Files
baselines/baselines/ppo1/pposgd_simple.py
2019-04-05 15:23:46 -07:00

218 lines
9.2 KiB
Python

from baselines.common import Dataset, explained_variance, fmt_row, zipsame
from baselines import logger
import baselines.common.tf_util as U
import tensorflow as tf, numpy as np
import time
from baselines.common.mpi_adam import MpiAdam
from baselines.common.mpi_moments import mpi_moments
from mpi4py import MPI
from collections import deque
def traj_segment_generator(pi, env, horizon, stochastic):
t = 0
ac = env.action_space.sample() # not used, just so we have the datatype
new = True # marks if we're on first timestep of an episode
ob = env.reset()
cur_ep_ret = 0 # return in current episode
cur_ep_len = 0 # len of current episode
ep_rets = [] # returns of completed episodes in this segment
ep_lens = [] # lengths of ...
# Initialize history arrays
obs = np.array([ob for _ in range(horizon)])
rews = np.zeros(horizon, 'float32')
vpreds = np.zeros(horizon, 'float32')
news = np.zeros(horizon, 'int32')
acs = np.array([ac for _ in range(horizon)])
prevacs = acs.copy()
while True:
prevac = ac
ac, vpred = pi.act(stochastic, ob)
# Slight weirdness here because we need value function at time T
# before returning segment [0, T-1] so we get the correct
# terminal value
if t > 0 and t % horizon == 0:
yield {"ob" : obs, "rew" : rews, "vpred" : vpreds, "new" : news,
"ac" : acs, "prevac" : prevacs, "nextvpred": vpred * (1 - new),
"ep_rets" : ep_rets, "ep_lens" : ep_lens}
# Be careful!!! if you change the downstream algorithm to aggregate
# several of these batches, then be sure to do a deepcopy
ep_rets = []
ep_lens = []
i = t % horizon
obs[i] = ob
vpreds[i] = vpred
news[i] = new
acs[i] = ac
prevacs[i] = prevac
ob, rew, new, _ = env.step(ac)
rews[i] = rew
cur_ep_ret += rew
cur_ep_len += 1
if new:
ep_rets.append(cur_ep_ret)
ep_lens.append(cur_ep_len)
cur_ep_ret = 0
cur_ep_len = 0
ob = env.reset()
t += 1
def add_vtarg_and_adv(seg, gamma, lam):
"""
Compute target value using TD(lambda) estimator, and advantage with GAE(lambda)
"""
new = np.append(seg["new"], 0) # last element is only used for last vtarg, but we already zeroed it if last new = 1
vpred = np.append(seg["vpred"], seg["nextvpred"])
T = len(seg["rew"])
seg["adv"] = gaelam = np.empty(T, 'float32')
rew = seg["rew"]
lastgaelam = 0
for t in reversed(range(T)):
nonterminal = 1-new[t+1]
delta = rew[t] + gamma * vpred[t+1] * nonterminal - vpred[t]
gaelam[t] = lastgaelam = delta + gamma * lam * nonterminal * lastgaelam
seg["tdlamret"] = seg["adv"] + seg["vpred"]
def learn(env, policy_fn, *,
timesteps_per_actorbatch, # timesteps per actor per update
clip_param, entcoeff, # clipping parameter epsilon, entropy coeff
optim_epochs, optim_stepsize, optim_batchsize,# optimization hypers
gamma, lam, # advantage estimation
max_timesteps=0, max_episodes=0, max_iters=0, max_seconds=0, # time constraint
callback=None, # you can do anything in the callback, since it takes locals(), globals()
adam_epsilon=1e-5,
schedule='constant' # annealing for stepsize parameters (epsilon and adam)
):
# Setup losses and stuff
# ----------------------------------------
ob_space = env.observation_space
ac_space = env.action_space
pi = policy_fn("pi", ob_space, ac_space) # Construct network for new policy
oldpi = policy_fn("oldpi", ob_space, ac_space) # Network for old policy
atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return
lrmult = tf.placeholder(name='lrmult', dtype=tf.float32, shape=[]) # learning rate multiplier, updated with schedule
ob = U.get_placeholder_cached(name="ob")
ac = pi.pdtype.sample_placeholder([None])
kloldnew = oldpi.pd.kl(pi.pd)
ent = pi.pd.entropy()
meankl = tf.reduce_mean(kloldnew)
meanent = tf.reduce_mean(ent)
pol_entpen = (-entcoeff) * meanent
ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # pnew / pold
surr1 = ratio * atarg # surrogate from conservative policy iteration
surr2 = tf.clip_by_value(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg #
pol_surr = - tf.reduce_mean(tf.minimum(surr1, surr2)) # PPO's pessimistic surrogate (L^CLIP)
vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret))
total_loss = pol_surr + pol_entpen + vf_loss
losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]
var_list = pi.get_trainable_variables()
lossandgrad = U.function([ob, ac, atarg, ret, lrmult], losses + [U.flatgrad(total_loss, var_list)])
adam = MpiAdam(var_list, epsilon=adam_epsilon)
assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())])
compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses)
U.initialize()
adam.sync()
# Prepare for rollouts
# ----------------------------------------
seg_gen = traj_segment_generator(pi, env, timesteps_per_actorbatch, stochastic=True)
episodes_so_far = 0
timesteps_so_far = 0
iters_so_far = 0
tstart = time.time()
lenbuffer = deque(maxlen=100) # rolling buffer for episode lengths
rewbuffer = deque(maxlen=100) # rolling buffer for episode rewards
assert sum([max_iters>0, max_timesteps>0, max_episodes>0, max_seconds>0])==1, "Only one time constraint permitted"
while True:
if callback: callback(locals(), globals())
if max_timesteps and timesteps_so_far >= max_timesteps:
break
elif max_episodes and episodes_so_far >= max_episodes:
break
elif max_iters and iters_so_far >= max_iters:
break
elif max_seconds and time.time() - tstart >= max_seconds:
break
if schedule == 'constant':
cur_lrmult = 1.0
elif schedule == 'linear':
cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
else:
raise NotImplementedError
logger.log("********** Iteration %i ************"%iters_so_far)
seg = seg_gen.__next__()
add_vtarg_and_adv(seg, gamma, lam)
# ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
vpredbefore = seg["vpred"] # predicted value function before udpate
atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate
d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret), deterministic=pi.recurrent)
optim_batchsize = optim_batchsize or ob.shape[0]
if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy
assign_old_eq_new() # set old parameter values to new parameter values
logger.log("Optimizing...")
logger.log(fmt_row(13, loss_names))
# Here we do a bunch of optimization epochs over the data
for _ in range(optim_epochs):
losses = [] # list of tuples, each of which gives the loss for a minibatch
for batch in d.iterate_once(optim_batchsize):
*newlosses, g = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult)
adam.update(g, optim_stepsize * cur_lrmult)
losses.append(newlosses)
logger.log(fmt_row(13, np.mean(losses, axis=0)))
logger.log("Evaluating losses...")
losses = []
for batch in d.iterate_once(optim_batchsize):
newlosses = compute_losses(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult)
losses.append(newlosses)
meanlosses,_,_ = mpi_moments(losses, axis=0)
logger.log(fmt_row(13, meanlosses))
for (lossval, name) in zipsame(meanlosses, loss_names):
logger.record_tabular("loss_"+name, lossval)
logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))
lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
lens, rews = map(flatten_lists, zip(*listoflrpairs))
lenbuffer.extend(lens)
rewbuffer.extend(rews)
logger.record_tabular("EpLenMean", np.mean(lenbuffer))
logger.record_tabular("EpRewMean", np.mean(rewbuffer))
logger.record_tabular("EpThisIter", len(lens))
episodes_so_far += len(lens)
timesteps_so_far += sum(lens)
iters_so_far += 1
logger.record_tabular("EpisodesSoFar", episodes_so_far)
logger.record_tabular("TimestepsSoFar", timesteps_so_far)
logger.record_tabular("TimeElapsed", time.time() - tstart)
if MPI.COMM_WORLD.Get_rank()==0:
logger.dump_tabular()
return pi
def flatten_lists(listoflists):
return [el for list_ in listoflists for el in list_]