Files
baselines/baselines/her/ddpg.py
2019-01-30 16:21:57 -08:00

449 lines
22 KiB
Python

from collections import OrderedDict
import numpy as np
import tensorflow as tf
from tensorflow.contrib.staging import StagingArea
from baselines import logger
from baselines.her.util import (
import_function, store_args, flatten_grads, transitions_in_episode_batch, convert_episode_to_batch_major)
from baselines.her.normalizer import Normalizer
from baselines.her.replay_buffer import ReplayBuffer
from baselines.common.mpi_adam import MpiAdam
from baselines.common import tf_util
def dims_to_shapes(input_dims):
return {key: tuple([val]) if val > 0 else tuple() for key, val in input_dims.items()}
global DEMO_BUFFER #buffer for demonstrations
class DDPG(object):
@store_args
def __init__(self, input_dims, buffer_size, hidden, layers, network_class, polyak, batch_size,
Q_lr, pi_lr, norm_eps, norm_clip, max_u, action_l2, clip_obs, scope, T,
rollout_batch_size, subtract_goals, relative_goals, clip_pos_returns, clip_return,
bc_loss, q_filter, num_demo, demo_batch_size, prm_loss_weight, aux_loss_weight,
sample_transitions, gamma, reuse=False, **kwargs):
"""Implementation of DDPG that is used in combination with Hindsight Experience Replay (HER).
Added functionality to use demonstrations for training to Overcome exploration problem.
Args:
input_dims (dict of ints): dimensions for the observation (o), the goal (g), and the
actions (u)
buffer_size (int): number of transitions that are stored in the replay buffer
hidden (int): number of units in the hidden layers
layers (int): number of hidden layers
network_class (str): the network class that should be used (e.g. 'baselines.her.ActorCritic')
polyak (float): coefficient for Polyak-averaging of the target network
batch_size (int): batch size for training
Q_lr (float): learning rate for the Q (critic) network
pi_lr (float): learning rate for the pi (actor) network
norm_eps (float): a small value used in the normalizer to avoid numerical instabilities
norm_clip (float): normalized inputs are clipped to be in [-norm_clip, norm_clip]
max_u (float): maximum action magnitude, i.e. actions are in [-max_u, max_u]
action_l2 (float): coefficient for L2 penalty on the actions
clip_obs (float): clip observations before normalization to be in [-clip_obs, clip_obs]
scope (str): the scope used for the TensorFlow graph
T (int): the time horizon for rollouts
rollout_batch_size (int): number of parallel rollouts per DDPG agent
subtract_goals (function): function that subtracts goals from each other
relative_goals (boolean): whether or not relative goals should be fed into the network
clip_pos_returns (boolean): whether or not positive returns should be clipped
clip_return (float): clip returns to be in [-clip_return, clip_return]
sample_transitions (function) function that samples from the replay buffer
gamma (float): gamma used for Q learning updates
reuse (boolean): whether or not the networks should be reused
bc_loss: whether or not the behavior cloning loss should be used as an auxilliary loss
q_filter: whether or not a filter on the q value update should be used when training with demonstartions
num_demo: Number of episodes in to be used in the demonstration buffer
demo_batch_size: number of samples to be used from the demonstrations buffer, per mpi thread
prm_loss_weight: Weight corresponding to the primary loss
aux_loss_weight: Weight corresponding to the auxilliary loss also called the cloning loss
"""
if self.clip_return is None:
self.clip_return = np.inf
self.create_actor_critic = import_function(self.network_class)
input_shapes = dims_to_shapes(self.input_dims)
self.dimo = self.input_dims['o']
self.dimg = self.input_dims['g']
self.dimu = self.input_dims['u']
# Prepare staging area for feeding data to the model.
stage_shapes = OrderedDict()
for key in sorted(self.input_dims.keys()):
if key.startswith('info_'):
continue
stage_shapes[key] = (None, *input_shapes[key])
for key in ['o', 'g']:
stage_shapes[key + '_2'] = stage_shapes[key]
stage_shapes['r'] = (None,)
self.stage_shapes = stage_shapes
# Create network.
with tf.variable_scope(self.scope):
self.staging_tf = StagingArea(
dtypes=[tf.float32 for _ in self.stage_shapes.keys()],
shapes=list(self.stage_shapes.values()))
self.buffer_ph_tf = [
tf.placeholder(tf.float32, shape=shape) for shape in self.stage_shapes.values()]
self.stage_op = self.staging_tf.put(self.buffer_ph_tf)
self._create_network(reuse=reuse)
# Configure the replay buffer.
buffer_shapes = {key: (self.T-1 if key != 'o' else self.T, *input_shapes[key])
for key, val in input_shapes.items()}
buffer_shapes['g'] = (buffer_shapes['g'][0], self.dimg)
buffer_shapes['ag'] = (self.T, self.dimg)
buffer_size = (self.buffer_size // self.rollout_batch_size) * self.rollout_batch_size
self.buffer = ReplayBuffer(buffer_shapes, buffer_size, self.T, self.sample_transitions)
global DEMO_BUFFER
DEMO_BUFFER = ReplayBuffer(buffer_shapes, buffer_size, self.T, self.sample_transitions) #initialize the demo buffer; in the same way as the primary data buffer
def _random_action(self, n):
return np.random.uniform(low=-self.max_u, high=self.max_u, size=(n, self.dimu))
def _preprocess_og(self, o, ag, g):
if self.relative_goals:
g_shape = g.shape
g = g.reshape(-1, self.dimg)
ag = ag.reshape(-1, self.dimg)
g = self.subtract_goals(g, ag)
g = g.reshape(*g_shape)
o = np.clip(o, -self.clip_obs, self.clip_obs)
g = np.clip(g, -self.clip_obs, self.clip_obs)
return o, g
def step(self, obs):
actions = self.get_actions(obs['observation'], obs['achieved_goal'], obs['desired_goal'])
return actions, None, None, None
def get_actions(self, o, ag, g, noise_eps=0., random_eps=0., use_target_net=False,
compute_Q=False):
o, g = self._preprocess_og(o, ag, g)
policy = self.target if use_target_net else self.main
# values to compute
vals = [policy.pi_tf]
if compute_Q:
vals += [policy.Q_pi_tf]
# feed
feed = {
policy.o_tf: o.reshape(-1, self.dimo),
policy.g_tf: g.reshape(-1, self.dimg),
policy.u_tf: np.zeros((o.size // self.dimo, self.dimu), dtype=np.float32)
}
ret = self.sess.run(vals, feed_dict=feed)
# action postprocessing
u = ret[0]
noise = noise_eps * self.max_u * np.random.randn(*u.shape) # gaussian noise
u += noise
u = np.clip(u, -self.max_u, self.max_u)
u += np.random.binomial(1, random_eps, u.shape[0]).reshape(-1, 1) * (self._random_action(u.shape[0]) - u) # eps-greedy
if u.shape[0] == 1:
u = u[0]
u = u.copy()
ret[0] = u
if len(ret) == 1:
return ret[0]
else:
return ret
def init_demo_buffer(self, demoDataFile, update_stats=True): #function that initializes the demo buffer
demoData = np.load(demoDataFile) #load the demonstration data from data file
info_keys = [key.replace('info_', '') for key in self.input_dims.keys() if key.startswith('info_')]
info_values = [np.empty((self.T - 1, 1, self.input_dims['info_' + key]), np.float32) for key in info_keys]
demo_data_obs = demoData['obs']
demo_data_acs = demoData['acs']
demo_data_info = demoData['info']
for epsd in range(self.num_demo): # we initialize the whole demo buffer at the start of the training
obs, acts, goals, achieved_goals = [], [] ,[] ,[]
i = 0
for transition in range(self.T - 1):
obs.append([demo_data_obs[epsd][transition].get('observation')])
acts.append([demo_data_acs[epsd][transition]])
goals.append([demo_data_obs[epsd][transition].get('desired_goal')])
achieved_goals.append([demo_data_obs[epsd][transition].get('achieved_goal')])
for idx, key in enumerate(info_keys):
info_values[idx][transition, i] = demo_data_info[epsd][transition][key]
obs.append([demo_data_obs[epsd][self.T - 1].get('observation')])
achieved_goals.append([demo_data_obs[epsd][self.T - 1].get('achieved_goal')])
episode = dict(o=obs,
u=acts,
g=goals,
ag=achieved_goals)
for key, value in zip(info_keys, info_values):
episode['info_{}'.format(key)] = value
episode = convert_episode_to_batch_major(episode)
global DEMO_BUFFER
DEMO_BUFFER.store_episode(episode) # create the observation dict and append them into the demonstration buffer
logger.debug("Demo buffer size currently ", DEMO_BUFFER.get_current_size()) #print out the demonstration buffer size
if update_stats:
# add transitions to normalizer to normalize the demo data as well
episode['o_2'] = episode['o'][:, 1:, :]
episode['ag_2'] = episode['ag'][:, 1:, :]
num_normalizing_transitions = transitions_in_episode_batch(episode)
transitions = self.sample_transitions(episode, num_normalizing_transitions)
o, g, ag = transitions['o'], transitions['g'], transitions['ag']
transitions['o'], transitions['g'] = self._preprocess_og(o, ag, g)
# No need to preprocess the o_2 and g_2 since this is only used for stats
self.o_stats.update(transitions['o'])
self.g_stats.update(transitions['g'])
self.o_stats.recompute_stats()
self.g_stats.recompute_stats()
episode.clear()
logger.info("Demo buffer size: ", DEMO_BUFFER.get_current_size()) #print out the demonstration buffer size
def store_episode(self, episode_batch, update_stats=True):
"""
episode_batch: array of batch_size x (T or T+1) x dim_key
'o' is of size T+1, others are of size T
"""
self.buffer.store_episode(episode_batch)
if update_stats:
# add transitions to normalizer
episode_batch['o_2'] = episode_batch['o'][:, 1:, :]
episode_batch['ag_2'] = episode_batch['ag'][:, 1:, :]
num_normalizing_transitions = transitions_in_episode_batch(episode_batch)
transitions = self.sample_transitions(episode_batch, num_normalizing_transitions)
o, g, ag = transitions['o'], transitions['g'], transitions['ag']
transitions['o'], transitions['g'] = self._preprocess_og(o, ag, g)
# No need to preprocess the o_2 and g_2 since this is only used for stats
self.o_stats.update(transitions['o'])
self.g_stats.update(transitions['g'])
self.o_stats.recompute_stats()
self.g_stats.recompute_stats()
def get_current_buffer_size(self):
return self.buffer.get_current_size()
def _sync_optimizers(self):
self.Q_adam.sync()
self.pi_adam.sync()
def _grads(self):
# Avoid feed_dict here for performance!
critic_loss, actor_loss, Q_grad, pi_grad = self.sess.run([
self.Q_loss_tf,
self.main.Q_pi_tf,
self.Q_grad_tf,
self.pi_grad_tf
])
return critic_loss, actor_loss, Q_grad, pi_grad
def _update(self, Q_grad, pi_grad):
self.Q_adam.update(Q_grad, self.Q_lr)
self.pi_adam.update(pi_grad, self.pi_lr)
def sample_batch(self):
if self.bc_loss: #use demonstration buffer to sample as well if bc_loss flag is set TRUE
transitions = self.buffer.sample(self.batch_size - self.demo_batch_size)
global DEMO_BUFFER
transitions_demo = DEMO_BUFFER.sample(self.demo_batch_size) #sample from the demo buffer
for k, values in transitions_demo.items():
rolloutV = transitions[k].tolist()
for v in values:
rolloutV.append(v.tolist())
transitions[k] = np.array(rolloutV)
else:
transitions = self.buffer.sample(self.batch_size) #otherwise only sample from primary buffer
o, o_2, g = transitions['o'], transitions['o_2'], transitions['g']
ag, ag_2 = transitions['ag'], transitions['ag_2']
transitions['o'], transitions['g'] = self._preprocess_og(o, ag, g)
transitions['o_2'], transitions['g_2'] = self._preprocess_og(o_2, ag_2, g)
transitions_batch = [transitions[key] for key in self.stage_shapes.keys()]
return transitions_batch
def stage_batch(self, batch=None):
if batch is None:
batch = self.sample_batch()
assert len(self.buffer_ph_tf) == len(batch)
self.sess.run(self.stage_op, feed_dict=dict(zip(self.buffer_ph_tf, batch)))
def train(self, stage=True):
if stage:
self.stage_batch()
critic_loss, actor_loss, Q_grad, pi_grad = self._grads()
self._update(Q_grad, pi_grad)
return critic_loss, actor_loss
def _init_target_net(self):
self.sess.run(self.init_target_net_op)
def update_target_net(self):
self.sess.run(self.update_target_net_op)
def clear_buffer(self):
self.buffer.clear_buffer()
def _vars(self, scope):
res = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.scope + '/' + scope)
assert len(res) > 0
return res
def _global_vars(self, scope):
res = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.scope + '/' + scope)
return res
def _create_network(self, reuse=False):
logger.info("Creating a DDPG agent with action space %d x %s..." % (self.dimu, self.max_u))
self.sess = tf_util.get_session()
# running averages
with tf.variable_scope('o_stats') as vs:
if reuse:
vs.reuse_variables()
self.o_stats = Normalizer(self.dimo, self.norm_eps, self.norm_clip, sess=self.sess)
with tf.variable_scope('g_stats') as vs:
if reuse:
vs.reuse_variables()
self.g_stats = Normalizer(self.dimg, self.norm_eps, self.norm_clip, sess=self.sess)
# mini-batch sampling.
batch = self.staging_tf.get()
batch_tf = OrderedDict([(key, batch[i])
for i, key in enumerate(self.stage_shapes.keys())])
batch_tf['r'] = tf.reshape(batch_tf['r'], [-1, 1])
#choose only the demo buffer samples
mask = np.concatenate((np.zeros(self.batch_size - self.demo_batch_size), np.ones(self.demo_batch_size)), axis = 0)
# networks
with tf.variable_scope('main') as vs:
if reuse:
vs.reuse_variables()
self.main = self.create_actor_critic(batch_tf, net_type='main', **self.__dict__)
vs.reuse_variables()
with tf.variable_scope('target') as vs:
if reuse:
vs.reuse_variables()
target_batch_tf = batch_tf.copy()
target_batch_tf['o'] = batch_tf['o_2']
target_batch_tf['g'] = batch_tf['g_2']
self.target = self.create_actor_critic(
target_batch_tf, net_type='target', **self.__dict__)
vs.reuse_variables()
assert len(self._vars("main")) == len(self._vars("target"))
# loss functions
target_Q_pi_tf = self.target.Q_pi_tf
clip_range = (-self.clip_return, 0. if self.clip_pos_returns else np.inf)
target_tf = tf.clip_by_value(batch_tf['r'] + self.gamma * target_Q_pi_tf, *clip_range)
self.Q_loss_tf = tf.reduce_mean(tf.square(tf.stop_gradient(target_tf) - self.main.Q_tf))
if self.bc_loss ==1 and self.q_filter == 1 : # train with demonstrations and use bc_loss and q_filter both
maskMain = tf.reshape(tf.boolean_mask(self.main.Q_tf > self.main.Q_pi_tf, mask), [-1]) #where is the demonstrator action better than actor action according to the critic? choose those samples only
#define the cloning loss on the actor's actions only on the samples which adhere to the above masks
self.cloning_loss_tf = tf.reduce_sum(tf.square(tf.boolean_mask(tf.boolean_mask((self.main.pi_tf), mask), maskMain, axis=0) - tf.boolean_mask(tf.boolean_mask((batch_tf['u']), mask), maskMain, axis=0)))
self.pi_loss_tf = -self.prm_loss_weight * tf.reduce_mean(self.main.Q_pi_tf) #primary loss scaled by it's respective weight prm_loss_weight
self.pi_loss_tf += self.prm_loss_weight * self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u)) #L2 loss on action values scaled by the same weight prm_loss_weight
self.pi_loss_tf += self.aux_loss_weight * self.cloning_loss_tf #adding the cloning loss to the actor loss as an auxilliary loss scaled by its weight aux_loss_weight
elif self.bc_loss == 1 and self.q_filter == 0: # train with demonstrations without q_filter
self.cloning_loss_tf = tf.reduce_sum(tf.square(tf.boolean_mask((self.main.pi_tf), mask) - tf.boolean_mask((batch_tf['u']), mask)))
self.pi_loss_tf = -self.prm_loss_weight * tf.reduce_mean(self.main.Q_pi_tf)
self.pi_loss_tf += self.prm_loss_weight * self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u))
self.pi_loss_tf += self.aux_loss_weight * self.cloning_loss_tf
else: #If not training with demonstrations
self.pi_loss_tf = -tf.reduce_mean(self.main.Q_pi_tf)
self.pi_loss_tf += self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u))
Q_grads_tf = tf.gradients(self.Q_loss_tf, self._vars('main/Q'))
pi_grads_tf = tf.gradients(self.pi_loss_tf, self._vars('main/pi'))
assert len(self._vars('main/Q')) == len(Q_grads_tf)
assert len(self._vars('main/pi')) == len(pi_grads_tf)
self.Q_grads_vars_tf = zip(Q_grads_tf, self._vars('main/Q'))
self.pi_grads_vars_tf = zip(pi_grads_tf, self._vars('main/pi'))
self.Q_grad_tf = flatten_grads(grads=Q_grads_tf, var_list=self._vars('main/Q'))
self.pi_grad_tf = flatten_grads(grads=pi_grads_tf, var_list=self._vars('main/pi'))
# optimizers
self.Q_adam = MpiAdam(self._vars('main/Q'), scale_grad_by_procs=False)
self.pi_adam = MpiAdam(self._vars('main/pi'), scale_grad_by_procs=False)
# polyak averaging
self.main_vars = self._vars('main/Q') + self._vars('main/pi')
self.target_vars = self._vars('target/Q') + self._vars('target/pi')
self.stats_vars = self._global_vars('o_stats') + self._global_vars('g_stats')
self.init_target_net_op = list(
map(lambda v: v[0].assign(v[1]), zip(self.target_vars, self.main_vars)))
self.update_target_net_op = list(
map(lambda v: v[0].assign(self.polyak * v[0] + (1. - self.polyak) * v[1]), zip(self.target_vars, self.main_vars)))
# initialize all variables
tf.variables_initializer(self._global_vars('')).run()
self._sync_optimizers()
self._init_target_net()
def logs(self, prefix=''):
logs = []
logs += [('stats_o/mean', np.mean(self.sess.run([self.o_stats.mean])))]
logs += [('stats_o/std', np.mean(self.sess.run([self.o_stats.std])))]
logs += [('stats_g/mean', np.mean(self.sess.run([self.g_stats.mean])))]
logs += [('stats_g/std', np.mean(self.sess.run([self.g_stats.std])))]
if prefix != '' and not prefix.endswith('/'):
return [(prefix + '/' + key, val) for key, val in logs]
else:
return logs
def __getstate__(self):
"""Our policies can be loaded from pkl, but after unpickling you cannot continue training.
"""
excluded_subnames = ['_tf', '_op', '_vars', '_adam', 'buffer', 'sess', '_stats',
'main', 'target', 'lock', 'env', 'sample_transitions',
'stage_shapes', 'create_actor_critic']
state = {k: v for k, v in self.__dict__.items() if all([not subname in k for subname in excluded_subnames])}
state['buffer_size'] = self.buffer_size
state['tf'] = self.sess.run([x for x in self._global_vars('') if 'buffer' not in x.name])
return state
def __setstate__(self, state):
if 'sample_transitions' not in state:
# We don't need this for playing the policy.
state['sample_transitions'] = None
self.__init__(**state)
# set up stats (they are overwritten in __init__)
for k, v in state.items():
if k[-6:] == '_stats':
self.__dict__[k] = v
# load TF variables
vars = [x for x in self._global_vars('') if 'buffer' not in x.name]
assert(len(vars) == len(state["tf"]))
node = [tf.assign(var, val) for var, val in zip(vars, state["tf"])]
self.sess.run(node)
def save(self, save_path):
tf_util.save_variables(save_path)