Files
baselines/baselines/common/vec_env/__init__.py
coord.e 6e607efa90 Add video recorder (#666)
* Fix: Return the result of rendering from dummyvecenv

* Add: Add a video recorder wrapper for vecenv

* Change: Use VecVideoRecorder with --video_monitor flag

* Change: Overwrite the metadata only when it isn't defined

* Add: Define __del__ to make the file correctly closed in exit

* Fix: Bump epidode_id in reset()

* Fix: Use hasattr to check the existence of .metadata

* Fix: Make directory when it doesn't exist

* Change: Kepp recording for `video_length` steps, then close

Because reset() is not what it is in normal gym.Env

* Add: Enable to specify video_length from command line argument

* Delete: Delete default value, None, of video_callable

* Change: Use self.recorded_frames and self.recording to manage intervals

* Add: Log the status of video recording

* Fix: Fix saving path

* Change: Place metadata in the base VecEnv

* Delete: Delete unused imports

* Fix: epidode_id => step_id

* Fix: Refine the flag name

* Change: Unify the flag name folloing to previous change

* [WIP] Add: Add a test of VecVideoRecorder

* Fix: Use PongNoFrameskip-v0 because SimpleEnv doesn't have render()

* Change; Use TemporaryDirectory

* Fix: minimal successful test

* Add: Test against parallel environments

* Add: Test against different type of VecEnvs

* Change: Test against different length and interval of video capture

* Delete: Reduce the number of tests

* Change: Test if the output video is not empty

* Add: Add some comments

* Fix: Fix the flag name

* Add: Add docstrings

* Fix: Install ffmpeg in testing container for VecVideoRecorder's test

* Fix: Delete unused things

* Fix: Replace `video_callable` with `record_video_trigger`

* Fix: Improve the explanation of `record_video_trigger` argument

* Fix: Close owning vecenv in VecVideoRecorder.close to resolve memory
leak
2018-11-05 14:32:17 -08:00

186 lines
4.8 KiB
Python

from abc import ABC, abstractmethod
from baselines.common.tile_images import tile_images
class AlreadySteppingError(Exception):
"""
Raised when an asynchronous step is running while
step_async() is called again.
"""
def __init__(self):
msg = 'already running an async step'
Exception.__init__(self, msg)
class NotSteppingError(Exception):
"""
Raised when an asynchronous step is not running but
step_wait() is called.
"""
def __init__(self):
msg = 'not running an async step'
Exception.__init__(self, msg)
class VecEnv(ABC):
"""
An abstract asynchronous, vectorized environment.
Used to batch data from multiple copies of an environment, so that
each observation becomes an batch of observations, and expected action is a batch of actions to
be applied per-environment.
"""
closed = False
viewer = None
metadata = {
'render.modes': ['human', 'rgb_array']
}
def __init__(self, num_envs, observation_space, action_space):
self.num_envs = num_envs
self.observation_space = observation_space
self.action_space = action_space
@abstractmethod
def reset(self):
"""
Reset all the environments and return an array of
observations, or a dict of observation arrays.
If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
until step_async() is invoked again.
"""
pass
@abstractmethod
def step_async(self, actions):
"""
Tell all the environments to start taking a step
with the given actions.
Call step_wait() to get the results of the step.
You should not call this if a step_async run is
already pending.
"""
pass
@abstractmethod
def step_wait(self):
"""
Wait for the step taken with step_async().
Returns (obs, rews, dones, infos):
- obs: an array of observations, or a dict of
arrays of observations.
- rews: an array of rewards
- dones: an array of "episode done" booleans
- infos: a sequence of info objects
"""
pass
def close_extras(self):
"""
Clean up the extra resources, beyond what's in this base class.
Only runs when not self.closed.
"""
pass
def close(self):
if self.closed:
return
if self.viewer is not None:
self.viewer.close()
self.close_extras()
self.closed = True
def step(self, actions):
"""
Step the environments synchronously.
This is available for backwards compatibility.
"""
self.step_async(actions)
return self.step_wait()
def render(self, mode='human'):
imgs = self.get_images()
bigimg = tile_images(imgs)
if mode == 'human':
self.get_viewer().imshow(bigimg)
return self.get_viewer().isopen
elif mode == 'rgb_array':
return bigimg
else:
raise NotImplementedError
def get_images(self):
"""
Return RGB images from each environment
"""
raise NotImplementedError
@property
def unwrapped(self):
if isinstance(self, VecEnvWrapper):
return self.venv.unwrapped
else:
return self
def get_viewer(self):
if self.viewer is None:
from gym.envs.classic_control import rendering
self.viewer = rendering.SimpleImageViewer()
return self.viewer
class VecEnvWrapper(VecEnv):
"""
An environment wrapper that applies to an entire batch
of environments at once.
"""
def __init__(self, venv, observation_space=None, action_space=None):
self.venv = venv
VecEnv.__init__(self,
num_envs=venv.num_envs,
observation_space=observation_space or venv.observation_space,
action_space=action_space or venv.action_space)
def step_async(self, actions):
self.venv.step_async(actions)
@abstractmethod
def reset(self):
pass
@abstractmethod
def step_wait(self):
pass
def close(self):
return self.venv.close()
def render(self, mode='human'):
return self.venv.render(mode=mode)
def get_images(self):
return self.venv.get_images()
class CloudpickleWrapper(object):
"""
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
"""
def __init__(self, x):
self.x = x
def __getstate__(self):
import cloudpickle
return cloudpickle.dumps(self.x)
def __setstate__(self, ob):
import pickle
self.x = pickle.loads(ob)