* joshim5 changes (width and height to WarpFrame wrapper) * match network output with action distribution via a linear layer only if necessary (#167) * support color vs. grayscale option in WarpFrame wrapper (#166) * support color vs. grayscale option in WarpFrame wrapper * Support color in other wrappers * Updated per Peters suggestions * fixing test failures * ppo2 with microbatches (#168) * pass microbatch_size to the model during construction * microbatch fixes and test (#169) * microbatch fixes and test * tiny cleanup * added assertions to the test * vpg-related fix * Peterz joshim5 subclass ppo2 model (#170) * microbatch fixes and test * tiny cleanup * added assertions to the test * vpg-related fix * subclassing the model to make microbatched version of model WIP * made microbatched model a subclass of ppo2 Model * flake8 complaint * mpi-less ppo2 (resolving merge conflict) * flake8 and mpi4py imports in ppo2/model.py * more un-mpying * merge master * updates to the benchmark viewer code + autopep8 (#184) * viz docs and syntactic sugar wip * update viewer yaml to use persistent volume claims * move plot_util to baselines.common, update links * use 1Tb hard drive for results viewer * small updates to benchmark vizualizer code * autopep8 * autopep8 * any folder can be a benchmark * massage games image a little bit * fixed --preload option in app.py * remove preload from run_viewer.sh * remove pdb breakpoints * update bench-viewer.yaml * fixed bug (#185) * fixed bug it's wrong to do the else statement, because no other nodes would start. * changed the fix slightly * Refactor her phase 1 (#194) * add monitor to the rollout envs in her RUN BENCHMARKS her * Slice -> Slide in her benchmarks RUN BENCHMARKS her * run her benchmark for 200 epochs * dummy commit to RUN BENCHMARKS her * her benchmark for 500 epochs RUN BENCHMARKS her * add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her * add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her * add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her * disable saving of policies in her benchmark RUN BENCHMARKS her * run fetch benchmarks with ppo2 and ddpg RUN BENCHMARKS Fetch * run fetch benchmarks with ppo2 and ddpg RUN BENCHMARKS Fetch * launcher refactor wip * wip * her works on FetchReach * her runner refactor RUN BENCHMARKS Fetch1M * unit test for her * fixing warnings in mpi_average in her, skip test_fetchreach if mujoco is not present * pickle-based serialization in her * remove extra import from subproc_vec_env.py * investigating differences in rollout.py * try with old rollout code RUN BENCHMARKS her * temporarily use DummyVecEnv in cmd_util.py RUN BENCHMARKS her * dummy commit to RUN BENCHMARKS her * set info_values in rollout worker in her RUN BENCHMARKS her * bug in rollout_new.py RUN BENCHMARKS her * fixed bug in rollout_new.py RUN BENCHMARKS her * do not use last step because vecenv calls reset and returns obs after reset RUN BENCHMARKS her * updated buffer sizes RUN BENCHMARKS her * fixed loading/saving via joblib * dust off learning from demonstrations in HER, docs, refactor * add deprecation notice on her play and plot files * address comments by Matthias * 1.5 months of codegen changes (#196) * play with resnet * feed_dict version * coinrun prob and more stats * fixes to get_choices_specs & hp search * minor prob fixes * minor fixes * minor * alternative version of rl_algo stuff * pylint fixes * fix bugs, move node_filters to soup * changed how get_algo works * change how get_algo works, probably broke all tests * continue previous refactor * get eval_agent running again * fixing tests * fix tests * fix more tests * clean up cma stuff * fix experiment * minor changes to eval_agent to make ppo_metal use gpu * make dict space work * modify mac makefile to use conda * recurrent layers * play with bn and resnets * minor hp changes * minor * got rid of use_fb argument and jtft (joint-train-fine-tune) functionality built test phase directly into AlgoProb * make new rl algos generateable * pylint; start fixing tests * fixing tests * more test fixes * pylint * fix search * work on search * hack around infinite loop caused by scan * algo search fixes * misc changes for search expt * enable annealing, overriding options of Op * pylint fixes * identity op * achieve use_last_output through masking so it automatically works in other distributions * fix tests * minor * discrete * use_last_output to be just a preference, not a hard constraint * pred delay, pruning * require nontrivial inputs * aliases for get_sm * add probname to probs * fixes * small fixes * fix tests * fix tests * fix tests * minor * test scripts * dualgru network improvements * minor * work on mysterious bugs * rcall gpu-usage command for kube * use cache dir that’s not in code folder, so that it doesn’t get removed by rcall code rsync * add power mode to gpu usage * make sure train/test actually different * remove VR for now * minor fixes * simplify soln_db * minor * big refactor of mpi eda * improve mpieda for multitask * - get rid of timelimit hack - add __del__ to cleanup SubprocVecEnv * get multitask working better * fixes * working on atari, various * annotate ops with whether they’re parametrized * minor * gym version * rand atari prob * minor * SolnDb bugfix and name change * pyspy script * switch conv layers * fix roboschool/bullet3 * nenvs assertion * fix rand atari * get rid of blanket exception catching fix soln_db bug * fix rand_atari * dynamic routing as cmdline arg * slight modifications to test_mpi_map and pyspy-all * max_tries argument for run_until_successs * dedup option in train_mle * simplify soln_db * increase atari horizon for 1 experiment * start implementing reward increment * ent multiplier * create cc dsl other misc fixes * cc ops * q_func -> qs in rl_algos_cc.py * fix PredictDistr * rl_ops_cc fixes, MakeAction op * augment algo agent to support cc stuff * work on ddpg experiments * fix blocking temporarily change logger * allow layer scaling * pylint fixes * spawn_method * isolate ddpg hacks * improve pruning * use spawn for subproc * remove use of python -c in rcall * fix pylint warning * fix static * maybe fix local backend * switch to DummyVecEnv * making some fixes via pylint * pylint fixes * fixing tests * fix tests * fix tests * write scaffolding for SSL in Codegen * logger fix * fix error * add EMA op to sl_ops * save many changes * save * add upsampler * add sl ops, enhance state machine * get ssl search working — some gross hacking * fix session/graph issue * fix importing * work on mle * - scale embeddings in gru model - better exception handling in sl_prob - use emas for test/val - use non-contrib batch_norm layer * improve logging * option to average before dumping in logger * default arguments, etc * new ddpg and identity test * concat fix * minor * move realistic ssl stuff to third-party (underscore to dash) * fixes * remove realistic_ssl_evaluation * pylint fixes * use gym master * try again * pass around args without gin * fix tests * separate line to install gym * rename failing tests that should be ignored * add data aug * ssl improvements * use fixed time limit * try to fix baselines tests * add score_floor, max_walltime, fiddle with lr decay * realistic_ssl * autopep8 * various ssl - enable blocking grad for simplification - kl - multiple final prediction * fix pruning * misc ssl stuff * bring back linear schedule, don’t use allgather for collecting stats (i’ve been getting nondeterministic errors from the old code) * save/load weights in SSL, big stepsize * cleanup SslProb * fix * get rid of kl coef * fix simplification, lower lr * search over hps * minor fixes * minor * static analysis * move files and rename things for improved consistency. still broken, and just saving before making nontrivial changes * various * make tests pass * move coinrun_train to codegen since it depends on codegen * fixes * pylint fixes * improve tests fix some things * improve tests * lint * fix up db_info.py, tests * mostly restore master version of envs directory, except for makefile changes * fix tests * improve printing * minor fixes * fix fixmes * pruning test * fixes * lint * write new test that makes tf graphs of random algos; fix some bugs it caught * add —delete flag to rcall upload-code command * lint * get cifar10 lazily for testing purposes * disable codegen ci tests for now * clean up rl_ops * rename spec classes * td3 with identity test * identity tests without gin files * remove gin.configurable from AlgoAgent * comments about reduction in rl_ops_cc * address @pzhokhov comments * fix tests * more linting * better tests * clean up filtering a bit * fix concat * delayed logger configuration (#208) * delayed logger configuration * fix typo * setters and getters for Logger.DEFAULT as well * do away with fancy property stuff - unable to get it to work with class level methods * grammar and spaces * spaces * use get_current function instead of reading Logger.CURRENT * autopep8 * disable mpi in subprocesses (#213) * lazy_mpi load * cleanups * more lazy mpi * don't pretend that class is a module, just use it as a class * mass-replace mpi4py imports * flake8 * fix previous lazy_mpi imports * silly recursion * try os.environ hack * better prefix test, work with mpich * restored MPI imports * removed commented import in test_with_mpi * restored codegen from master * remove lazy mpi * restored changes from rl-algs * remove extra files * address Chris' comments * use spawn for shmem vec env as well (#2) (#219) * lazy_mpi load * cleanups * more lazy mpi * don't pretend that class is a module, just use it as a class * mass-replace mpi4py imports * flake8 * fix previous lazy_mpi imports * silly recursion * try os.environ hack * better prefix test, work with mpich * restored MPI imports * removed commented import in test_with_mpi * restored codegen from master * remove lazy mpi * restored changes from rl-algs * remove extra files * port mpi fix to shmem vec env * increase the mpi test default timeout * change humanoid hyperparameters, get rid of clip_Frac annealing, as it's apparently dangerous * remove clip_frac schedule from ppo2 * more timesteps in humanoid run * whitespace + RUN BENCHMARKS * baselines: export vecenvs from folder (#221) * baselines: export vecenvs from folder * put missing function back in * add missing imports * more imports * longer mpi timeout? * make default logger configuration the same as call to logger.configure() (#222) * Vecenv refactor (#223) * update karl util * restore pvi flag * change rcall auto cpu behavior, move gin.configurable, add os.makedirs * vecenv refactor * aux buf index fix * add num aux obs * reset level with enter * restore high difficulty flag * bugfix * restore train_coinrun.py * tweaks * renaming * renaming * better arguments handling * more options * options cleanup * game data refactor * more options * args for train_procgen * add close handler to interactive base class * use debug build if debug=True, fix range on aux_obs * add ProcGenEnv to __init__.py, add missing imports to procgen.py * export RemoveDictWrapper and build, update train_procgen.py, move assets download into env creation and replace init_assets_and_build with just build * fix formatting issues * only call global init once * fix path in setup.py * revert part of makefile * ignore IDE files and folders * vec remove dict * export VecRemoveDictObs * remove RemoveDictWrapper * remove IDE files * move shared .h and .cpp files to common folder, update build to use those, dedupe env.cpp * fix missing header * try unified build function * remove old scripts dir * add comment on build * upload libenv with render fixes * tell qthreads to die when we unload the library * pyglet.app.run is garbage * static fixes * whoops * actually vsync is on * cleanup * cleanup * extern C for libenv interface * parse util rcall arg * high difficulty fix * game type enums * ProcGenEnv subclasses * game type cleanup * unrecognized key * unrecognized game type * parse util reorg * args management * typo fix * GinParser * arg tweaks * tweak * restore start_level/num_levels setting * fix create_procgen_env interface * build fix * procgen args in init signature * fix * build fix * fix logger usage in ppo_metal/run_retro * removed unnecessary OrderedDict requirement in subproc_vec_env * flake8 fix * allow for non-mpi tests * mpi test fixes * flake8; removed special logic for discrete spaces in dummy_vec_env * remove forked argument in front of tests - does not play nicely with subprocvecenv in spawned processes; analog of forked in ddpg/test_smoke * Everyrl initial commit & a few minor baselines changes (#226) * everyrl initial commit * add keep_buf argument to VecMonitor * logger changes: set_comm and fix to mpi_mean functionality * if filename not provided, don't create ResultsWriter * change variable syncing function to simplify its usage. now you should initialize from all mpi processes * everyrl coinrun changes * tf_distr changes, bugfix * get_one * bring back get_next to temporarily restore code * lint fixes * fix test * rename profile function * rename gaussian * fix coinrun training script * change random seeding to work with new gym version (#231) * change random seeding to work with new gym version * move seeding to seed() method * fix mnistenv * actually try some of the tests before pushing * more deterministic fixed seq * misc changes to vecenvs and run.py for benchmarks (#236) * misc changes to vecenvs and run.py for benchmarks * dont seed global gen * update more references to assert_venvs_equal * Rl19 (#232) * everyrl initial commit * add keep_buf argument to VecMonitor * logger changes: set_comm and fix to mpi_mean functionality * if filename not provided, don't create ResultsWriter * change variable syncing function to simplify its usage. now you should initialize from all mpi processes * everyrl coinrun changes * tf_distr changes, bugfix * get_one * bring back get_next to temporarily restore code * lint fixes * fix test * rename profile function * rename gaussian * fix coinrun training script * rl19 * remove everyrl dir which appeared in the merge for some reason * readme * fiddle with ddpg * make ddpg work * steps_total argument * gpu count * clean up hyperparams and shape math * logging + saving * configuration stuff * fixes, smoke tests * fix stats * make load_results return dicts -- easier to create the same kind of objects with some other mechanism for passing to downstream functions * benchmarks * fix tests * add dqn to tests, fix it * minor * turned annotated transformer (pytorch) into a script * more refactoring * jax stuff * cluster * minor * copy & paste alec code * sign error * add huber, rename some parameters, snapshotting off by default * remove jax stuff * minor * move maze env * minor * remove trailing spaces * remove trailing space * lint * fix test breakage due to gym update * rename function * move maze back to codegen * get recurrent ppo working * enable both lstm and gru * script to print table of benchmark results * various * fix dqn * add fixup initializer, remove lastrew * organize logging stats * fix silly bug * refactor models * fix mpi usage * check sync * minor * change vf coef, hps * clean up slicing in ppo * minor fixes * caching transformer * docstrings * xf fixes * get rid of 'B' and 'BT' arguments * minor * transformer example * remove output_kind from base class until we have a better idea how to use it * add comments, revert maze stuff * flake8 * codegen lint * fix codegen tests * responded to peter's comments * lint fixes * minor changes to baselines (#243) * minor changes to baselines * fix spaces reference * remove flake8 disable comments and fix import * okay maybe don't add spec to vec_env * Merge branch 'master' of github.com:openai/games the commit. * flake8 complaints in baselines/her
356 lines
13 KiB
Python
356 lines
13 KiB
Python
import tensorflow as tf
|
|
import numpy as np
|
|
import baselines.common.tf_util as U
|
|
from baselines.a2c.utils import fc
|
|
from tensorflow.python.ops import math_ops
|
|
|
|
class Pd(object):
|
|
"""
|
|
A particular probability distribution
|
|
"""
|
|
def flatparam(self):
|
|
raise NotImplementedError
|
|
def mode(self):
|
|
raise NotImplementedError
|
|
def neglogp(self, x):
|
|
# Usually it's easier to define the negative logprob
|
|
raise NotImplementedError
|
|
def kl(self, other):
|
|
raise NotImplementedError
|
|
def entropy(self):
|
|
raise NotImplementedError
|
|
def sample(self):
|
|
raise NotImplementedError
|
|
def logp(self, x):
|
|
return - self.neglogp(x)
|
|
def get_shape(self):
|
|
return self.flatparam().shape
|
|
@property
|
|
def shape(self):
|
|
return self.get_shape()
|
|
def __getitem__(self, idx):
|
|
return self.__class__(self.flatparam()[idx])
|
|
|
|
class PdType(object):
|
|
"""
|
|
Parametrized family of probability distributions
|
|
"""
|
|
def pdclass(self):
|
|
raise NotImplementedError
|
|
def pdfromflat(self, flat):
|
|
return self.pdclass()(flat)
|
|
def pdfromlatent(self, latent_vector, init_scale, init_bias):
|
|
raise NotImplementedError
|
|
def param_shape(self):
|
|
raise NotImplementedError
|
|
def sample_shape(self):
|
|
raise NotImplementedError
|
|
def sample_dtype(self):
|
|
raise NotImplementedError
|
|
|
|
def param_placeholder(self, prepend_shape, name=None):
|
|
return tf.placeholder(dtype=tf.float32, shape=prepend_shape+self.param_shape(), name=name)
|
|
def sample_placeholder(self, prepend_shape, name=None):
|
|
return tf.placeholder(dtype=self.sample_dtype(), shape=prepend_shape+self.sample_shape(), name=name)
|
|
|
|
def __eq__(self, other):
|
|
return (type(self) == type(other)) and (self.__dict__ == other.__dict__)
|
|
|
|
class CategoricalPdType(PdType):
|
|
def __init__(self, ncat):
|
|
self.ncat = ncat
|
|
def pdclass(self):
|
|
return CategoricalPd
|
|
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
|
pdparam = _matching_fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias)
|
|
return self.pdfromflat(pdparam), pdparam
|
|
|
|
def param_shape(self):
|
|
return [self.ncat]
|
|
def sample_shape(self):
|
|
return []
|
|
def sample_dtype(self):
|
|
return tf.int32
|
|
|
|
|
|
class MultiCategoricalPdType(PdType):
|
|
def __init__(self, nvec):
|
|
self.ncats = nvec.astype('int32')
|
|
assert (self.ncats > 0).all()
|
|
def pdclass(self):
|
|
return MultiCategoricalPd
|
|
def pdfromflat(self, flat):
|
|
return MultiCategoricalPd(self.ncats, flat)
|
|
|
|
def pdfromlatent(self, latent, init_scale=1.0, init_bias=0.0):
|
|
pdparam = _matching_fc(latent, 'pi', self.ncats.sum(), init_scale=init_scale, init_bias=init_bias)
|
|
return self.pdfromflat(pdparam), pdparam
|
|
|
|
def param_shape(self):
|
|
return [sum(self.ncats)]
|
|
def sample_shape(self):
|
|
return [len(self.ncats)]
|
|
def sample_dtype(self):
|
|
return tf.int32
|
|
|
|
class DiagGaussianPdType(PdType):
|
|
def __init__(self, size):
|
|
self.size = size
|
|
def pdclass(self):
|
|
return DiagGaussianPd
|
|
|
|
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
|
mean = _matching_fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
|
|
logstd = tf.get_variable(name='pi/logstd', shape=[1, self.size], initializer=tf.zeros_initializer())
|
|
pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
|
|
return self.pdfromflat(pdparam), mean
|
|
|
|
def param_shape(self):
|
|
return [2*self.size]
|
|
def sample_shape(self):
|
|
return [self.size]
|
|
def sample_dtype(self):
|
|
return tf.float32
|
|
|
|
class BernoulliPdType(PdType):
|
|
def __init__(self, size):
|
|
self.size = size
|
|
def pdclass(self):
|
|
return BernoulliPd
|
|
def param_shape(self):
|
|
return [self.size]
|
|
def sample_shape(self):
|
|
return [self.size]
|
|
def sample_dtype(self):
|
|
return tf.int32
|
|
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
|
pdparam = _matching_fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
|
|
return self.pdfromflat(pdparam), pdparam
|
|
|
|
# WRONG SECOND DERIVATIVES
|
|
# class CategoricalPd(Pd):
|
|
# def __init__(self, logits):
|
|
# self.logits = logits
|
|
# self.ps = tf.nn.softmax(logits)
|
|
# @classmethod
|
|
# def fromflat(cls, flat):
|
|
# return cls(flat)
|
|
# def flatparam(self):
|
|
# return self.logits
|
|
# def mode(self):
|
|
# return U.argmax(self.logits, axis=-1)
|
|
# def logp(self, x):
|
|
# return -tf.nn.sparse_softmax_cross_entropy_with_logits(self.logits, x)
|
|
# def kl(self, other):
|
|
# return tf.nn.softmax_cross_entropy_with_logits(other.logits, self.ps) \
|
|
# - tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
|
|
# def entropy(self):
|
|
# return tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
|
|
# def sample(self):
|
|
# u = tf.random_uniform(tf.shape(self.logits))
|
|
# return U.argmax(self.logits - tf.log(-tf.log(u)), axis=-1)
|
|
|
|
class CategoricalPd(Pd):
|
|
def __init__(self, logits):
|
|
self.logits = logits
|
|
def flatparam(self):
|
|
return self.logits
|
|
def mode(self):
|
|
return tf.argmax(self.logits, axis=-1)
|
|
|
|
@property
|
|
def mean(self):
|
|
return tf.nn.softmax(self.logits)
|
|
def neglogp(self, x):
|
|
# return tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=x)
|
|
# Note: we can't use sparse_softmax_cross_entropy_with_logits because
|
|
# the implementation does not allow second-order derivatives...
|
|
if x.dtype in {tf.uint8, tf.int32, tf.int64}:
|
|
# one-hot encoding
|
|
x_shape_list = x.shape.as_list()
|
|
logits_shape_list = self.logits.get_shape().as_list()[:-1]
|
|
for xs, ls in zip(x_shape_list, logits_shape_list):
|
|
if xs is not None and ls is not None:
|
|
assert xs == ls, 'shape mismatch: {} in x vs {} in logits'.format(xs, ls)
|
|
|
|
x = tf.one_hot(x, self.logits.get_shape().as_list()[-1])
|
|
else:
|
|
# already encoded
|
|
assert x.shape.as_list() == self.logits.shape.as_list()
|
|
|
|
return tf.nn.softmax_cross_entropy_with_logits_v2(
|
|
logits=self.logits,
|
|
labels=x)
|
|
def kl(self, other):
|
|
a0 = self.logits - tf.reduce_max(self.logits, axis=-1, keepdims=True)
|
|
a1 = other.logits - tf.reduce_max(other.logits, axis=-1, keepdims=True)
|
|
ea0 = tf.exp(a0)
|
|
ea1 = tf.exp(a1)
|
|
z0 = tf.reduce_sum(ea0, axis=-1, keepdims=True)
|
|
z1 = tf.reduce_sum(ea1, axis=-1, keepdims=True)
|
|
p0 = ea0 / z0
|
|
return tf.reduce_sum(p0 * (a0 - tf.log(z0) - a1 + tf.log(z1)), axis=-1)
|
|
def entropy(self):
|
|
a0 = self.logits - tf.reduce_max(self.logits, axis=-1, keepdims=True)
|
|
ea0 = tf.exp(a0)
|
|
z0 = tf.reduce_sum(ea0, axis=-1, keepdims=True)
|
|
p0 = ea0 / z0
|
|
return tf.reduce_sum(p0 * (tf.log(z0) - a0), axis=-1)
|
|
def sample(self):
|
|
u = tf.random_uniform(tf.shape(self.logits), dtype=self.logits.dtype)
|
|
return tf.argmax(self.logits - tf.log(-tf.log(u)), axis=-1)
|
|
@classmethod
|
|
def fromflat(cls, flat):
|
|
return cls(flat)
|
|
|
|
class MultiCategoricalPd(Pd):
|
|
def __init__(self, nvec, flat):
|
|
self.flat = flat
|
|
self.categoricals = list(map(CategoricalPd,
|
|
tf.split(flat, np.array(nvec, dtype=np.int32), axis=-1)))
|
|
def flatparam(self):
|
|
return self.flat
|
|
def mode(self):
|
|
return tf.cast(tf.stack([p.mode() for p in self.categoricals], axis=-1), tf.int32)
|
|
def neglogp(self, x):
|
|
return tf.add_n([p.neglogp(px) for p, px in zip(self.categoricals, tf.unstack(x, axis=-1))])
|
|
def kl(self, other):
|
|
return tf.add_n([p.kl(q) for p, q in zip(self.categoricals, other.categoricals)])
|
|
def entropy(self):
|
|
return tf.add_n([p.entropy() for p in self.categoricals])
|
|
def sample(self):
|
|
return tf.cast(tf.stack([p.sample() for p in self.categoricals], axis=-1), tf.int32)
|
|
@classmethod
|
|
def fromflat(cls, flat):
|
|
raise NotImplementedError
|
|
|
|
class DiagGaussianPd(Pd):
|
|
def __init__(self, flat):
|
|
self.flat = flat
|
|
mean, logstd = tf.split(axis=len(flat.shape)-1, num_or_size_splits=2, value=flat)
|
|
self.mean = mean
|
|
self.logstd = logstd
|
|
self.std = tf.exp(logstd)
|
|
def flatparam(self):
|
|
return self.flat
|
|
def mode(self):
|
|
return self.mean
|
|
def neglogp(self, x):
|
|
return 0.5 * tf.reduce_sum(tf.square((x - self.mean) / self.std), axis=-1) \
|
|
+ 0.5 * np.log(2.0 * np.pi) * tf.to_float(tf.shape(x)[-1]) \
|
|
+ tf.reduce_sum(self.logstd, axis=-1)
|
|
def kl(self, other):
|
|
assert isinstance(other, DiagGaussianPd)
|
|
return tf.reduce_sum(other.logstd - self.logstd + (tf.square(self.std) + tf.square(self.mean - other.mean)) / (2.0 * tf.square(other.std)) - 0.5, axis=-1)
|
|
def entropy(self):
|
|
return tf.reduce_sum(self.logstd + .5 * np.log(2.0 * np.pi * np.e), axis=-1)
|
|
def sample(self):
|
|
return self.mean + self.std * tf.random_normal(tf.shape(self.mean))
|
|
@classmethod
|
|
def fromflat(cls, flat):
|
|
return cls(flat)
|
|
|
|
|
|
class BernoulliPd(Pd):
|
|
def __init__(self, logits):
|
|
self.logits = logits
|
|
self.ps = tf.sigmoid(logits)
|
|
def flatparam(self):
|
|
return self.logits
|
|
@property
|
|
def mean(self):
|
|
return self.ps
|
|
def mode(self):
|
|
return tf.round(self.ps)
|
|
def neglogp(self, x):
|
|
return tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=tf.to_float(x)), axis=-1)
|
|
def kl(self, other):
|
|
return tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=other.logits, labels=self.ps), axis=-1) - tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=self.ps), axis=-1)
|
|
def entropy(self):
|
|
return tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=self.ps), axis=-1)
|
|
def sample(self):
|
|
u = tf.random_uniform(tf.shape(self.ps))
|
|
return tf.to_float(math_ops.less(u, self.ps))
|
|
@classmethod
|
|
def fromflat(cls, flat):
|
|
return cls(flat)
|
|
|
|
def make_pdtype(ac_space):
|
|
from gym import spaces
|
|
if isinstance(ac_space, spaces.Box):
|
|
assert len(ac_space.shape) == 1
|
|
return DiagGaussianPdType(ac_space.shape[0])
|
|
elif isinstance(ac_space, spaces.Discrete):
|
|
return CategoricalPdType(ac_space.n)
|
|
elif isinstance(ac_space, spaces.MultiDiscrete):
|
|
return MultiCategoricalPdType(ac_space.nvec)
|
|
elif isinstance(ac_space, spaces.MultiBinary):
|
|
return BernoulliPdType(ac_space.n)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def shape_el(v, i):
|
|
maybe = v.get_shape()[i]
|
|
if maybe is not None:
|
|
return maybe
|
|
else:
|
|
return tf.shape(v)[i]
|
|
|
|
@U.in_session
|
|
def test_probtypes():
|
|
np.random.seed(0)
|
|
|
|
pdparam_diag_gauss = np.array([-.2, .3, .4, -.5, .1, -.5, .1, 0.8])
|
|
diag_gauss = DiagGaussianPdType(pdparam_diag_gauss.size // 2) #pylint: disable=E1101
|
|
validate_probtype(diag_gauss, pdparam_diag_gauss)
|
|
|
|
pdparam_categorical = np.array([-.2, .3, .5])
|
|
categorical = CategoricalPdType(pdparam_categorical.size) #pylint: disable=E1101
|
|
validate_probtype(categorical, pdparam_categorical)
|
|
|
|
nvec = [1,2,3]
|
|
pdparam_multicategorical = np.array([-.2, .3, .5, .1, 1, -.1])
|
|
multicategorical = MultiCategoricalPdType(nvec) #pylint: disable=E1101
|
|
validate_probtype(multicategorical, pdparam_multicategorical)
|
|
|
|
pdparam_bernoulli = np.array([-.2, .3, .5])
|
|
bernoulli = BernoulliPdType(pdparam_bernoulli.size) #pylint: disable=E1101
|
|
validate_probtype(bernoulli, pdparam_bernoulli)
|
|
|
|
|
|
def validate_probtype(probtype, pdparam):
|
|
N = 100000
|
|
# Check to see if mean negative log likelihood == differential entropy
|
|
Mval = np.repeat(pdparam[None, :], N, axis=0)
|
|
M = probtype.param_placeholder([N])
|
|
X = probtype.sample_placeholder([N])
|
|
pd = probtype.pdfromflat(M)
|
|
calcloglik = U.function([X, M], pd.logp(X))
|
|
calcent = U.function([M], pd.entropy())
|
|
Xval = tf.get_default_session().run(pd.sample(), feed_dict={M:Mval})
|
|
logliks = calcloglik(Xval, Mval)
|
|
entval_ll = - logliks.mean() #pylint: disable=E1101
|
|
entval_ll_stderr = logliks.std() / np.sqrt(N) #pylint: disable=E1101
|
|
entval = calcent(Mval).mean() #pylint: disable=E1101
|
|
assert np.abs(entval - entval_ll) < 3 * entval_ll_stderr # within 3 sigmas
|
|
|
|
# Check to see if kldiv[p,q] = - ent[p] - E_p[log q]
|
|
M2 = probtype.param_placeholder([N])
|
|
pd2 = probtype.pdfromflat(M2)
|
|
q = pdparam + np.random.randn(pdparam.size) * 0.1
|
|
Mval2 = np.repeat(q[None, :], N, axis=0)
|
|
calckl = U.function([M, M2], pd.kl(pd2))
|
|
klval = calckl(Mval, Mval2).mean() #pylint: disable=E1101
|
|
logliks = calcloglik(Xval, Mval2)
|
|
klval_ll = - entval - logliks.mean() #pylint: disable=E1101
|
|
klval_ll_stderr = logliks.std() / np.sqrt(N) #pylint: disable=E1101
|
|
assert np.abs(klval - klval_ll) < 3 * klval_ll_stderr # within 3 sigmas
|
|
print('ok on', probtype, pdparam)
|
|
|
|
|
|
def _matching_fc(tensor, name, size, init_scale, init_bias):
|
|
if tensor.shape[-1] == size:
|
|
return tensor
|
|
else:
|
|
return fc(tensor, name, size, init_scale=init_scale, init_bias=init_bias)
|