* VecNormalize: set env. returns to zero on resets. * VecNormalize: returns reset in step_wait after ret_rms.update.
44 lines
1.5 KiB
Python
44 lines
1.5 KiB
Python
from . import VecEnvWrapper
|
|
from baselines.common.running_mean_std import RunningMeanStd
|
|
import numpy as np
|
|
|
|
|
|
class VecNormalize(VecEnvWrapper):
|
|
"""
|
|
A vectorized wrapper that normalizes the observations
|
|
and returns from an environment.
|
|
"""
|
|
|
|
def __init__(self, venv, ob=True, ret=True, clipob=10., cliprew=10., gamma=0.99, epsilon=1e-8):
|
|
VecEnvWrapper.__init__(self, venv)
|
|
self.ob_rms = RunningMeanStd(shape=self.observation_space.shape) if ob else None
|
|
self.ret_rms = RunningMeanStd(shape=()) if ret else None
|
|
self.clipob = clipob
|
|
self.cliprew = cliprew
|
|
self.ret = np.zeros(self.num_envs)
|
|
self.gamma = gamma
|
|
self.epsilon = epsilon
|
|
|
|
def step_wait(self):
|
|
obs, rews, news, infos = self.venv.step_wait()
|
|
self.ret = self.ret * self.gamma + rews
|
|
obs = self._obfilt(obs)
|
|
if self.ret_rms:
|
|
self.ret_rms.update(self.ret)
|
|
rews = np.clip(rews / np.sqrt(self.ret_rms.var + self.epsilon), -self.cliprew, self.cliprew)
|
|
self.ret[news] = 0.
|
|
return obs, rews, news, infos
|
|
|
|
def _obfilt(self, obs):
|
|
if self.ob_rms:
|
|
self.ob_rms.update(obs)
|
|
obs = np.clip((obs - self.ob_rms.mean) / np.sqrt(self.ob_rms.var + self.epsilon), -self.clipob, self.clipob)
|
|
return obs
|
|
else:
|
|
return obs
|
|
|
|
def reset(self):
|
|
self.ret = np.zeros(self.num_envs)
|
|
obs = self.venv.reset()
|
|
return self._obfilt(obs)
|