Files
baselines/baselines/her/replay_buffer.py
Matthias Plappert b71152eea0 Adds support for Hindsight Experience Replay (HER) (#299)
* Add Hindsight Experience Replay (HER)

* Minor improvements
2018-02-26 17:40:16 +01:00

109 lines
3.6 KiB
Python

import threading
import numpy as np
class ReplayBuffer:
def __init__(self, buffer_shapes, size_in_transitions, T, sample_transitions):
"""Creates a replay buffer.
Args:
buffer_shapes (dict of ints): the shape for all buffers that are used in the replay
buffer
size_in_transitions (int): the size of the buffer, measured in transitions
T (int): the time horizon for episodes
sample_transitions (function): a function that samples from the replay buffer
"""
self.buffer_shapes = buffer_shapes
self.size = size_in_transitions // T
self.T = T
self.sample_transitions = sample_transitions
# self.buffers is {key: array(size_in_episodes x T or T+1 x dim_key)}
self.buffers = {key: np.empty([self.size, *shape])
for key, shape in buffer_shapes.items()}
# memory management
self.current_size = 0
self.n_transitions_stored = 0
self.lock = threading.Lock()
@property
def full(self):
with self.lock:
return self.current_size == self.size
def sample(self, batch_size):
"""Returns a dict {key: array(batch_size x shapes[key])}
"""
buffers = {}
with self.lock:
assert self.current_size > 0
for key in self.buffers.keys():
buffers[key] = self.buffers[key][:self.current_size]
buffers['o_2'] = buffers['o'][:, 1:, :]
buffers['ag_2'] = buffers['ag'][:, 1:, :]
transitions = self.sample_transitions(buffers, batch_size)
for key in (['r', 'o_2', 'ag_2'] + list(self.buffers.keys())):
assert key in transitions, "key %s missing from transitions" % key
return transitions
def store_episode(self, episode_batch):
"""episode_batch: array(batch_size x (T or T+1) x dim_key)
"""
batch_sizes = [len(episode_batch[key]) for key in episode_batch.keys()]
assert np.all(np.array(batch_sizes) == batch_sizes[0])
batch_size = batch_sizes[0]
with self.lock:
idxs = self._get_storage_idx(batch_size)
# load inputs into buffers
for key in self.buffers.keys():
self.buffers[key][idxs] = episode_batch[key]
self.n_transitions_stored += batch_size * self.T
def get_current_episode_size(self):
with self.lock:
return self.current_size
def get_current_size(self):
with self.lock:
return self.current_size * self.T
def get_transitions_stored(self):
with self.lock:
return self.n_transitions_stored
def clear_buffer(self):
with self.lock:
self.current_size = 0
def _get_storage_idx(self, inc=None):
inc = inc or 1 # size increment
assert inc <= self.size, "Batch committed to replay is too large!"
# go consecutively until you hit the end, and then go randomly.
if self.current_size+inc <= self.size:
idx = np.arange(self.current_size, self.current_size+inc)
elif self.current_size < self.size:
overflow = inc - (self.size - self.current_size)
idx_a = np.arange(self.current_size, self.size)
idx_b = np.random.randint(0, self.current_size, overflow)
idx = np.concatenate([idx_a, idx_b])
else:
idx = np.random.randint(0, self.size, inc)
# update replay size
self.current_size = min(self.size, self.current_size+inc)
if inc == 1:
idx = idx[0]
return idx