* Baselines for Tensorflow 2.0. Please do note that: 1. ACER, ACKTR, GAIL is still under development by external contributors. 2. HER is still under development by tanzheny@google.com. * Some cleanup. * Addressing some comments.
140 lines
5.0 KiB
Python
140 lines
5.0 KiB
Python
"""
|
|
An interface for asynchronous vectorized environments.
|
|
"""
|
|
|
|
import multiprocessing as mp
|
|
import numpy as np
|
|
from .vec_env import VecEnv, CloudpickleWrapper, clear_mpi_env_vars
|
|
import ctypes
|
|
from baselines import logger
|
|
|
|
from .util import dict_to_obs, obs_space_info, obs_to_dict
|
|
|
|
_NP_TO_CT = {np.float32: ctypes.c_float,
|
|
np.int32: ctypes.c_int32,
|
|
np.int8: ctypes.c_int8,
|
|
np.uint8: ctypes.c_char,
|
|
np.bool: ctypes.c_bool}
|
|
|
|
|
|
class ShmemVecEnv(VecEnv):
|
|
"""
|
|
Optimized version of SubprocVecEnv that uses shared variables to communicate observations.
|
|
"""
|
|
|
|
def __init__(self, env_fns, spaces=None, context='spawn'):
|
|
"""
|
|
If you don't specify observation_space, we'll have to create a dummy
|
|
environment to get it.
|
|
"""
|
|
ctx = mp.get_context(context)
|
|
if spaces:
|
|
observation_space, action_space = spaces
|
|
else:
|
|
logger.log('Creating dummy env object to get spaces')
|
|
with logger.scoped_configure(format_strs=[]):
|
|
dummy = env_fns[0]()
|
|
observation_space, action_space = dummy.observation_space, dummy.action_space
|
|
dummy.close()
|
|
del dummy
|
|
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
|
|
self.obs_keys, self.obs_shapes, self.obs_dtypes = obs_space_info(observation_space)
|
|
self.obs_bufs = [
|
|
{k: ctx.Array(_NP_TO_CT[self.obs_dtypes[k].type], int(np.prod(self.obs_shapes[k]))) for k in self.obs_keys}
|
|
for _ in env_fns]
|
|
self.parent_pipes = []
|
|
self.procs = []
|
|
with clear_mpi_env_vars():
|
|
for env_fn, obs_buf in zip(env_fns, self.obs_bufs):
|
|
wrapped_fn = CloudpickleWrapper(env_fn)
|
|
parent_pipe, child_pipe = ctx.Pipe()
|
|
proc = ctx.Process(target=_subproc_worker,
|
|
args=(child_pipe, parent_pipe, wrapped_fn, obs_buf, self.obs_shapes, self.obs_dtypes, self.obs_keys))
|
|
proc.daemon = True
|
|
self.procs.append(proc)
|
|
self.parent_pipes.append(parent_pipe)
|
|
proc.start()
|
|
child_pipe.close()
|
|
self.waiting_step = False
|
|
self.viewer = None
|
|
|
|
def reset(self):
|
|
if self.waiting_step:
|
|
logger.warn('Called reset() while waiting for the step to complete')
|
|
self.step_wait()
|
|
for pipe in self.parent_pipes:
|
|
pipe.send(('reset', None))
|
|
return self._decode_obses([pipe.recv() for pipe in self.parent_pipes])
|
|
|
|
def step_async(self, actions):
|
|
assert len(actions) == len(self.parent_pipes)
|
|
for pipe, act in zip(self.parent_pipes, actions):
|
|
pipe.send(('step', act))
|
|
|
|
def step_wait(self):
|
|
outs = [pipe.recv() for pipe in self.parent_pipes]
|
|
obs, rews, dones, infos = zip(*outs)
|
|
return self._decode_obses(obs), np.array(rews), np.array(dones), infos
|
|
|
|
def close_extras(self):
|
|
if self.waiting_step:
|
|
self.step_wait()
|
|
for pipe in self.parent_pipes:
|
|
pipe.send(('close', None))
|
|
for pipe in self.parent_pipes:
|
|
pipe.recv()
|
|
pipe.close()
|
|
for proc in self.procs:
|
|
proc.join()
|
|
|
|
def get_images(self, mode='human'):
|
|
for pipe in self.parent_pipes:
|
|
pipe.send(('render', None))
|
|
return [pipe.recv() for pipe in self.parent_pipes]
|
|
|
|
def _decode_obses(self, obs):
|
|
result = {}
|
|
for k in self.obs_keys:
|
|
|
|
bufs = [b[k] for b in self.obs_bufs]
|
|
o = [np.frombuffer(b.get_obj(), dtype=self.obs_dtypes[k]).reshape(self.obs_shapes[k]) for b in bufs]
|
|
result[k] = np.array(o)
|
|
return dict_to_obs(result)
|
|
|
|
|
|
def _subproc_worker(pipe, parent_pipe, env_fn_wrapper, obs_bufs, obs_shapes, obs_dtypes, keys):
|
|
"""
|
|
Control a single environment instance using IPC and
|
|
shared memory.
|
|
"""
|
|
def _write_obs(maybe_dict_obs):
|
|
flatdict = obs_to_dict(maybe_dict_obs)
|
|
for k in keys:
|
|
dst = obs_bufs[k].get_obj()
|
|
dst_np = np.frombuffer(dst, dtype=obs_dtypes[k]).reshape(obs_shapes[k]) # pylint: disable=W0212
|
|
np.copyto(dst_np, flatdict[k])
|
|
|
|
env = env_fn_wrapper.x()
|
|
parent_pipe.close()
|
|
try:
|
|
while True:
|
|
cmd, data = pipe.recv()
|
|
if cmd == 'reset':
|
|
pipe.send(_write_obs(env.reset()))
|
|
elif cmd == 'step':
|
|
obs, reward, done, info = env.step(data)
|
|
if done:
|
|
obs = env.reset()
|
|
pipe.send((_write_obs(obs), reward, done, info))
|
|
elif cmd == 'render':
|
|
pipe.send(env.render(mode='rgb_array'))
|
|
elif cmd == 'close':
|
|
pipe.send(None)
|
|
break
|
|
else:
|
|
raise RuntimeError('Got unrecognized cmd %s' % cmd)
|
|
except KeyboardInterrupt:
|
|
print('ShmemVecEnv worker: got KeyboardInterrupt')
|
|
finally:
|
|
env.close()
|