* transformer mnist experiments * version that only builds one model * work on inverted mnist * Add grad clipping to MpiAdamOptimizer * various * transformer changes, loading * get rid of soft labels * transformer baseline * minor * experiments involving all possible training sets * vary training * minor * get ready for fine-tuning expers * lint * minor
91 lines
3.9 KiB
Python
91 lines
3.9 KiB
Python
import numpy as np
|
|
import tensorflow as tf
|
|
from baselines.common import tf_util as U
|
|
from baselines.common.tests.test_with_mpi import with_mpi
|
|
from baselines import logger
|
|
try:
|
|
from mpi4py import MPI
|
|
except ImportError:
|
|
MPI = None
|
|
|
|
class MpiAdamOptimizer(tf.train.AdamOptimizer):
|
|
"""Adam optimizer that averages gradients across mpi processes."""
|
|
def __init__(self, comm, grad_clip=None, mpi_rank_weight=1, **kwargs):
|
|
self.comm = comm
|
|
self.grad_clip = grad_clip
|
|
self.mpi_rank_weight = mpi_rank_weight
|
|
tf.train.AdamOptimizer.__init__(self, **kwargs)
|
|
def compute_gradients(self, loss, var_list, **kwargs):
|
|
grads_and_vars = tf.train.AdamOptimizer.compute_gradients(self, loss, var_list, **kwargs)
|
|
grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None]
|
|
flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0) * self.mpi_rank_weight
|
|
shapes = [v.shape.as_list() for g, v in grads_and_vars]
|
|
sizes = [int(np.prod(s)) for s in shapes]
|
|
|
|
total_weight = np.zeros(1, np.float32)
|
|
self.comm.Allreduce(np.array([self.mpi_rank_weight], dtype=np.float32), total_weight, op=MPI.SUM)
|
|
total_weight = total_weight[0]
|
|
|
|
buf = np.zeros(sum(sizes), np.float32)
|
|
countholder = [0] # Counts how many times _collect_grads has been called
|
|
stat = tf.reduce_sum(grads_and_vars[0][1]) # sum of first variable
|
|
def _collect_grads(flat_grad, np_stat):
|
|
if self.grad_clip is not None:
|
|
gradnorm = np.linalg.norm(flat_grad)
|
|
if gradnorm > 1:
|
|
flat_grad /= gradnorm
|
|
logger.logkv_mean('gradnorm', gradnorm)
|
|
logger.logkv_mean('gradclipfrac', float(gradnorm > 1))
|
|
self.comm.Allreduce(flat_grad, buf, op=MPI.SUM)
|
|
np.divide(buf, float(total_weight), out=buf)
|
|
if countholder[0] % 100 == 0:
|
|
check_synced(np_stat, self.comm)
|
|
countholder[0] += 1
|
|
return buf
|
|
|
|
avg_flat_grad = tf.py_func(_collect_grads, [flat_grad, stat], tf.float32)
|
|
avg_flat_grad.set_shape(flat_grad.shape)
|
|
avg_grads = tf.split(avg_flat_grad, sizes, axis=0)
|
|
avg_grads_and_vars = [(tf.reshape(g, v.shape), v)
|
|
for g, (_, v) in zip(avg_grads, grads_and_vars)]
|
|
return avg_grads_and_vars
|
|
|
|
def check_synced(localval, comm=None):
|
|
"""
|
|
It's common to forget to initialize your variables to the same values, or
|
|
(less commonly) if you update them in some other way than adam, to get them out of sync.
|
|
This function checks that variables on all MPI workers are the same, and raises
|
|
an AssertionError otherwise
|
|
|
|
Arguments:
|
|
comm: MPI communicator
|
|
localval: list of local variables (list of variables on current worker to be compared with the other workers)
|
|
"""
|
|
comm = comm or MPI.COMM_WORLD
|
|
vals = comm.gather(localval)
|
|
if comm.rank == 0:
|
|
assert all(val==vals[0] for val in vals[1:]),\
|
|
f'MpiAdamOptimizer detected that different workers have different weights: {vals}'
|
|
|
|
@with_mpi(timeout=5)
|
|
def test_nonfreeze():
|
|
np.random.seed(0)
|
|
tf.set_random_seed(0)
|
|
|
|
a = tf.Variable(np.random.randn(3).astype('float32'))
|
|
b = tf.Variable(np.random.randn(2,5).astype('float32'))
|
|
loss = tf.reduce_sum(tf.square(a)) + tf.reduce_sum(tf.sin(b))
|
|
|
|
stepsize = 1e-2
|
|
# for some reason the session config with inter_op_parallelism_threads was causing
|
|
# nested sess.run calls to freeze
|
|
config = tf.ConfigProto(inter_op_parallelism_threads=1)
|
|
sess = U.get_session(config=config)
|
|
update_op = MpiAdamOptimizer(comm=MPI.COMM_WORLD, learning_rate=stepsize).minimize(loss)
|
|
sess.run(tf.global_variables_initializer())
|
|
losslist_ref = []
|
|
for i in range(100):
|
|
l,_ = sess.run([loss, update_op])
|
|
print(i, l)
|
|
losslist_ref.append(l)
|