* joshim5 changes (width and height to WarpFrame wrapper) * match network output with action distribution via a linear layer only if necessary (#167) * support color vs. grayscale option in WarpFrame wrapper (#166) * support color vs. grayscale option in WarpFrame wrapper * Support color in other wrappers * Updated per Peters suggestions * fixing test failures * ppo2 with microbatches (#168) * pass microbatch_size to the model during construction * microbatch fixes and test (#169) * microbatch fixes and test * tiny cleanup * added assertions to the test * vpg-related fix * Peterz joshim5 subclass ppo2 model (#170) * microbatch fixes and test * tiny cleanup * added assertions to the test * vpg-related fix * subclassing the model to make microbatched version of model WIP * made microbatched model a subclass of ppo2 Model * flake8 complaint * mpi-less ppo2 (resolving merge conflict) * flake8 and mpi4py imports in ppo2/model.py * more un-mpying * merge master * updates to the benchmark viewer code + autopep8 (#184) * viz docs and syntactic sugar wip * update viewer yaml to use persistent volume claims * move plot_util to baselines.common, update links * use 1Tb hard drive for results viewer * small updates to benchmark vizualizer code * autopep8 * autopep8 * any folder can be a benchmark * massage games image a little bit * fixed --preload option in app.py * remove preload from run_viewer.sh * remove pdb breakpoints * update bench-viewer.yaml * fixed bug (#185) * fixed bug it's wrong to do the else statement, because no other nodes would start. * changed the fix slightly * Refactor her phase 1 (#194) * add monitor to the rollout envs in her RUN BENCHMARKS her * Slice -> Slide in her benchmarks RUN BENCHMARKS her * run her benchmark for 200 epochs * dummy commit to RUN BENCHMARKS her * her benchmark for 500 epochs RUN BENCHMARKS her * add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her * add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her * add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her * disable saving of policies in her benchmark RUN BENCHMARKS her * run fetch benchmarks with ppo2 and ddpg RUN BENCHMARKS Fetch * run fetch benchmarks with ppo2 and ddpg RUN BENCHMARKS Fetch * launcher refactor wip * wip * her works on FetchReach * her runner refactor RUN BENCHMARKS Fetch1M * unit test for her * fixing warnings in mpi_average in her, skip test_fetchreach if mujoco is not present * pickle-based serialization in her * remove extra import from subproc_vec_env.py * investigating differences in rollout.py * try with old rollout code RUN BENCHMARKS her * temporarily use DummyVecEnv in cmd_util.py RUN BENCHMARKS her * dummy commit to RUN BENCHMARKS her * set info_values in rollout worker in her RUN BENCHMARKS her * bug in rollout_new.py RUN BENCHMARKS her * fixed bug in rollout_new.py RUN BENCHMARKS her * do not use last step because vecenv calls reset and returns obs after reset RUN BENCHMARKS her * updated buffer sizes RUN BENCHMARKS her * fixed loading/saving via joblib * dust off learning from demonstrations in HER, docs, refactor * add deprecation notice on her play and plot files * address comments by Matthias * 1.5 months of codegen changes (#196) * play with resnet * feed_dict version * coinrun prob and more stats * fixes to get_choices_specs & hp search * minor prob fixes * minor fixes * minor * alternative version of rl_algo stuff * pylint fixes * fix bugs, move node_filters to soup * changed how get_algo works * change how get_algo works, probably broke all tests * continue previous refactor * get eval_agent running again * fixing tests * fix tests * fix more tests * clean up cma stuff * fix experiment * minor changes to eval_agent to make ppo_metal use gpu * make dict space work * modify mac makefile to use conda * recurrent layers * play with bn and resnets * minor hp changes * minor * got rid of use_fb argument and jtft (joint-train-fine-tune) functionality built test phase directly into AlgoProb * make new rl algos generateable * pylint; start fixing tests * fixing tests * more test fixes * pylint * fix search * work on search * hack around infinite loop caused by scan * algo search fixes * misc changes for search expt * enable annealing, overriding options of Op * pylint fixes * identity op * achieve use_last_output through masking so it automatically works in other distributions * fix tests * minor * discrete * use_last_output to be just a preference, not a hard constraint * pred delay, pruning * require nontrivial inputs * aliases for get_sm * add probname to probs * fixes * small fixes * fix tests * fix tests * fix tests * minor * test scripts * dualgru network improvements * minor * work on mysterious bugs * rcall gpu-usage command for kube * use cache dir that’s not in code folder, so that it doesn’t get removed by rcall code rsync * add power mode to gpu usage * make sure train/test actually different * remove VR for now * minor fixes * simplify soln_db * minor * big refactor of mpi eda * improve mpieda for multitask * - get rid of timelimit hack - add __del__ to cleanup SubprocVecEnv * get multitask working better * fixes * working on atari, various * annotate ops with whether they’re parametrized * minor * gym version * rand atari prob * minor * SolnDb bugfix and name change * pyspy script * switch conv layers * fix roboschool/bullet3 * nenvs assertion * fix rand atari * get rid of blanket exception catching fix soln_db bug * fix rand_atari * dynamic routing as cmdline arg * slight modifications to test_mpi_map and pyspy-all * max_tries argument for run_until_successs * dedup option in train_mle * simplify soln_db * increase atari horizon for 1 experiment * start implementing reward increment * ent multiplier * create cc dsl other misc fixes * cc ops * q_func -> qs in rl_algos_cc.py * fix PredictDistr * rl_ops_cc fixes, MakeAction op * augment algo agent to support cc stuff * work on ddpg experiments * fix blocking temporarily change logger * allow layer scaling * pylint fixes * spawn_method * isolate ddpg hacks * improve pruning * use spawn for subproc * remove use of python -c in rcall * fix pylint warning * fix static * maybe fix local backend * switch to DummyVecEnv * making some fixes via pylint * pylint fixes * fixing tests * fix tests * fix tests * write scaffolding for SSL in Codegen * logger fix * fix error * add EMA op to sl_ops * save many changes * save * add upsampler * add sl ops, enhance state machine * get ssl search working — some gross hacking * fix session/graph issue * fix importing * work on mle * - scale embeddings in gru model - better exception handling in sl_prob - use emas for test/val - use non-contrib batch_norm layer * improve logging * option to average before dumping in logger * default arguments, etc * new ddpg and identity test * concat fix * minor * move realistic ssl stuff to third-party (underscore to dash) * fixes * remove realistic_ssl_evaluation * pylint fixes * use gym master * try again * pass around args without gin * fix tests * separate line to install gym * rename failing tests that should be ignored * add data aug * ssl improvements * use fixed time limit * try to fix baselines tests * add score_floor, max_walltime, fiddle with lr decay * realistic_ssl * autopep8 * various ssl - enable blocking grad for simplification - kl - multiple final prediction * fix pruning * misc ssl stuff * bring back linear schedule, don’t use allgather for collecting stats (i’ve been getting nondeterministic errors from the old code) * save/load weights in SSL, big stepsize * cleanup SslProb * fix * get rid of kl coef * fix simplification, lower lr * search over hps * minor fixes * minor * static analysis * move files and rename things for improved consistency. still broken, and just saving before making nontrivial changes * various * make tests pass * move coinrun_train to codegen since it depends on codegen * fixes * pylint fixes * improve tests fix some things * improve tests * lint * fix up db_info.py, tests * mostly restore master version of envs directory, except for makefile changes * fix tests * improve printing * minor fixes * fix fixmes * pruning test * fixes * lint * write new test that makes tf graphs of random algos; fix some bugs it caught * add —delete flag to rcall upload-code command * lint * get cifar10 lazily for testing purposes * disable codegen ci tests for now * clean up rl_ops * rename spec classes * td3 with identity test * identity tests without gin files * remove gin.configurable from AlgoAgent * comments about reduction in rl_ops_cc * address @pzhokhov comments * fix tests * more linting * better tests * clean up filtering a bit * fix concat * delayed logger configuration (#208) * delayed logger configuration * fix typo * setters and getters for Logger.DEFAULT as well * do away with fancy property stuff - unable to get it to work with class level methods * grammar and spaces * spaces * use get_current function instead of reading Logger.CURRENT * autopep8 * disable mpi in subprocesses (#213) * lazy_mpi load * cleanups * more lazy mpi * don't pretend that class is a module, just use it as a class * mass-replace mpi4py imports * flake8 * fix previous lazy_mpi imports * silly recursion * try os.environ hack * better prefix test, work with mpich * restored MPI imports * removed commented import in test_with_mpi * restored codegen from master * remove lazy mpi * restored changes from rl-algs * remove extra files * address Chris' comments * use spawn for shmem vec env as well (#2) (#219) * lazy_mpi load * cleanups * more lazy mpi * don't pretend that class is a module, just use it as a class * mass-replace mpi4py imports * flake8 * fix previous lazy_mpi imports * silly recursion * try os.environ hack * better prefix test, work with mpich * restored MPI imports * removed commented import in test_with_mpi * restored codegen from master * remove lazy mpi * restored changes from rl-algs * remove extra files * port mpi fix to shmem vec env * increase the mpi test default timeout * change humanoid hyperparameters, get rid of clip_Frac annealing, as it's apparently dangerous * remove clip_frac schedule from ppo2 * more timesteps in humanoid run * whitespace + RUN BENCHMARKS * baselines: export vecenvs from folder (#221) * baselines: export vecenvs from folder * put missing function back in * add missing imports * more imports * longer mpi timeout? * make default logger configuration the same as call to logger.configure() (#222) * Vecenv refactor (#223) * update karl util * restore pvi flag * change rcall auto cpu behavior, move gin.configurable, add os.makedirs * vecenv refactor * aux buf index fix * add num aux obs * reset level with enter * restore high difficulty flag * bugfix * restore train_coinrun.py * tweaks * renaming * renaming * better arguments handling * more options * options cleanup * game data refactor * more options * args for train_procgen * add close handler to interactive base class * use debug build if debug=True, fix range on aux_obs * add ProcGenEnv to __init__.py, add missing imports to procgen.py * export RemoveDictWrapper and build, update train_procgen.py, move assets download into env creation and replace init_assets_and_build with just build * fix formatting issues * only call global init once * fix path in setup.py * revert part of makefile * ignore IDE files and folders * vec remove dict * export VecRemoveDictObs * remove RemoveDictWrapper * remove IDE files * move shared .h and .cpp files to common folder, update build to use those, dedupe env.cpp * fix missing header * try unified build function * remove old scripts dir * add comment on build * upload libenv with render fixes * tell qthreads to die when we unload the library * pyglet.app.run is garbage * static fixes * whoops * actually vsync is on * cleanup * cleanup * extern C for libenv interface * parse util rcall arg * high difficulty fix * game type enums * ProcGenEnv subclasses * game type cleanup * unrecognized key * unrecognized game type * parse util reorg * args management * typo fix * GinParser * arg tweaks * tweak * restore start_level/num_levels setting * fix create_procgen_env interface * build fix * procgen args in init signature * fix * build fix * fix logger usage in ppo_metal/run_retro * removed unnecessary OrderedDict requirement in subproc_vec_env * flake8 fix * allow for non-mpi tests * mpi test fixes * flake8; removed special logic for discrete spaces in dummy_vec_env * remove forked argument in front of tests - does not play nicely with subprocvecenv in spawned processes; analog of forked in ddpg/test_smoke * Everyrl initial commit & a few minor baselines changes (#226) * everyrl initial commit * add keep_buf argument to VecMonitor * logger changes: set_comm and fix to mpi_mean functionality * if filename not provided, don't create ResultsWriter * change variable syncing function to simplify its usage. now you should initialize from all mpi processes * everyrl coinrun changes * tf_distr changes, bugfix * get_one * bring back get_next to temporarily restore code * lint fixes * fix test * rename profile function * rename gaussian * fix coinrun training script * change random seeding to work with new gym version (#231) * change random seeding to work with new gym version * move seeding to seed() method * fix mnistenv * actually try some of the tests before pushing * more deterministic fixed seq * misc changes to vecenvs and run.py for benchmarks (#236) * misc changes to vecenvs and run.py for benchmarks * dont seed global gen * update more references to assert_venvs_equal * Rl19 (#232) * everyrl initial commit * add keep_buf argument to VecMonitor * logger changes: set_comm and fix to mpi_mean functionality * if filename not provided, don't create ResultsWriter * change variable syncing function to simplify its usage. now you should initialize from all mpi processes * everyrl coinrun changes * tf_distr changes, bugfix * get_one * bring back get_next to temporarily restore code * lint fixes * fix test * rename profile function * rename gaussian * fix coinrun training script * rl19 * remove everyrl dir which appeared in the merge for some reason * readme * fiddle with ddpg * make ddpg work * steps_total argument * gpu count * clean up hyperparams and shape math * logging + saving * configuration stuff * fixes, smoke tests * fix stats * make load_results return dicts -- easier to create the same kind of objects with some other mechanism for passing to downstream functions * benchmarks * fix tests * add dqn to tests, fix it * minor * turned annotated transformer (pytorch) into a script * more refactoring * jax stuff * cluster * minor * copy & paste alec code * sign error * add huber, rename some parameters, snapshotting off by default * remove jax stuff * minor * move maze env * minor * remove trailing spaces * remove trailing space * lint * fix test breakage due to gym update * rename function * move maze back to codegen * get recurrent ppo working * enable both lstm and gru * script to print table of benchmark results * various * fix dqn * add fixup initializer, remove lastrew * organize logging stats * fix silly bug * refactor models * fix mpi usage * check sync * minor * change vf coef, hps * clean up slicing in ppo * minor fixes * caching transformer * docstrings * xf fixes * get rid of 'B' and 'BT' arguments * minor * transformer example * remove output_kind from base class until we have a better idea how to use it * add comments, revert maze stuff * flake8 * codegen lint * fix codegen tests * responded to peter's comments * lint fixes * minor changes to baselines (#243) * minor changes to baselines * fix spaces reference * remove flake8 disable comments and fix import * okay maybe don't add spec to vec_env * Merge branch 'master' of github.com:openai/games the commit. * flake8 complaints in baselines/her
251 lines
8.5 KiB
Python
251 lines
8.5 KiB
Python
import numpy as np
|
|
import os
|
|
os.environ.setdefault('PATH', '')
|
|
from collections import deque
|
|
import gym
|
|
from gym import spaces
|
|
import cv2
|
|
cv2.ocl.setUseOpenCL(False)
|
|
from .wrappers import TimeLimit
|
|
|
|
|
|
class NoopResetEnv(gym.Wrapper):
|
|
def __init__(self, env, noop_max=30):
|
|
"""Sample initial states by taking random number of no-ops on reset.
|
|
No-op is assumed to be action 0.
|
|
"""
|
|
gym.Wrapper.__init__(self, env)
|
|
self.noop_max = noop_max
|
|
self.override_num_noops = None
|
|
self.noop_action = 0
|
|
assert env.unwrapped.get_action_meanings()[0] == 'NOOP'
|
|
|
|
def reset(self, **kwargs):
|
|
""" Do no-op action for a number of steps in [1, noop_max]."""
|
|
self.env.reset(**kwargs)
|
|
if self.override_num_noops is not None:
|
|
noops = self.override_num_noops
|
|
else:
|
|
noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) #pylint: disable=E1101
|
|
assert noops > 0
|
|
obs = None
|
|
for _ in range(noops):
|
|
obs, _, done, _ = self.env.step(self.noop_action)
|
|
if done:
|
|
obs = self.env.reset(**kwargs)
|
|
return obs
|
|
|
|
def step(self, ac):
|
|
return self.env.step(ac)
|
|
|
|
class FireResetEnv(gym.Wrapper):
|
|
def __init__(self, env):
|
|
"""Take action on reset for environments that are fixed until firing."""
|
|
gym.Wrapper.__init__(self, env)
|
|
assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
|
|
assert len(env.unwrapped.get_action_meanings()) >= 3
|
|
|
|
def reset(self, **kwargs):
|
|
self.env.reset(**kwargs)
|
|
obs, _, done, _ = self.env.step(1)
|
|
if done:
|
|
self.env.reset(**kwargs)
|
|
obs, _, done, _ = self.env.step(2)
|
|
if done:
|
|
self.env.reset(**kwargs)
|
|
return obs
|
|
|
|
def step(self, ac):
|
|
return self.env.step(ac)
|
|
|
|
class EpisodicLifeEnv(gym.Wrapper):
|
|
def __init__(self, env):
|
|
"""Make end-of-life == end-of-episode, but only reset on true game over.
|
|
Done by DeepMind for the DQN and co. since it helps value estimation.
|
|
"""
|
|
gym.Wrapper.__init__(self, env)
|
|
self.lives = 0
|
|
self.was_real_done = True
|
|
|
|
def step(self, action):
|
|
obs, reward, done, info = self.env.step(action)
|
|
self.was_real_done = done
|
|
# check current lives, make loss of life terminal,
|
|
# then update lives to handle bonus lives
|
|
lives = self.env.unwrapped.ale.lives()
|
|
if lives < self.lives and lives > 0:
|
|
# for Qbert sometimes we stay in lives == 0 condition for a few frames
|
|
# so it's important to keep lives > 0, so that we only reset once
|
|
# the environment advertises done.
|
|
done = True
|
|
self.lives = lives
|
|
return obs, reward, done, info
|
|
|
|
def reset(self, **kwargs):
|
|
"""Reset only when lives are exhausted.
|
|
This way all states are still reachable even though lives are episodic,
|
|
and the learner need not know about any of this behind-the-scenes.
|
|
"""
|
|
if self.was_real_done:
|
|
obs = self.env.reset(**kwargs)
|
|
else:
|
|
# no-op step to advance from terminal/lost life state
|
|
obs, _, _, _ = self.env.step(0)
|
|
self.lives = self.env.unwrapped.ale.lives()
|
|
return obs
|
|
|
|
class MaxAndSkipEnv(gym.Wrapper):
|
|
def __init__(self, env, skip=4):
|
|
"""Return only every `skip`-th frame"""
|
|
gym.Wrapper.__init__(self, env)
|
|
# most recent raw observations (for max pooling across time steps)
|
|
self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.uint8)
|
|
self._skip = skip
|
|
|
|
def step(self, action):
|
|
"""Repeat action, sum reward, and max over last observations."""
|
|
total_reward = 0.0
|
|
done = None
|
|
for i in range(self._skip):
|
|
obs, reward, done, info = self.env.step(action)
|
|
if i == self._skip - 2: self._obs_buffer[0] = obs
|
|
if i == self._skip - 1: self._obs_buffer[1] = obs
|
|
total_reward += reward
|
|
if done:
|
|
break
|
|
# Note that the observation on the done=True frame
|
|
# doesn't matter
|
|
max_frame = self._obs_buffer.max(axis=0)
|
|
|
|
return max_frame, total_reward, done, info
|
|
|
|
def reset(self, **kwargs):
|
|
return self.env.reset(**kwargs)
|
|
|
|
class ClipRewardEnv(gym.RewardWrapper):
|
|
def __init__(self, env):
|
|
gym.RewardWrapper.__init__(self, env)
|
|
|
|
def reward(self, reward):
|
|
"""Bin reward to {+1, 0, -1} by its sign."""
|
|
return np.sign(reward)
|
|
|
|
class WarpFrame(gym.ObservationWrapper):
|
|
def __init__(self, env, width=84, height=84, grayscale=True):
|
|
"""Warp frames to 84x84 as done in the Nature paper and later work."""
|
|
gym.ObservationWrapper.__init__(self, env)
|
|
self.width = width
|
|
self.height = height
|
|
self.grayscale = grayscale
|
|
if self.grayscale:
|
|
self.observation_space = spaces.Box(low=0, high=255,
|
|
shape=(self.height, self.width, 1), dtype=np.uint8)
|
|
else:
|
|
self.observation_space = spaces.Box(low=0, high=255,
|
|
shape=(self.height, self.width, 3), dtype=np.uint8)
|
|
|
|
def observation(self, frame):
|
|
if self.grayscale:
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
|
frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA)
|
|
if self.grayscale:
|
|
frame = np.expand_dims(frame, -1)
|
|
return frame
|
|
|
|
class FrameStack(gym.Wrapper):
|
|
def __init__(self, env, k):
|
|
"""Stack k last frames.
|
|
|
|
Returns lazy array, which is much more memory efficient.
|
|
|
|
See Also
|
|
--------
|
|
baselines.common.atari_wrappers.LazyFrames
|
|
"""
|
|
gym.Wrapper.__init__(self, env)
|
|
self.k = k
|
|
self.frames = deque([], maxlen=k)
|
|
shp = env.observation_space.shape
|
|
self.observation_space = spaces.Box(low=0, high=255, shape=(shp[:-1] + (shp[-1] * k,)), dtype=env.observation_space.dtype)
|
|
|
|
def reset(self):
|
|
ob = self.env.reset()
|
|
for _ in range(self.k):
|
|
self.frames.append(ob)
|
|
return self._get_ob()
|
|
|
|
def step(self, action):
|
|
ob, reward, done, info = self.env.step(action)
|
|
self.frames.append(ob)
|
|
return self._get_ob(), reward, done, info
|
|
|
|
def _get_ob(self):
|
|
assert len(self.frames) == self.k
|
|
return LazyFrames(list(self.frames))
|
|
|
|
class ScaledFloatFrame(gym.ObservationWrapper):
|
|
def __init__(self, env):
|
|
gym.ObservationWrapper.__init__(self, env)
|
|
self.observation_space = gym.spaces.Box(low=0, high=1, shape=env.observation_space.shape, dtype=np.float32)
|
|
|
|
def observation(self, observation):
|
|
# careful! This undoes the memory optimization, use
|
|
# with smaller replay buffers only.
|
|
return np.array(observation).astype(np.float32) / 255.0
|
|
|
|
class LazyFrames(object):
|
|
def __init__(self, frames):
|
|
"""This object ensures that common frames between the observations are only stored once.
|
|
It exists purely to optimize memory usage which can be huge for DQN's 1M frames replay
|
|
buffers.
|
|
|
|
This object should only be converted to numpy array before being passed to the model.
|
|
|
|
You'd not believe how complex the previous solution was."""
|
|
self._frames = frames
|
|
self._out = None
|
|
|
|
def _force(self):
|
|
if self._out is None:
|
|
self._out = np.concatenate(self._frames, axis=-1)
|
|
self._frames = None
|
|
return self._out
|
|
|
|
def __array__(self, dtype=None):
|
|
out = self._force()
|
|
if dtype is not None:
|
|
out = out.astype(dtype)
|
|
return out
|
|
|
|
def __len__(self):
|
|
return len(self._force())
|
|
|
|
def __getitem__(self, i):
|
|
return self._force()[i]
|
|
|
|
def make_atari(env_id, max_episode_steps=None):
|
|
env = gym.make(env_id)
|
|
assert 'NoFrameskip' in env.spec.id
|
|
env = NoopResetEnv(env, noop_max=30)
|
|
env = MaxAndSkipEnv(env, skip=4)
|
|
if max_episode_steps is not None:
|
|
env = TimeLimit(env, max_episode_steps=max_episode_steps)
|
|
return env
|
|
|
|
def wrap_deepmind(env, episode_life=True, clip_rewards=True, frame_stack=False, scale=False):
|
|
"""Configure environment for DeepMind-style Atari.
|
|
"""
|
|
if episode_life:
|
|
env = EpisodicLifeEnv(env)
|
|
if 'FIRE' in env.unwrapped.get_action_meanings():
|
|
env = FireResetEnv(env)
|
|
env = WarpFrame(env)
|
|
if scale:
|
|
env = ScaledFloatFrame(env)
|
|
if clip_rewards:
|
|
env = ClipRewardEnv(env)
|
|
if frame_stack:
|
|
env = FrameStack(env, 4)
|
|
return env
|
|
|