Files
baselines/baselines/common/vec_env/dummy_vec_env.py
pzhokhov 8c2aea2add refactor a2c, acer, acktr, ppo2, deepq, and trpo_mpi (#490)
* exported rl-algs

* more stuff from rl-algs

* run slow tests

* re-exported rl_algs

* re-exported rl_algs - fixed problems with serialization test and test_cartpole

* replaced atari_arg_parser with common_arg_parser

* run.py can run algos from both baselines and rl_algs

* added approximate humanoid reward with ppo2 into the README for reference

* dummy commit to RUN BENCHMARKS

* dummy commit to RUN BENCHMARKS

* dummy commit to RUN BENCHMARKS

* dummy commit to RUN BENCHMARKS

* very dummy commit to RUN BENCHMARKS

* serialize variables as a dict, not as a list

* running_mean_std uses tensorflow variables

* fixed import in vec_normalize

* dummy commit to RUN BENCHMARKS

* dummy commit to RUN BENCHMARKS

* flake8 complaints

* save all variables to make sure we save the vec_normalize normalization

* benchmarks on ppo2 only RUN BENCHMARKS

* make_atari_env compatible with mpi

* run ppo_mpi benchmarks only RUN BENCHMARKS

* hardcode names of retro environments

* add defaults

* changed default ppo2 lr schedule to linear RUN BENCHMARKS

* non-tf normalization benchmark RUN BENCHMARKS

* use ncpu=1 for mujoco sessions - gives a bit of a performance speedup

* reverted running_mean_std to user property decorators for mean, var, count

* reverted VecNormalize to use RunningMeanStd (no tf)

* reverted VecNormalize to use RunningMeanStd (no tf)

* profiling wip

* use VecNormalize with regular RunningMeanStd

* added acer runner (missing import)

* flake8 complaints

* added a note in README about TfRunningMeanStd and serialization of VecNormalize

* dummy commit to RUN BENCHMARKS

* merged benchmarks branch
2018-08-13 09:56:44 -07:00

83 lines
2.7 KiB
Python

import numpy as np
from gym import spaces
from collections import OrderedDict
from . import VecEnv
class DummyVecEnv(VecEnv):
def __init__(self, env_fns):
self.envs = [fn() for fn in env_fns]
env = self.envs[0]
VecEnv.__init__(self, len(env_fns), env.observation_space, env.action_space)
shapes, dtypes = {}, {}
self.keys = []
obs_space = env.observation_space
if isinstance(obs_space, spaces.Dict):
assert isinstance(obs_space.spaces, OrderedDict)
subspaces = obs_space.spaces
else:
subspaces = {None: obs_space}
for key, box in subspaces.items():
shapes[key] = box.shape
dtypes[key] = box.dtype
self.keys.append(key)
self.buf_obs = { k: np.zeros((self.num_envs,) + tuple(shapes[k]), dtype=dtypes[k]) for k in self.keys }
self.buf_dones = np.zeros((self.num_envs,), dtype=np.bool)
self.buf_rews = np.zeros((self.num_envs,), dtype=np.float32)
self.buf_infos = [{} for _ in range(self.num_envs)]
self.actions = None
def step_async(self, actions):
listify = True
try:
if len(actions) == self.num_envs:
listify = False
except TypeError:
pass
if not listify:
self.actions = actions
else:
assert self.num_envs == 1, "actions {} is either not a list or has a wrong size - cannot match to {} environments".format(actions, self.num_envs)
self.actions = [actions]
def step_wait(self):
for e in range(self.num_envs):
action = self.actions[e]
if isinstance(self.envs[e].action_space, spaces.Discrete):
action = int(action)
obs, self.buf_rews[e], self.buf_dones[e], self.buf_infos[e] = self.envs[e].step(action)
if self.buf_dones[e]:
obs = self.envs[e].reset()
self._save_obs(e, obs)
return (np.copy(self._obs_from_buf()), np.copy(self.buf_rews), np.copy(self.buf_dones),
self.buf_infos.copy())
def reset(self):
for e in range(self.num_envs):
obs = self.envs[e].reset()
self._save_obs(e, obs)
return self._obs_from_buf()
def close(self):
return
def render(self, mode='human'):
return [e.render(mode=mode) for e in self.envs]
def _save_obs(self, e, obs):
for k in self.keys:
if k is None:
self.buf_obs[k][e] = obs
else:
self.buf_obs[k][e] = obs[k]
def _obs_from_buf(self):
if self.keys==[None]:
return self.buf_obs[None]
else:
return self.buf_obs