(observations_ph.get())[0]
random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64)
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
_act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph],
outputs=output_actions,
givens={update_eps_ph: -1.0, stochastic_ph: True},
updates=[update_eps_expr])
def act(ob, stochastic=True, update_eps=-1):
return _act(ob, stochastic, update_eps)
return act
def build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope="deepq", reuse=None, param_noise_filter_func=None):
"""Creates the act function with support for parameter space noise exploration (https://arxiv.org/abs/1706.01905):
Parameters
----------
make_obs_ph: str -> tf.placeholder or TfInput
a function that take a name and creates a placeholder of input with that name
q_func: (tf.Variable, int, str, bool) -> tf.Variable
the model that takes the following inputs:
observation_in: object
the output of observation placeholder
num_actions: int
number of actions
scope: str
reuse: bool
should be passed to outer variable scope
and returns a tensor of shape (batch_size, num_actions) with values of every action.
num_actions: int
number of actions.
scope: str or VariableScope
optional scope for variable_scope.
reuse: bool or None
whether or not the variables should be reused. To be able to reuse the scope must be given.
param_noise_filter_func: tf.Variable -> bool
function that decides whether or not a variable should be perturbed. Only applicable
if param_noise is True. If set to None, default_param_noise_filter is used by default.
Returns
-------
act: (tf.Variable, bool, float, bool, float, bool) -> tf.Variable
function to select and action given observation.
` See the top of the file for details.
"""
if param_noise_filter_func is None:
param_noise_filter_func = default_param_noise_filter
with tf.variable_scope(scope, reuse=reuse):
observations_ph = make_obs_ph("observation")
stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold")
update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale")
reset_ph = tf.placeholder(tf.bool, (), name="reset")
eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01), trainable=False)
param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False)
# Unmodified Q.
q_values = q_func(observations_ph.get(), num_actions, scope="q_func")
# Perturbable Q used for the actual rollout.
q_values_perturbed = q_func(observations_ph.get(), num_actions, scope="perturbed_q_func")
# We have to wrap this code into a function due to the way tf.cond() works. See
# https://stackoverflow.com/questions/37063952/confused-by-the-behavior-of-tf-cond for
# a more detailed discussion.
def perturb_vars(original_scope, perturbed_scope):
all_vars = scope_vars(absolute_scope_name(original_scope))
all_perturbed_vars = scope_vars(absolute_scope_name(perturbed_scope))
assert len(all_vars) == len(all_perturbed_vars)
perturb_ops = []
for var, perturbed_var in zip(all_vars, all_perturbed_vars):
if param_noise_filter_func(perturbed_var):
# Perturb this variable.
op = tf.assign(perturbed_var, var + tf.random_normal(shape=tf.shape(var), mean=0., stddev=param_noise_scale))
else:
# Do not perturb, just assign.
op = tf.assign(perturbed_var, var)
perturb_ops.append(op)
assert len(perturb_ops) == len(all_vars)
return tf.group(*perturb_ops)
# Set up functionality to re-compute `param_noise_scale`. This perturbs yet another copy
# of the network and measures the effect of that perturbation in action space. If the perturbation
# is too big, reduce scale of perturbation, otherwise increase.
q_values_adaptive = q_func(observations_ph.get(), num_actions, scope="adaptive_q_func")
perturb_for_adaption = perturb_vars(original_scope="q_func", perturbed_scope="adaptive_q_func")
kl = tf.reduce_sum(tf.nn.softmax(q_values) * (tf.log(tf.nn.softmax(q_values)) - tf.log(tf.nn.softmax(q_values_adaptive))), axis=-1)
mean_kl = tf.reduce_mean(kl)
def update_scale():
with tf.control_dependencies([perturb_for_adaption]):
update_scale_expr = tf.cond(mean_kl < param_noise_threshold,
lambda: param_noise_scale.assign(param_noise_scale * 1.01),
lambda: param_noise_scale.assign(param_noise_scale / 1.01),
)
return update_scale_expr
# Functionality to update the threshold for parameter space noise.
update_param_noise_threshold_expr = param_noise_threshold.assign(tf.cond(update_param_noise_threshold_ph >= 0,
lambda: update_param_noise_threshold_ph, lambda: param_noise_threshold))
# Put everything together.
deterministic_actions = tf.argmax(q_values_perturbed, axis=1)
batch_size = tf.shape(observations_ph.get())[0]
random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64)
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
updates = [
update_eps_expr,
tf.cond(reset_ph, lambda: perturb_vars(original_scope="q_func", perturbed_scope="perturbed_q_func"), lambda: tf.group(*[])),
tf.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: tf.Variable(0., trainable=False)),
update_param_noise_threshold_expr,
]
_act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph, reset_ph, update_param_noise_threshold_ph, update_param_noise_scale_ph],
outputs=output_actions,
givens={update_eps_ph: -1.0, stochastic_ph: True, reset_ph: False, update_param_noise_threshold_ph: False, update_param_noise_scale_ph: False},
updates=updates)
def act(ob, reset, update_param_noise_threshold, update_param_noise_scale, stochastic=True, update_eps=-1):
return _act(ob, stochastic, update_eps, reset, update_param_noise_threshold, update_param_noise_scale)
return act
def build_train(make_obs_ph, q_func, num_actions, optimizer, grad_norm_clipping=None, gamma=1.0,
double_q=True, scope="deepq", reuse=None, param_noise=False, param_noise_filter_func=None):
"""Creates the train function:
Parameters
----------
make_obs_ph: str -> tf.placeholder or TfInput
a function that takes a name and creates a placeholder of input with that name
q_func: (tf.Variable, int, str, bool) -> tf.Variable
the model that takes the following inputs:
observation_in: object
the output of observation placeholder
num_actions: int
number of actions
scope: str
reuse: bool
should be passed to outer variable scope
and returns a tensor of shape (batch_size, num_actions) with values of every action.
num_actions: int
number of actions
reuse: bool
whether or not to reuse the graph variables
optimizer: tf.train.Optimizer
optimizer to use for the Q-learning objective.
grad_norm_clipping: float or None
clip gradient norms to this value. If None no clipping is performed.
gamma: float
discount rate.
double_q: bool
if true will use Double Q Learning (https://arxiv.org/abs/1509.06461).
In general it is a good idea to keep it enabled.
scope: str or VariableScope
optional scope for variable_scope.
reuse: bool or None
whether or not the variables should be reused. To be able to reuse the scope must be given.
param_noise: bool
whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
param_noise_filter_func: tf.Variable -> bool
function that decides whether or not a variable should be perturbed. Only applicable
if param_noise is True. If set to None, default_param_noise_filter is used by default.
Returns
-------
act: (tf.Variable, bool, float) -> tf.Variable
function to select and action given observation.
` See the top of the file for details.
train: (object, np.array, np.array, object, np.array, np.array) -> np.array
optimize the error in Bellman's equation.
` See the top of the file for details.
update_target: () -> ()
copy the parameters from optimized Q function to the target Q function.
` See the top of the file for details.
debug: {str: function}
a bunch of functions to print debug data like q_values.
"""
if param_noise:
act_f = build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse,
param_noise_filter_func=param_noise_filter_func)
else:
act_f = build_act(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse)
with tf.variable_scope(scope, reuse=reuse):
# set up placeholders
obs_t_input = make_obs_ph("obs_t")
act_t_ph = tf.placeholder(tf.int32, [None], name="action")
rew_t_ph = tf.placeholder(tf.float32, [None], name="reward")
obs_tp1_input = make_obs_ph("obs_tp1")
done_mask_ph = tf.placeholder(tf.float32, [None], name="done")
importance_weights_ph = tf.placeholder(tf.float32, [None], name="weight")
# q network evaluation
q_t = q_func(obs_t_input.get(), num_actions, scope="q_func", reuse=True) # reuse parameters from act
q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/q_func")
# target q network evalution
q_tp1 = q_func(obs_tp1_input.get(), num_actions, scope="target_q_func")
target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/target_q_func")
# q scores for actions which we know were selected in the given state.
q_t_selected = tf.reduce_sum(q_t * tf.one_hot(act_t_ph, num_actions), 1)
# compute estimate of best possible value starting from state at t + 1
if double_q:
q_tp1_using_online_net = q_func(obs_tp1_input.get(), num_actions, scope="q_func", reuse=True)
q_tp1_best_using_online_net = tf.argmax(q_tp1_using_online_net, 1)
q_tp1_best = tf.reduce_sum(q_tp1 * tf.one_hot(q_tp1_best_using_online_net, num_actions), 1)
else:
q_tp1_best = tf.reduce_max(q_tp1, 1)
q_tp1_best_masked = (1.0 - done_mask_ph) * q_tp1_best
# compute RHS of bellman equation
q_t_selected_target = rew_t_ph + gamma * q_tp1_best_masked
# compute the error (potentially clipped)
td_error = q_t_selected - tf.stop_gradient(q_t_selected_target)
errors = U.huber_loss(td_error)
weighted_error = tf.reduce_mean(importance_weights_ph * errors)
# compute optimization op (potentially with gradient clipping)
if grad_norm_clipping is not None:
gradients = optimizer.compute_gradients(weighted_error, var_list=q_func_vars)
for i, (grad, var) in enumerate(gradients):
if grad is not None:
gradients[i] = (tf.clip_by_norm(grad, grad_norm_clipping), var)
optimize_expr = optimizer.apply_gradients(gradients)
else:
optimize_expr = optimizer.minimize(weighted_error, var_list=q_func_vars)
# update_target_fn will be called periodically to copy Q network to target Q network
update_target_expr = []
for var, var_target in zip(sorted(q_func_vars, key=lambda v: v.name),
sorted(target_q_func_vars, key=lambda v: v.name)):
update_target_expr.append(var_target.assign(var))
update_target_expr = tf.group(*update_target_expr)
# Create callable functions
train = U.function(
inputs=[
obs_t_input,
act_t_ph,
rew_t_ph,
obs_tp1_input,
done_mask_ph,
importance_weights_ph
],
outputs=td_error,
updates=[optimize_expr]
)
update_target = U.function([], [], updates=[update_target_expr])
q_values = U.function([obs_t_input], q_t)
return act_f, train, update_target, {'q_values': q_values}