Files
baselines/baselines/common/vec_env/vec_normalize.py
2018-08-02 10:55:09 -07:00

50 lines
1.9 KiB
Python

from baselines.common.vec_env import VecEnvWrapper
from baselines.common.running_mean_std import RunningMeanStd
import numpy as np
class VecNormalize(VecEnvWrapper):
"""
Vectorized environment base class
"""
def __init__(self, venv, ob=True, ret=True, clipob=10., cliprew=10., gamma=0.99, epsilon=1e-8):
VecEnvWrapper.__init__(self, venv)
self.ob_rms = RunningMeanStd(shape=self.observation_space.shape) if ob else None
self.ret_rms = RunningMeanStd(shape=()) if ret else None
#self.ob_rms = TfRunningMeanStd(shape=self.observation_space.shape, scope='observation_running_mean_std') if ob else None
#self.ret_rms = TfRunningMeanStd(shape=(), scope='return_running_mean_std') if ret else None
self.clipob = clipob
self.cliprew = cliprew
self.ret = np.zeros(self.num_envs)
self.gamma = gamma
self.epsilon = epsilon
def step_wait(self):
"""
Apply sequence of actions to sequence of environments
actions -> (observations, rewards, news)
where 'news' is a boolean vector indicating whether each element is new.
"""
obs, rews, news, infos = self.venv.step_wait()
self.ret = self.ret * self.gamma + rews
obs = self._obfilt(obs)
if self.ret_rms:
self.ret_rms.update(self.ret)
rews = np.clip(rews / np.sqrt(self.ret_rms.var + self.epsilon), -self.cliprew, self.cliprew)
return obs, rews, news, infos
def _obfilt(self, obs):
if self.ob_rms:
self.ob_rms.update(obs)
obs = np.clip((obs - self.ob_rms.mean) / np.sqrt(self.ob_rms.var + self.epsilon), -self.clipob, self.clipob)
return obs
else:
return obs
def reset(self):
"""
Reset all environments
"""
obs = self.venv.reset()
return self._obfilt(obs)