52 lines
1.3 KiB
Python
52 lines
1.3 KiB
Python
import pytest
|
|
from baselines.common.tests.envs.fixed_sequence_env import FixedSequenceEnv
|
|
|
|
from baselines.common.tests.util import simple_test
|
|
from baselines.run import get_learn_function
|
|
|
|
common_kwargs = dict(
|
|
seed=0,
|
|
total_timesteps=50000,
|
|
)
|
|
|
|
learn_kwargs = {
|
|
'a2c': {},
|
|
'ppo2': dict(nsteps=10, ent_coef=0.0, nminibatches=1),
|
|
# TODO enable sequential models for trpo_mpi (proper handling of nbatch and nsteps)
|
|
# github issue: https://github.com/openai/baselines/issues/188
|
|
# 'trpo_mpi': lambda e, p: trpo_mpi.learn(policy_fn=p(env=e), env=e, max_timesteps=30000, timesteps_per_batch=100, cg_iters=10, gamma=0.9, lam=1.0, max_kl=0.001)
|
|
}
|
|
|
|
|
|
alg_list = learn_kwargs.keys()
|
|
rnn_list = ['lstm']
|
|
|
|
@pytest.mark.slow
|
|
@pytest.mark.parametrize("alg", alg_list)
|
|
@pytest.mark.parametrize("rnn", rnn_list)
|
|
def test_fixed_sequence(alg, rnn):
|
|
'''
|
|
Test if the algorithm (with a given policy)
|
|
can learn an identity transformation (i.e. return observation as an action)
|
|
'''
|
|
|
|
kwargs = learn_kwargs[alg]
|
|
kwargs.update(common_kwargs)
|
|
|
|
episode_len = 5
|
|
env_fn = lambda: FixedSequenceEnv(10, episode_len=episode_len)
|
|
learn = lambda e: get_learn_function(alg)(
|
|
env=e,
|
|
network=rnn,
|
|
**kwargs
|
|
)
|
|
|
|
simple_test(env_fn, learn, 0.7)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_fixed_sequence('ppo2', 'lstm')
|
|
|
|
|
|
|