From d89266f8180296b9e67cc2c76fccf977b4e809c5 Mon Sep 17 00:00:00 2001 From: Sourabh Mhaisekar Date: Mon, 10 Oct 2016 11:33:58 +0530 Subject: [PATCH 001/109] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 52d792c..4b2bbcc 100644 --- a/README.md +++ b/README.md @@ -166,7 +166,7 @@ I'm on the journey, too. Follow along on my blog at [GoogleyAsHeck.com](https:// ## About Google -- [ ] For students - [Google Careers: Technical Development Guide](https://www.google.com/about/careers/students/guide-to-technical-development.html) +- [x] For students - [Google Careers: Technical Development Guide](https://www.google.com/about/careers/students/guide-to-technical-development.html) - [ ] How Search Works: - [ ] [The Evolution of Search (video)](https://www.youtube.com/watch?v=mTBShTwCnD4) - [ ] [How Search Works - the story](https://www.google.com/insidesearch/howsearchworks/thestory/) From 4d697bc67c5bcb3fa5fe4e1c1a77934fb0b302b5 Mon Sep 17 00:00:00 2001 From: Volodymyr Fedyk Date: Tue, 11 Oct 2016 16:33:40 +0300 Subject: [PATCH 002/109] fix typo --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 48c5531..50e4e4e 100644 --- a/README.md +++ b/README.md @@ -329,7 +329,7 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input - [ ] **Compilers** - [ ] [How a Compiler Works in ~1 minute (video)](https://www.youtube.com/watch?v=IhC7sdYe-Jg) - - [ ] [Hardvard CS50 - Compilers (video)](https://www.youtube.com/watch?v=CSZLNYF4Klo) + - [ ] [Harvard CS50 - Compilers (video)](https://www.youtube.com/watch?v=CSZLNYF4Klo) - [ ] [C++ (video)](https://www.youtube.com/watch?v=twodd1KFfGk) - [ ] [Understanding Compiler Optimization (C++) (video)](https://www.youtube.com/watch?v=FnGCDLhaxKU) From 9bf5bc85f856cfa7d2ffc614399624789264fd43 Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 11 Oct 2016 09:52:08 -0700 Subject: [PATCH 003/109] Updated link to Chinese translation. --- README.md | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 9dabc59..75dde61 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,8 @@ # Google Interview University -[中文版本](https://github.com/xitu/google-interview-university/blob/master/README-cn.md) +Translations: + +- [中文版本](https://github.com/jwasham/google-interview-university/blob/master/README-cn.md) ## What is it? From d1c01de994a86ca7b627bb645c6c92bcd27c9a67 Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 11 Oct 2016 18:57:37 -0700 Subject: [PATCH 004/109] Added detail to the Coding Question Practice section. Added an Additional Books section. --- README.md | 112 ++++++++++++++++++++++++++++++++---------------------- 1 file changed, 66 insertions(+), 46 deletions(-) diff --git a/README.md b/README.md index 75dde61..202ca78 100644 --- a/README.md +++ b/README.md @@ -68,7 +68,6 @@ sometimes word-for-word in Google's coaching notes. - [String searching & manipulations](#string-searching--manipulations) - [Final Review](#final-review) - [Coding Question Practice](#coding-question-practice) -- [Books](#books) - [Coding exercises/challenges](#coding-exerciseschallenges) - [Once you're closer to the interview](#once-youre-closer-to-the-interview) - [Your Resume](#your-resume) @@ -78,6 +77,7 @@ sometimes word-for-word in Google's coaching notes. ---------------- Everything below this point is optional ---------------- +- [Additional Books](#additional-books) - [Additional Learning](#additional-learning) - [Unicode](#unicode) - [Endianness](#endianness) @@ -1185,67 +1185,70 @@ You'll get more graph practice in Skiena's book (see Books section below) and th #### Sorts: - [ ] Merge Sort: https://www.youtube.com/watch?v=GCae1WNvnZM - + + +--- ## Coding Question Practice -- [ ] [Great intro (copied from System Design section): Algorithm design:](http://www.hiredintech.com/algorithm-design/) -- [ ] [Mathematics for Topcoders](https://www.topcoder.com/community/data-science/data-science-tutorials/mathematics-for-topcoders/) -- [ ] [Dynamic Programming – From Novice to Advanced](https://www.topcoder.com/community/data-science/data-science-tutorials/dynamic-programming-from-novice-to-advanced/) +Now that you know all the computer science topics above, it's time to practice answering coding problems. +**Coding question practice is not about memorizing answers to programming problems.** + +Why you need to practice doing programming problems: +- problem recognition, and where the right data structures and algorithms fit in +- gathering requirements for the problem +- talking your way through the problem like you will in the interview +- coding on a whiteboard or paper, not a computer +- coming up with time and space complexity for your solutions +- testing your solutions + +There is a great intro for methodical, communicative problem solving in an interview. You'll get this from the programming +interview books, too, but I found this outstanding: +- [ ] [Algorithm design](http://www.hiredintech.com/algorithm-design/) + +No whiteboard at home? That makes sense. I'm a weirdo and have a big whiteboard. Instead of a whiteboard, pick up a +large drawing pad from an art store. You can sit on the couch and practice. This is my "sofa whiteboard". +I added the pen in the photo for scale. + +![my sofa whiteboard](https://dng5l3qzreal6.cloudfront.net/2016/Oct/art_board_sm_2-1476233630368.jpg) + +Supplemental: + +- [Mathematics for Topcoders](https://www.topcoder.com/community/data-science/data-science-tutorials/mathematics-for-topcoders/) +- [Dynamic Programming – From Novice to Advanced](https://www.topcoder.com/community/data-science/data-science-tutorials/dynamic-programming-from-novice-to-advanced/) - [MIT Interview Materials](https://web.archive.org/web/20160906124824/http://courses.csail.mit.edu/iap/interview/materials.php) - - [Exercises for getting better at a given language](http://exercism.io/languages) -## Books - -### Mentioned in Google Coaching - -**Read and do exercises:** - -- [ ] The Algorithm Design Manual (Skiena) - - Book (can rent on kindle): - - [Algorithm Design Manual](http://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202) +**Read as a review and problem recognition** +- [ ] [Algorithm Design Manual](http://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202) (Skiena) + - To quote Yegge: "More than any other book it helped me understand just how astonishingly commonplace + (and important) graph problems are – they should be part of every working programmer's toolkit. The book also + covers basic data structures and sorting algorithms, which is a nice bonus. But the gold mine is the second half + of the book, which is a sort of encyclopedia of 1-pagers on zillions of useful problems and various ways to solve + them, without too much detail. Almost every 1-pager has a simple picture, making it easy to remember. This is a + great way to learn how to identify hundreds of problem types." + - Can rent it on kindle - Half.com is a great resource for textbooks at good prices. - Answers: - [Solutions](http://www.algorithm.cs.sunysb.edu/algowiki/index.php/The_Algorithms_Design_Manual_(Second_Edition)) - [Solutions](http://blog.panictank.net/category/algorithmndesignmanualsolutions/page/2/) - [Errata](http://www3.cs.stonybrook.edu/~skiena/algorist/book/errata) - Once you've understood everything in the daily plan, and read and done exercises from the the books above, - read and do exercises from the books below. Then move to coding challenges (further down below) - -**Read first:** +**Read and Do Programming Problems (in this order):** - [ ] [Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition](http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html) - -**Read second (recommended by many, but not in Google coaching docs):** + - recommended in Google candidate coaching - [ ] [Cracking the Coding Interview, 6th Edition](http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/) + - recommended on the [Google Careers site](https://www.google.com/about/careers/how-we-hire/interview/) - If you see people reference "The Google Resume", it was a book replaced by "Cracking the Coding Interview". -### Additional books - - These were not suggested by Google but I added because I needed the background knowledge - -- [ ] C Programming Language, Vol 2 - - [answers to questions](https://github.com/lekkas/c-algorithms) - -- [ ] C++ Primer Plus, 6th Edition - -- [ ] [The Unix Programming Environment](http://product.half.ebay.com/The-UNIX-Programming-Environment-by-Brian-W-Kernighan-and-Rob-Pike-1983-Other/54385&tg=info) - - - These two were very recommended. - - +**If you have time** - [ ] [Programming Pearls](http://www.amazon.com/Programming-Pearls-2nd-Jon-Bentley/dp/0201657880) - - [ ] [Algorithms and Programming: Problems and Solutions](http://www.amazon.com/Algorithms-Programming-Solutions-Alexander-Shen/dp/0817638474) - -### If you have time - - [ ] [Introduction to Algorithms](https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844) + - To quote Yegge: "But if you want to come into your interviews *prepped*, then consider deferring your application until you've made your way through that book." - Half.com is a great resource for textbooks at good prices. - + - aka CLR, sometimes CLRS, because Stein was late to the game - [ ] [Elements of Programming Interviews](https://www.amazon.com/Elements-Programming-Interviews-Insiders-Guide/dp/1479274836) - all code is in C++, if you're looking to use C++ in your interview - good book on problem solving in general. @@ -1284,10 +1287,9 @@ Take coding challenges every day, as many as you can. ## Be thinking of for when the interview comes - Think of about 20 interview questions you'll get, along the lines of the items below. - Have 2-3 answers for each - Have a story, not just data, about something you accomplished - +Think of about 20 interview questions you'll get, along the lines of the items below. Have 2-3 answers for each. +Have a story, not just data, about something you accomplished. + - Why do you want this job? - What's a tough problem you've solved? - Biggest challenges faced? @@ -1332,13 +1334,31 @@ You're never really done. Everything below this point is optional. These are my recommendations, not Google's. By studying these, you'll get greater exposure to more CS concepts, and will be better prepared for - any software engineering job. + any software engineering job. You'll be a much more well-rounded software engineer. ***************************************************************************************************** ***************************************************************************************************** --- +## Additional Books + +- [ ] [C Programming Language, Vol 2](https://www.amazon.com/Programming-Language-Brian-W-Kernighan/dp/0131103628) + - [answers to questions](https://github.com/lekkas/c-algorithms) +- [ ] [The Unix Programming Environment](http://product.half.ebay.com/The-UNIX-Programming-Environment-by-Brian-W-Kernighan-and-Rob-Pike-1983-Other/54385&tg=info) + - and oldie but a goodie +- [ ] [The Linux Command Line: A Complete Introduction](https://www.amazon.com/dp/1593273894/) + - a modern option +- [ ] [TCP/IP Illustrated Series](https://en.wikipedia.org/wiki/TCP/IP_Illustrated) +- [ ] [Head First Design Patterns](https://www.amazon.com/gp/product/0596007124/) + - a gentle introduction to design patterns +- [ ] [Design Patterns: Elements of Reusable Object-Oriente​d Software](https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612) + - aka the "Gang Of Four" book, or GOF + - the canonical design patterns book +- [ ] [Site Reliability Engineering](https://landing.google.com/sre/book.html) + - [Site Reliability Engineering: How Google Runs Production Systems](https://landing.google.com/sre/) +- [ ] [UNIX and Linux System Administration Handbook, 4th Edition](https://www.amazon.com/UNIX-Linux-System-Administration-Handbook/dp/0131480057/) + ## Additional Learning - ### Unicode From 9a120fdff450ed8f27cd49b973b10a44ae13cb39 Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 11 Oct 2016 19:05:29 -0700 Subject: [PATCH 005/109] Updated link text for algorithm design canvas. --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 202ca78..2927ce0 100644 --- a/README.md +++ b/README.md @@ -1205,7 +1205,7 @@ Why you need to practice doing programming problems: There is a great intro for methodical, communicative problem solving in an interview. You'll get this from the programming interview books, too, but I found this outstanding: -- [ ] [Algorithm design](http://www.hiredintech.com/algorithm-design/) +- [ ] [Algorithm design canvas](http://www.hiredintech.com/algorithm-design/) No whiteboard at home? That makes sense. I'm a weirdo and have a big whiteboard. Instead of a whiteboard, pick up a large drawing pad from an art store. You can sit on the couch and practice. This is my "sofa whiteboard". From af0e11703c487b5c1f446c1f2897869177575309 Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 11 Oct 2016 19:07:36 -0700 Subject: [PATCH 006/109] Added a couple of minor headings. --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 2927ce0..d834feb 100644 --- a/README.md +++ b/README.md @@ -1261,6 +1261,7 @@ Take coding challenges every day, as many as you can. - [ ] [How to Find a Solution](https://www.topcoder.com/community/data-science/data-science-tutorials/how-to-find-a-solution/) - [ ] [How to Dissect a Topcoder Problem Statement](https://www.topcoder.com/community/data-science/data-science-tutorials/how-to-dissect-a-topcoder-problem-statement/) +Challenge sites: - [LeetCode](https://leetcode.com/) - [TopCoder](https://www.topcoder.com/) - [Project Euler (math-focused)](https://projecteuler.net/index.php?section=problems) @@ -1270,6 +1271,7 @@ Take coding challenges every day, as many as you can. - [InterviewCake](https://www.interviewcake.com/) - [InterviewBit](https://www.interviewbit.com/invite/icjf) +Maybe: - [Mock interviewers from big companies](http://www.gainlo.co/) ## Once you're closer to the interview From 07ba41ab4a5c4d7e729426fa2de3484019c45169 Mon Sep 17 00:00:00 2001 From: Daniel Schildt Date: Thu, 13 Oct 2016 09:28:47 +0300 Subject: [PATCH 007/109] Improve readability of a text chapter - Improve readability of a text chapter. - Convert indentation space characters to a list items. Result: - More readable Markdown rendering on the GitHub page. - More consistent with rest of the page structure. --- README.md | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/README.md b/README.md index d834feb..7b7b19b 100644 --- a/README.md +++ b/README.md @@ -302,17 +302,17 @@ technologies but were not mentioned in those notes: Some subjects take one day, and some will take multiple days. Some are just learning with nothing to implement. Each day I take one subject from the list below, watch videos about that subject, and write an implementation in: - C - using structs and functions that take a struct * and something else as args. - C++ - without using built-in types - C++ - using built-in types, like STL's std::list for a linked list - Python - using built-in types (to keep practicing Python) - and write tests to ensure I'm doing it right, sometimes just using simple assert() statements - You may do Java or something else, this is just my thing. +- C - using structs and functions that take a struct * and something else as args. +- C++ - without using built-in types +- C++ - using built-in types, like STL's std::list for a linked list +- Python - using built-in types (to keep practicing Python) +- and write tests to ensure I'm doing it right, sometimes just using simple assert() statements +- You may do Java or something else, this is just my thing. Why code in all of these? - Practice, practice, practice, until I'm sick of it, and can do it with no problem (some have many edge cases and bookkeeping details to remember) - Work within the raw constraints (allocating/freeing memory without help of garbage collection (except Python)) - Make use of built-in types so I have experience using the built-in tools for real-world use (not going to write my own linked list implementation in production) +- Practice, practice, practice, until I'm sick of it, and can do it with no problem (some have many edge cases and bookkeeping details to remember) +- Work within the raw constraints (allocating/freeing memory without help of garbage collection (except Python)) +- Make use of built-in types so I have experience using the built-in tools for real-world use (not going to write my own linked list implementation in production) I may not have time to do all of these for every subject, but I'll try. From 31fdc1bf27dd905f94eb03f1d61475e134688cd1 Mon Sep 17 00:00:00 2001 From: uppusaikiran Date: Thu, 13 Oct 2016 20:33:06 +0530 Subject: [PATCH 008/109] Added instructions to How to use? --- README.md | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) diff --git a/README.md b/README.md index d834feb..dd1a743 100644 --- a/README.md +++ b/README.md @@ -140,6 +140,24 @@ I'm using Github's special markdown flavor, including tasks lists to check progr - [x] Create a new branch so you can check items like this, just put an x in the brackets: [x] + Fork a branch and follow the commands below + +`git checkout -b progress` + +`git remote add jwasham https://github.com/jwasham/google-interview-university` + +`git fetch --all` + + Mark all boxes with X after you completed your changes + +`git add . ` + +`git commit -m "Marked x" ` + +`git rebase jwasham/master ` + +`git push --force ` + [More about Github-flavored markdown](https://guides.github.com/features/mastering-markdown/#GitHub-flavored-markdown) ## Get in a Googley Mood From ae3b29e9656076475720bffdc5257a6cbd8b72b3 Mon Sep 17 00:00:00 2001 From: John Washam Date: Thu, 13 Oct 2016 09:37:32 -0700 Subject: [PATCH 009/109] Added an extra line to fix formatting. --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 3a78d47..449bca1 100644 --- a/README.md +++ b/README.md @@ -140,6 +140,7 @@ I'm using Github's special markdown flavor, including tasks lists to check progr - [x] Create a new branch so you can check items like this, just put an x in the brackets: [x] + Fork a branch and follow the commands below `git checkout -b progress` From 869e6679258f7893877f3cdc208f21e1e04585b3 Mon Sep 17 00:00:00 2001 From: Adriano Carmezim Date: Fri, 14 Oct 2016 08:43:45 +0200 Subject: [PATCH 010/109] Adding free resources. --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 449bca1..8f9637f 100644 --- a/README.md +++ b/README.md @@ -390,9 +390,11 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input - Implement an automatically resizing vector. - [ ] Description: - [Arrays (video)](https://www.coursera.org/learn/data-structures/lecture/OsBSF/arrays) + - [UCBerkley CS61B - Linear and Multi-Dim Arrays (video)](https://youtu.be/Wp8oiO_CZZE?t=15m32s) - [Basic Arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Basic-arrays/149042/177104-4.html) - [Multi-dim (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Multidimensional-arrays/149042/177105-4.html) - [Dynamic Arrays (video)](https://www.coursera.org/learn/data-structures/lecture/EwbnV/dynamic-arrays) + - [Jagged Arrays (vide)](https://www.youtube.com/watch?v=1jtrQqYpt7g) - [Jagged Arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Jagged-arrays/149042/177106-4.html) - [Resizing arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Resizable-arrays/149042/177108-4.html) - [ ] Implement a vector (mutable array with automatic resizing): From 380213278a75e4fed909207c72f9c2e13b20c95f Mon Sep 17 00:00:00 2001 From: Adriano Carmezim Date: Fri, 14 Oct 2016 08:52:52 +0200 Subject: [PATCH 011/109] fixing typo --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 8f9637f..28878bb 100644 --- a/README.md +++ b/README.md @@ -394,7 +394,7 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input - [Basic Arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Basic-arrays/149042/177104-4.html) - [Multi-dim (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Multidimensional-arrays/149042/177105-4.html) - [Dynamic Arrays (video)](https://www.coursera.org/learn/data-structures/lecture/EwbnV/dynamic-arrays) - - [Jagged Arrays (vide)](https://www.youtube.com/watch?v=1jtrQqYpt7g) + - [Jagged Arrays (video)](https://www.youtube.com/watch?v=1jtrQqYpt7g) - [Jagged Arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Jagged-arrays/149042/177106-4.html) - [Resizing arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Resizable-arrays/149042/177108-4.html) - [ ] Implement a vector (mutable array with automatic resizing): @@ -492,7 +492,7 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input - [ ] [(Advanced) Perfect hashing (video)](https://www.youtube.com/watch?v=N0COwN14gt0&list=PL2B4EEwhKD-NbwZ4ezj7gyc_3yNrojKM9&index=4) - [ ] Online Courses: - - [ ] [Understanding Hash Functions (video](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Understanding-hash-functions/149042/177126-4.html) + - [ ] [Understanding Hash Functions (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Understanding-hash-functions/149042/177126-4.html) - [ ] [Using Hash Tables (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-hash-tables/149042/177127-4.html) - [ ] [Supporting Hashing (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Supporting-hashing/149042/177128-4.html) - [ ] [Language Support Hash Tables (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Language-support-hash-tables/149042/177129-4.html) From 98ebb3dab651ffcd1bc0fcad6a740a49f0ae288f Mon Sep 17 00:00:00 2001 From: John Washam Date: Fri, 14 Oct 2016 11:17:24 -0700 Subject: [PATCH 012/109] Added note about online courses. --- README.md | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 449bca1..dbeab52 100644 --- a/README.md +++ b/README.md @@ -212,9 +212,10 @@ I'm on the journey, too. Follow along on my blog at [GoogleyAsHeck.com](https:// ## About Video Resources Some videos are available only by enrolling in a Coursera, EdX, or Lynda.com class. These are called MOOCs. -It is free to do so, but sometimes the classes are not in session so you have to wait a couple of months, so you have no access. +Sometimes the classes are not in session so you have to wait a couple of months, so you have no access. Lynda.com courses are not free. - I'd appreciate your help converting the MOOC video links to public sources to replace the online course videos over time. I like using university lectures. + I'd appreciate your help adding free and always-available public sources, such as YouTube videos to accompany the online course videos. + I like using university lectures. ## Interview Process & General Interview Prep From c377f20dcc384b8ec1ab534042966fe1195e1f2f Mon Sep 17 00:00:00 2001 From: Murgio Date: Sat, 15 Oct 2016 21:02:05 +0200 Subject: [PATCH 013/109] Fixing typos --- README.md | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index e593ddd..1de95d0 100644 --- a/README.md +++ b/README.md @@ -126,7 +126,7 @@ When I started this project, I didn't know a stack from a heap, didn't know Big- traverse a graph. If I had to code a sorting algorithm, I can tell ya it wouldn't have been very good. Every data structure I've ever used was built into the language, and I didn't know how they worked under the hood at all. I've never had to manage memory, unless a process I was running would give an "out of -memory" error, and then I'd have to find a workaround. I've used a few multi-dimensional arrays in my life and +memory" error, and then I'd have to find a workaround. I've used a few multidimensional arrays in my life and thousands of associative arrays, but I've never created data structures from scratch. But after going through this study plan I have high confidence I'll be hired. It's a long plan. It's going to take me @@ -214,7 +214,7 @@ I'm on the journey, too. Follow along on my blog at [GoogleyAsHeck.com](https:// Some videos are available only by enrolling in a Coursera, EdX, or Lynda.com class. These are called MOOCs. Sometimes the classes are not in session so you have to wait a couple of months, so you have no access. Lynda.com courses are not free. - I'd appreciate your help adding free and always-available public sources, such as YouTube videos to accompany the online course videos. + I'd appreciate your help to add free and always-available public sources, such as YouTube videos to accompany the online course videos. I like using university lectures. @@ -287,7 +287,7 @@ through my notes and making flashcards so I could review (see below). To solve the problem, I made a little flashcards site where I could add flashcards of 2 types: general and code. Each card has different formatting. -I made a mobile-first website so I could review on my phone and tablet, whereever I am. +I made a mobile-first website so I could review on my phone and tablet, wherever I am. Make your own for free: @@ -300,7 +300,7 @@ your brain. ### 3. Review, review, review -I keep a set of cheatsheets on ASCII, OSI stack, Big-O notations, and more. I study them when I have some spare time. +I keep a set of cheat sheets on ASCII, OSI stack, Big-O notations, and more. I study them when I have some spare time. Take a break from programming problems for a half hour and go through your flashcards. @@ -1332,7 +1332,7 @@ Have a story, not just data, about something you accomplished. Some of mine (I already may know answer to but want their opinion or team perspective): - How large is your team? -- What is your dev cycle look like? Do you do waterfall/sprints/agile? +- What does your dev cycle look like? Do you do waterfall/sprints/agile? - Are rushes to deadlines common? Or is there flexibility? - How are decisions made in your team? - How many meetings do you have per week? @@ -1632,7 +1632,7 @@ You're never really done. - [ ] [Google Developers' Machine Learning Recipes (Scikit Learn & Tensorflow) (video)](https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal) - [ ] [Tensorflow (video)](https://www.youtube.com/watch?v=oZikw5k_2FM) - [ ] [Tensorflow Tutorials](https://www.tensorflow.org/versions/r0.11/tutorials/index.html) - - [ ] [Practical Guide to implementing Neural Networks in Python](using Theano)])http://www.analyticsvidhya.com/blog/2016/04/neural-networks-python-theano/) + - [ ] [Practical Guide to implementing Neural Networks in Python (using Theano)](http://www.analyticsvidhya.com/blog/2016/04/neural-networks-python-theano/) - Courses: - [Great starter course: Machine Learning](https://www.coursera.org/learn/machine-learning) - [videos only](https://www.youtube.com/playlist?list=PLZ9qNFMHZ-A4rycgrgOYma6zxF4BZGGPW) @@ -1714,7 +1714,7 @@ Sit back and enjoy. "netflix and skill" :P - [ ] [UC Berkeley 61B (Spring 2014): Data Structures (25 videos)](https://www.youtube.com/watch?v=mFPmKGIrQs4&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd) -- [ ] [UC Berkeley 61B (Fall 2006): Data Structures (39 videos)]( https://www.youtube.com/playlist?list=PL4BBB74C7D2A1049C) +- [ ] [UC Berkeley 61B (Fall 2006): Data Structures (39 videos)](https://www.youtube.com/playlist?list=PL4BBB74C7D2A1049C) - [ ] [UC Berkeley 61C: Machine Structures (26 videos)](https://www.youtube.com/watch?v=gJJeUFyuvvg&list=PL-XXv-cvA_iCl2-D-FS5mk0jFF6cYSJs_) From 002341136dab6dad80a159ce632080d25e92c837 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E8=98=87=E5=81=A5=E8=B1=AA?= Date: Sun, 16 Oct 2016 10:12:13 +0800 Subject: [PATCH 014/109] Add a tutorial on Udemy. --- README.md | 3 +++ 1 file changed, 3 insertions(+) diff --git a/README.md b/README.md index e593ddd..5c9a9ec 100644 --- a/README.md +++ b/README.md @@ -232,6 +232,9 @@ Sometimes the classes are not in session so you have to wait a couple of months, - [ ] _(very dated)_ [How To Get A Job At Google, Interview Questions, Hiring Process](http://dondodge.typepad.com/the_next_big_thing/2010/09/how-to-get-a-job-at-google-interview-questions-hiring-process.html) - [ ] [Phone Screen Questions](http://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions) +- [ ] Tutorial: + - [ ] [Software Engineer Interview Unleashed](https://www.udemy.com/software-engineer-interview-unleashed) : Learn how to make yourself ready for software engineer interviews from a former Google interviewer.(paid course) + - [ ] Additional (not suggested by Google but I added): - [ ] [ABC: Always Be Coding](https://medium.com/always-be-coding/abc-always-be-coding-d5f8051afce2#.4heg8zvm4) - [ ] [Four Steps To Google Without A Degree](https://medium.com/always-be-coding/four-steps-to-google-without-a-degree-8f381aa6bd5e#.asalo1vfx) From 3e9bcd357c2e4ddc78813d52ea81c28b43201ae0 Mon Sep 17 00:00:00 2001 From: John Washam Date: Sat, 15 Oct 2016 19:21:18 -0700 Subject: [PATCH 015/109] Fixing link and formatting. --- README.md | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 72e01d0..5110deb 100644 --- a/README.md +++ b/README.md @@ -233,7 +233,8 @@ Sometimes the classes are not in session so you have to wait a couple of months, - [ ] [Phone Screen Questions](http://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions) - [ ] Tutorial: - - [ ] [Software Engineer Interview Unleashed](https://www.udemy.com/software-engineer-interview-unleashed) : Learn how to make yourself ready for software engineer interviews from a former Google interviewer.(paid course) + - [ ] [Software Engineer Interview Unleashed (paid course)](https://www.udemy.com/software-engineer-interview-unleashed): + - Learn how to make yourself ready for software engineer interviews from a former Google interviewer. - [ ] Additional (not suggested by Google but I added): - [ ] [ABC: Always Be Coding](https://medium.com/always-be-coding/abc-always-be-coding-d5f8051afce2#.4heg8zvm4) From 24ab868303edd4d6f2a16779a073057873a1861b Mon Sep 17 00:00:00 2001 From: John Washam Date: Sat, 15 Oct 2016 19:22:06 -0700 Subject: [PATCH 016/109] Changed heading. --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 5110deb..740fa2a 100644 --- a/README.md +++ b/README.md @@ -232,7 +232,7 @@ Sometimes the classes are not in session so you have to wait a couple of months, - [ ] _(very dated)_ [How To Get A Job At Google, Interview Questions, Hiring Process](http://dondodge.typepad.com/the_next_big_thing/2010/09/how-to-get-a-job-at-google-interview-questions-hiring-process.html) - [ ] [Phone Screen Questions](http://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions) -- [ ] Tutorial: +- [ ] Prep Courses: - [ ] [Software Engineer Interview Unleashed (paid course)](https://www.udemy.com/software-engineer-interview-unleashed): - Learn how to make yourself ready for software engineer interviews from a former Google interviewer. From e2bea83602bfaff0ffaa129d0bc452a713069eb0 Mon Sep 17 00:00:00 2001 From: John Washam Date: Sat, 15 Oct 2016 20:58:53 -0700 Subject: [PATCH 017/109] Updated case. --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 740fa2a..4111f8a 100644 --- a/README.md +++ b/README.md @@ -1746,7 +1746,7 @@ Sit back and enjoy. "netflix and skill" :P - [ ] [MIT 6.854: Advanced Algorithms, Spring 2016 (24 videos)](https://www.youtube.com/playlist?list=PL6ogFv-ieghdoGKGg2Bik3Gl1glBTEu8c) -- [ ] [HARVARD COMPSCI 224: Advanced Algorithms (25 videos)](https://www.youtube.com/playlist?list=PL2SOU6wwxB0uP4rJgf5ayhHWgw7akUWSf) +- [ ] [Harvard COMPSCI 224: Advanced Algorithms (25 videos)](https://www.youtube.com/playlist?list=PL2SOU6wwxB0uP4rJgf5ayhHWgw7akUWSf) - [ ] [MIT 6.858 Computer Systems Security, Fall 2014](https://www.youtube.com/watch?v=GqmQg-cszw4&index=1&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) From c7c8168b82efdbc78374ea3bd5e584b4b4ef5119 Mon Sep 17 00:00:00 2001 From: Juan Rivillas Date: Mon, 17 Oct 2016 09:12:12 -0200 Subject: [PATCH 018/109] Added graph theory and discrete mathematics course's links --- README.md | 92 +++++++++++++++++++++++++++++-------------------------- 1 file changed, 48 insertions(+), 44 deletions(-) diff --git a/README.md b/README.md index 4111f8a..b472f6e 100644 --- a/README.md +++ b/README.md @@ -10,9 +10,9 @@ This is my multi-month study plan for going from web developer (self-taught, no ![Coding at the whiteboard - from HBO's Silicon Valley](https://dng5l3qzreal6.cloudfront.net/2016/Aug/coding_board_small-1470866369118.jpg) -This long list has been extracted and expanded from **Google's coaching notes**, so these are the things you need to know. -There are extra items I added at the bottom that may come up in the interview or be helpful in solving a problem. Many items are from -Steve Yegge's "[Get that job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html)" and are reflected +This long list has been extracted and expanded from **Google's coaching notes**, so these are the things you need to know. +There are extra items I added at the bottom that may come up in the interview or be helpful in solving a problem. Many items are from +Steve Yegge's "[Get that job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html)" and are reflected sometimes word-for-word in Google's coaching notes. --- @@ -156,7 +156,7 @@ I'm using Github's special markdown flavor, including tasks lists to check progr `git commit -m "Marked x" ` `git rebase jwasham/master ` - + `git push --force ` [More about Github-flavored markdown](https://guides.github.com/features/mastering-markdown/#GitHub-flavored-markdown) @@ -171,7 +171,7 @@ Print out a "[future Googler](https://github.com/jwasham/google-interview-univer I haven't applied yet. -I still have a few days in the learning phase (finishing up this crazy list), and starting next week all +I still have a few days in the learning phase (finishing up this crazy list), and starting next week all I'll be doing is programming questions all day long. That will continue for a few weeks, and then I'll apply through a referral I've been holding onto since February (yes, February). @@ -214,7 +214,7 @@ I'm on the journey, too. Follow along on my blog at [GoogleyAsHeck.com](https:// Some videos are available only by enrolling in a Coursera, EdX, or Lynda.com class. These are called MOOCs. Sometimes the classes are not in session so you have to wait a couple of months, so you have no access. Lynda.com courses are not free. - I'd appreciate your help to add free and always-available public sources, such as YouTube videos to accompany the online course videos. + I'd appreciate your help to add free and always-available public sources, such as YouTube videos to accompany the online course videos. I like using university lectures. @@ -233,7 +233,7 @@ Sometimes the classes are not in session so you have to wait a couple of months, - [ ] [Phone Screen Questions](http://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions) - [ ] Prep Courses: - - [ ] [Software Engineer Interview Unleashed (paid course)](https://www.udemy.com/software-engineer-interview-unleashed): + - [ ] [Software Engineer Interview Unleashed (paid course)](https://www.udemy.com/software-engineer-interview-unleashed): - Learn how to make yourself ready for software engineer interviews from a former Google interviewer. - [ ] Additional (not suggested by Google but I added): @@ -264,7 +264,7 @@ You could also use these, but read around first. There may be caveats: - JavaScript - Ruby -You need to be very comfortable in the language, and be knowledgeable. +You need to be very comfortable in the language, and be knowledgeable. Read more about choices: - http://www.byte-by-byte.com/choose-the-right-language-for-your-coding-interview/ @@ -277,14 +277,14 @@ You'll see some C, C++, and Python learning included below, because I'm learning ## Before you Get Started -This list grew over many months, and yes, it kind of got out of hand. +This list grew over many months, and yes, it kind of got out of hand. Here are some mistakes I made so you'll have a better experience. ### 1. You Won't Remember it All -I watched hours of videos and took copious notes, and months later there was much I didn't remember. I spent 3 days going -through my notes and making flashcards so I could review (see below). +I watched hours of videos and took copious notes, and months later there was much I didn't remember. I spent 3 days going +through my notes and making flashcards so I could review (see below). ### 2. Use Flashcards @@ -298,8 +298,8 @@ Make your own for free: - [Flashcards site repo](https://github.com/jwasham/computer-science-flash-cards) - [My flash cards database](https://github.com/jwasham/computer-science-flash-cards/blob/master/cards-jwasham.db): Keep in mind I went overboard and have cards covering everything from assembly language and Python trivia to machine learning and statistics. It's way too much for what's required by Google. -**Note on flashcards:** The first time you recognize you know the answer, don't mark it as known. You have to see the -same card and answer it several times correctly before you really know it. Repetition will put that knowledge deeper in +**Note on flashcards:** The first time you recognize you know the answer, don't mark it as known. You have to see the +same card and answer it several times correctly before you really know it. Repetition will put that knowledge deeper in your brain. ### 3. Review, review, review @@ -314,7 +314,7 @@ There are a lot of distractions that can take up valuable time. Focus and concen ## What you won't see covered -This big list all started as a personal to-do list made from Google interview coaching notes. These are prevalent +This big list all started as a personal to-do list made from Google interview coaching notes. These are prevalent technologies but were not mentioned in those notes: - SQL @@ -486,7 +486,7 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input - enqueue: O(1) (amortized, linked list and array [probing]) - dequeue: O(1) (linked list and array) - empty: O(1) (linked list and array) - + - ### Hash table - [ ] Videos: - [ ] [Hashing with Chaining (video)](https://www.youtube.com/watch?v=0M_kIqhwbFo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=8) @@ -495,7 +495,7 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input - [ ] [PyCon 2010: The Mighty Dictionary (video)](https://www.youtube.com/watch?v=C4Kc8xzcA68) - [ ] [(Advanced) Randomization: Universal & Perfect Hashing (video)](https://www.youtube.com/watch?v=z0lJ2k0sl1g&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=11) - [ ] [(Advanced) Perfect hashing (video)](https://www.youtube.com/watch?v=N0COwN14gt0&list=PL2B4EEwhKD-NbwZ4ezj7gyc_3yNrojKM9&index=4) - + - [ ] Online Courses: - [ ] [Understanding Hash Functions (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Understanding-hash-functions/149042/177126-4.html) - [ ] [Using Hash Tables (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-hash-tables/149042/177127-4.html) @@ -507,7 +507,7 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input - [ ] distributed hash tables: - [Instant Uploads And Storage Optimization In Dropbox (video)](https://www.coursera.org/learn/data-structures/lecture/DvaIb/instant-uploads-and-storage-optimization-in-dropbox) - [Distributed Hash Tables (video)](https://www.coursera.org/learn/data-structures/lecture/tvH8H/distributed-hash-tables) - + - [ ] implement with array using linear probing - hash(k, m) - m is size of hash table - add(key, value) - if key already exists, update value @@ -727,7 +727,7 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input the Completely Fair Scheduler used in current Linux kernels uses red–black trees. In the version 8 of Java, the Collection HashMap has been modified such that instead of using a LinkedList to store identical elements with poor hashcodes, a Red-Black tree is used. - - [ ] [Aduni - Algorithms - Lecture 4 + - [ ] [Aduni - Algorithms - Lecture 4 (link jumps to starting point) (video)](https://youtu.be/1W3x0f_RmUo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3871) - [ ] [Aduni - Algorithms - Lecture 5 (video)](https://www.youtube.com/watch?v=hm2GHwyKF1o&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=5) - [ ] [Black Tree](https://en.wikipedia.org/wiki/Red%E2%80%93black_tree) @@ -879,7 +879,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - how is tail recursion better than not? - [ ] [What Is Tail Recursion Why Is It So Bad?](https://www.quora.com/What-is-tail-recursion-Why-is-it-so-bad) - [ ] [Tail Recursion (video)](https://www.youtube.com/watch?v=L1jjXGfxozc) - + - ### Dynamic Programming - This subject can be pretty difficult, as each DP soluble problem must be defined as a recursion relation, and coming up with it can be tricky. - I suggest looking at many examples of DP problems until you have a solid understanding of the pattern involved. @@ -894,7 +894,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [ ] [Simonson: Dynamic programming II - Lecture 12 (video)](https://www.youtube.com/watch?v=v1qiRwuJU7g&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=12) - [ ] List of individual DP problems (each is short): [Dynamic Programming (video)](https://www.youtube.com/playlist?list=PLrmLmBdmIlpsHaNTPP_jHHDx_os9ItYXr) - - [ ] Yale Lecture notes: + - [ ] Yale Lecture notes: - [ ] [Dynamic Programming](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#dynamicProgramming) - [ ] Coursera: - [ ] [The RNA secondary structure problem (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/80RrW/the-rna-secondary-structure-problem) @@ -980,7 +980,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [ ] [Mutex in Python](https://www.youtube.com/watch?v=0zaPs8OtyKY) - Scalability and System Design are very large topics with many topics and resources, since there is a lot to consider + Scalability and System Design are very large topics with many topics and resources, since there is a lot to consider when designing a software/hardware system that can scale. Expect to spend quite a bit of time on this. - ### System Design, Scalability, Data Handling @@ -1008,14 +1008,14 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [ ] [How long does it take to make a context switch?](http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html) - [ ] [Transactions Across Datacenters (video)](https://www.youtube.com/watch?v=srOgpXECblk) - [ ] [A plain english introduction to CAP Theorem](http://ksat.me/a-plain-english-introduction-to-cap-theorem/) - - [ ] Paxos Consensus algorithm: + - [ ] Paxos Consensus algorithm: - [short video](https://www.youtube.com/watch?v=s8JqcZtvnsM) - [extended video with use case and multi-paxos](https://www.youtube.com/watch?v=JEpsBg0AO6o) - [paper](http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf) - [ ] [Consistent Hashing](http://www.tom-e-white.com/2007/11/consistent-hashing.html) - [ ] [NoSQL Patterns](http://horicky.blogspot.com/2009/11/nosql-patterns.html) - [ ] [Optional: UML 2.0 Series (vido)](https://www.youtube.com/watch?v=OkC7HKtiZC0&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc) - - [ ] OOSE: Software Dev Using UML and Java (21 videos): + - [ ] OOSE: Software Dev Using UML and Java (21 videos): - Can skip this if you have a great grasp of OO and OO design practices. - [OOSE: Software Dev Using UML and Java](https://www.youtube.com/playlist?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) - [ ] SOLID OOP Principles: @@ -1028,7 +1028,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgN2M5MTkwM2EtNWFkZC00ZTI3LWFjZTUtNTFhZGZiYmUzODc1&hl=en) - [ ] L - [Liskov Substitution Principal](http://www.oodesign.com/liskov-s-substitution-principle.html) | [Base Class and Derived class follow ‘IS A’ principal](http://stackoverflow.com/questions/56860/what-is-the-liskov-substitution-principle) - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgNzAzZjA5ZmItNjU3NS00MzQ5LTkwYjMtMDJhNDU5ZTM0MTlh&hl=en) - - [ ] I - [Interface segregation principle](http://www.oodesign.com/interface-segregation-principle.html) | clients should not be forced to implement interfaces they don't use + - [ ] I - [Interface segregation principle](http://www.oodesign.com/interface-segregation-principle.html) | clients should not be forced to implement interfaces they don't use - [Interface Segregation Principle in 5 minutes (video)](https://www.youtube.com/watch?v=3CtAfl7aXAQ) - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgOTViYjJhYzMtMzYxMC00MzFjLWJjMzYtOGJiMDc5N2JkYmJi&hl=en) - [ ] D -[Dependency Inversion principle](http://www.oodesign.com/dependency-inversion-principle.html) | Reduce the dependency In composition of objects. @@ -1036,7 +1036,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgMjdlMWIzNGUtZTQ0NC00ZjQ5LTkwYzQtZjRhMDRlNTQ3ZGMz&hl=en) - [ ] Scalability: - [ ] [Great overview (video)](https://www.youtube.com/watch?v=-W9F__D3oY4) - - [ ] Short series: + - [ ] Short series: - [Clones](http://www.lecloud.net/post/7295452622/scalability-for-dummies-part-1-clones) - [Database](http://www.lecloud.net/post/7994751381/scalability-for-dummies-part-2-database) - [Cache](http://www.lecloud.net/post/9246290032/scalability-for-dummies-part-3-cache) @@ -1195,7 +1195,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th --- -## Final Review +## Final Review This section will have shorter videos that can you watch pretty quickly to review most of the important concepts. It's nice if you want a refresher often. @@ -1229,12 +1229,12 @@ Why you need to practice doing programming problems: - coming up with time and space complexity for your solutions - testing your solutions -There is a great intro for methodical, communicative problem solving in an interview. You'll get this from the programming +There is a great intro for methodical, communicative problem solving in an interview. You'll get this from the programming interview books, too, but I found this outstanding: - [ ] [Algorithm design canvas](http://www.hiredintech.com/algorithm-design/) -No whiteboard at home? That makes sense. I'm a weirdo and have a big whiteboard. Instead of a whiteboard, pick up a -large drawing pad from an art store. You can sit on the couch and practice. This is my "sofa whiteboard". +No whiteboard at home? That makes sense. I'm a weirdo and have a big whiteboard. Instead of a whiteboard, pick up a +large drawing pad from an art store. You can sit on the couch and practice. This is my "sofa whiteboard". I added the pen in the photo for scale. ![my sofa whiteboard](https://dng5l3qzreal6.cloudfront.net/2016/Oct/art_board_sm_2-1476233630368.jpg) @@ -1248,11 +1248,11 @@ Supplemental: **Read as a review and problem recognition** - [ ] [Algorithm Design Manual](http://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202) (Skiena) - - To quote Yegge: "More than any other book it helped me understand just how astonishingly commonplace - (and important) graph problems are – they should be part of every working programmer's toolkit. The book also - covers basic data structures and sorting algorithms, which is a nice bonus. But the gold mine is the second half - of the book, which is a sort of encyclopedia of 1-pagers on zillions of useful problems and various ways to solve - them, without too much detail. Almost every 1-pager has a simple picture, making it easy to remember. This is a + - To quote Yegge: "More than any other book it helped me understand just how astonishingly commonplace + (and important) graph problems are – they should be part of every working programmer's toolkit. The book also + covers basic data structures and sorting algorithms, which is a nice bonus. But the gold mine is the second half + of the book, which is a sort of encyclopedia of 1-pagers on zillions of useful problems and various ways to solve + them, without too much detail. Almost every 1-pager has a simple picture, making it easy to remember. This is a great way to learn how to identify hundreds of problem types." - Can rent it on kindle - Half.com is a great resource for textbooks at good prices. @@ -1359,9 +1359,9 @@ You're never really done. ***************************************************************************************************** ***************************************************************************************************** - - Everything below this point is optional. These are my recommendations, not Google's. - By studying these, you'll get greater exposure to more CS concepts, and will be better prepared for + + Everything below this point is optional. These are my recommendations, not Google's. + By studying these, you'll get greater exposure to more CS concepts, and will be better prepared for any software engineering job. You'll be a much more well-rounded software engineer. ***************************************************************************************************** @@ -1441,7 +1441,7 @@ You're never really done. - [ ] [Core Markov Text Generation](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/waxgx/core-markov-text-generation) - [ ] [Core Implementing Markov Text Generation](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/gZhiC/core-implementing-markov-text-generation) - [ ] [Project = Markov Text Generation Walk Through](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/EUjrq/project-markov-text-generation-walk-through) - - See more in MIT 6.050J Information and Entropy series below. + - See more in MIT 6.050J Information and Entropy series below. - ### Parity & Hamming Code (videos) - [ ] [Intro](https://www.youtube.com/watch?v=q-3BctoUpHE) @@ -1465,7 +1465,7 @@ You're never really done. - ### Compression - make sure to watch information theory videos first - - [ ] Computerphile (videos): + - [ ] Computerphile (videos): - [ ] [Compression](https://www.youtube.com/watch?v=Lto-ajuqW3w) - [ ] [Entropy in Compression](https://www.youtube.com/watch?v=M5c_RFKVkko) - [ ] [Upside Down Trees (Huffman Trees)](https://www.youtube.com/watch?v=umTbivyJoiI) @@ -1607,13 +1607,13 @@ You're never really done. - ### Math for Fast Processing - [ ] [Integer Arithmetic, Karatsuba Multiplication (video)](https://www.youtube.com/watch?v=eCaXlAaN2uE&index=11&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) - [ ] [The Chinese Remainder Theorem (used in cryptography) (video)](https://www.youtube.com/watch?v=ru7mWZJlRQg) - + - ### Treap - Combination of a binary search tree and a heap - [ ] [Treap](https://en.wikipedia.org/wiki/Treap) - [ ] [Data Structures: Treaps explained (video)](https://www.youtube.com/watch?v=6podLUYinH8) - [ ] [Applications in set operations](https://www.cs.cmu.edu/~scandal/papers/treaps-spaa98.pdf) - + - ### Linear Programming (videos) - [ ] [Linear Programming](https://www.youtube.com/watch?v=M4K6HYLHREQ) - [ ] [Finding minimum cost](https://www.youtube.com/watch?v=2ACJ9ewUC6U) @@ -1713,6 +1713,8 @@ Sit back and enjoy. "netflix and skill" :P - [ ] [Discrete Mathematics by Shai Simonson (19 videos)](https://www.youtube.com/playlist?list=PL3o9D4Dl2FJ9q0_gtFXPh_H4POI5dK0yG) +- [ ] [Discrete Mathematics Part 1 by Sarada Herke (5 videos)](https://www.youtube.com/playlist?list=PLGxuz-nmYlQPOc4w1Kp2MZrdqOOm4Jxeo) + - [ ] CSE373 - Analysis of Algorithms (25 videos) - [Skiena lectures from Algorithm Design Manual](https://www.youtube.com/watch?v=ZFjhkohHdAA&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=1) @@ -1721,7 +1723,7 @@ Sit back and enjoy. "netflix and skill" :P - [ ] [UC Berkeley 61B (Fall 2006): Data Structures (39 videos)](https://www.youtube.com/playlist?list=PL4BBB74C7D2A1049C) - [ ] [UC Berkeley 61C: Machine Structures (26 videos)](https://www.youtube.com/watch?v=gJJeUFyuvvg&list=PL-XXv-cvA_iCl2-D-FS5mk0jFF6cYSJs_) - + - [ ] [OOSE: Software Dev Using UML and Java (21 videos)](https://www.youtube.com/playlist?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) - [ ] [UC Berkeley CS 152: Computer Architecture and Engineering (20 videos)](https://www.youtube.com/watch?v=UH0QYvtP7Rk&index=20&list=PLkFD6_40KJIwEiwQx1dACXwh-2Fuo32qr) @@ -1751,12 +1753,14 @@ Sit back and enjoy. "netflix and skill" :P - [ ] [MIT 6.858 Computer Systems Security, Fall 2014](https://www.youtube.com/watch?v=GqmQg-cszw4&index=1&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) - [ ] [Stanford: Programming Paradigms (27 videos)](https://www.youtube.com/view_play_list?p=9D558D49CA734A02) - + - [ ] [Introduction to Cryptography by Christof Paar](https://www.youtube.com/playlist?list=PL6N5qY2nvvJE8X75VkXglSrVhLv1tVcfy) - [Course Website along with Slides and Problem Sets](http://www.crypto-textbook.com/) - + - [ ] [Mining Massive Datasets - Stanford University (94 videos)](https://www.youtube.com/playlist?list=PLLssT5z_DsK9JDLcT8T62VtzwyW9LNepV) +- [ ] [Graph Theory by Sarada Herke (67 videos)](https://www.youtube.com/user/DrSaradaHerke/playlists?shelf_id=5&view=50&sort=dd) + ## Computer Science Courses - [Directory of Online CS Courses](https://github.com/open-source-society/computer-science) From cfdabeeef45ae54a4ab1613e664a666c71ebbc7a Mon Sep 17 00:00:00 2001 From: John Washam Date: Mon, 17 Oct 2016 09:30:22 -0700 Subject: [PATCH 019/109] Edited my note. --- README.md | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/README.md b/README.md index b472f6e..f00ee43 100644 --- a/README.md +++ b/README.md @@ -171,8 +171,7 @@ Print out a "[future Googler](https://github.com/jwasham/google-interview-univer I haven't applied yet. -I still have a few days in the learning phase (finishing up this crazy list), and starting next week all -I'll be doing is programming questions all day long. That will continue for a few weeks, and then I'll +Right now I'm doing programming problems all day long. That will continue for a few weeks, and then I'll apply through a referral I've been holding onto since February (yes, February). Thanks for the referral, JP. From 6fa307788e772f26c3b34167fc92b1b758e3e4bf Mon Sep 17 00:00:00 2001 From: John Washam Date: Wed, 19 Oct 2016 11:59:16 -0700 Subject: [PATCH 020/109] Very minor changes. --- README.md | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index f00ee43..7b3100d 100644 --- a/README.md +++ b/README.md @@ -1,8 +1,6 @@ # Google Interview University -Translations: - -- [中文版本](https://github.com/jwasham/google-interview-university/blob/master/README-cn.md) +Translations: [中文版本](https://github.com/jwasham/google-interview-university/blob/master/README-cn.md) ## What is it? @@ -178,8 +176,9 @@ apply through a referral I've been holding onto since February (yes, February). ## Follow Along with Me -I'm on the journey, too. Follow along on my blog at [GoogleyAsHeck.com](https://googleyasheck.com/) - +I'm on the journey, too. Follow along: + +- **Blog**: [GoogleyAsHeck.com](https://googleyasheck.com/) - Twitter: [@googleyasheck](https://twitter.com/googleyasheck) - Twitter: [@StartupNextDoor](https://twitter.com/StartupNextDoor) - Google+: [+Googleyasheck](https://plus.google.com/+Googleyasheck) From ad08a6769f8b7d8761a59f8b4821198dadccff79 Mon Sep 17 00:00:00 2001 From: Abdur Rehman Date: Sun, 23 Oct 2016 14:04:15 +0500 Subject: [PATCH 021/109] README.md: fix a typo --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 7b3100d..7fb7442 100644 --- a/README.md +++ b/README.md @@ -1372,7 +1372,7 @@ You're never really done. - [ ] [C Programming Language, Vol 2](https://www.amazon.com/Programming-Language-Brian-W-Kernighan/dp/0131103628) - [answers to questions](https://github.com/lekkas/c-algorithms) - [ ] [The Unix Programming Environment](http://product.half.ebay.com/The-UNIX-Programming-Environment-by-Brian-W-Kernighan-and-Rob-Pike-1983-Other/54385&tg=info) - - and oldie but a goodie + - an oldie but a goodie - [ ] [The Linux Command Line: A Complete Introduction](https://www.amazon.com/dp/1593273894/) - a modern option - [ ] [TCP/IP Illustrated Series](https://en.wikipedia.org/wiki/TCP/IP_Illustrated) From a9b65b763e664f1e8966b9b7ea028a85e6b8cae7 Mon Sep 17 00:00:00 2001 From: John Washam Date: Sun, 23 Oct 2016 11:00:45 -0700 Subject: [PATCH 022/109] Added note about flashcards. --- README.md | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/README.md b/README.md index 7b3100d..2aedfa3 100644 --- a/README.md +++ b/README.md @@ -300,6 +300,11 @@ Make your own for free: same card and answer it several times correctly before you really know it. Repetition will put that knowledge deeper in your brain. +An alternative to using my flashcard site is [Anki](http://ankisrs.net/), which has been recommended to me numerous times. It uses a repetition system to help you remember. +It's user friendly, available on all platforms and has a cloud sync system. It costs $25 on iOS but is free on other platforms. + +My flashcard database in Anki format: https://ankiweb.net/shared/info/25173560 (thanks [@xiewenya](https://github.com/xiewenya)) + ### 3. Review, review, review I keep a set of cheat sheets on ASCII, OSI stack, Big-O notations, and more. I study them when I have some spare time. From f2f02b76b983b3d089707720a8b23875af8e9124 Mon Sep 17 00:00:00 2001 From: John Washam Date: Mon, 24 Oct 2016 20:50:38 -0700 Subject: [PATCH 023/109] Wording changes in resume section. --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 89d7812..1fc3cfd 100644 --- a/README.md +++ b/README.md @@ -1313,7 +1313,7 @@ Maybe: ## Your Resume - [Ten Tips for a (Slightly) Less Awful Resume](http://steve-yegge.blogspot.co.uk/2007_09_01_archive.html) -- Great stuff at the back of Cracking The Coding Interview +- See Resume prep items in Cracking The Coding Interview and back of Programming Interviews Exposed ## Be thinking of for when the interview comes From 5640cad4a95a58a063c173ffda7e6ad881670b82 Mon Sep 17 00:00:00 2001 From: Andrii Bida Date: Tue, 25 Oct 2016 19:09:13 +0200 Subject: [PATCH 024/109] Fix some typos --- README.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 1fc3cfd..2ab245d 100644 --- a/README.md +++ b/README.md @@ -929,7 +929,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [ ] [NP Completeness III (Video)](https://www.youtube.com/watch?v=fCX1BGT3wjE&index=17&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) - [ ] [NP Completeness IV (video)](https://www.youtube.com/watch?v=NKLDp3Rch3M&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=18) - [ ] Skiena: - - [ ] [CSE373 2012 - Lecture 23 - Introduction to NP-CompletenessNP Completeness IV (video)](https://youtu.be/KiK5TVgXbFg?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1508) + - [ ] [CSE373 2012 - Lecture 23 - Introduction to NP-Completeness (video)](https://youtu.be/KiK5TVgXbFg?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1508) - [ ] [CSE373 2012 - Lecture 24 - NP-Completeness Proofs (video)](https://www.youtube.com/watch?v=27Al52X3hd4&index=24&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) - [ ] [CSE373 2012 - Lecture 25 - NP-Completeness Challenge (video)](https://www.youtube.com/watch?v=xCPH4gwIIXM&index=25&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) - [ ] [Complexity: P, NP, NP-completeness, Reductions (video)](https://www.youtube.com/watch?v=eHZifpgyH_4&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=22) @@ -950,7 +950,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - ### Processes and Threads - [ ] Computer Science 162 - Operating Systems (25 videos): - - for precesses and threads see videos 1-11 + - for processes and threads see videos 1-11 - [Operating Systems and System Programming (video)](https://www.youtube.com/playlist?list=PL-XXv-cvA_iBDyz-ba4yDskqMDY6A1w_c) - [What Is The Difference Between A Process And A Thread?](https://www.quora.com/What-is-the-difference-between-a-process-and-a-thread) - Covers: @@ -1010,7 +1010,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [ ] [Numbers Everyone Should Know](http://everythingisdata.wordpress.com/2009/10/17/numbers-everyone-should-know/) - [ ] [How long does it take to make a context switch?](http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html) - [ ] [Transactions Across Datacenters (video)](https://www.youtube.com/watch?v=srOgpXECblk) - - [ ] [A plain english introduction to CAP Theorem](http://ksat.me/a-plain-english-introduction-to-cap-theorem/) + - [ ] [A plain English introduction to CAP Theorem](http://ksat.me/a-plain-english-introduction-to-cap-theorem/) - [ ] Paxos Consensus algorithm: - [short video](https://www.youtube.com/watch?v=s8JqcZtvnsM) - [extended video with use case and multi-paxos](https://www.youtube.com/watch?v=JEpsBg0AO6o) From a6ac73378bfa4994ec15e61d4eee69acc4fb25a2 Mon Sep 17 00:00:00 2001 From: John Washam Date: Wed, 26 Oct 2016 10:55:07 -0700 Subject: [PATCH 025/109] Added notes about some books. Moved CLRS down. --- README.md | 14 ++++++++++---- 1 file changed, 10 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 1fc3cfd..8e75e85 100644 --- a/README.md +++ b/README.md @@ -1273,14 +1273,20 @@ Supplemental: **If you have time** - [ ] [Programming Pearls](http://www.amazon.com/Programming-Pearls-2nd-Jon-Bentley/dp/0201657880) + - The first couple of chapters present clever solutions to programming problems (some very old using data tape) but + that is just an intro. This a guidebook on program design and architecture, much like Code Complete, but much shorter. - [ ] [Algorithms and Programming: Problems and Solutions](http://www.amazon.com/Algorithms-Programming-Solutions-Alexander-Shen/dp/0817638474) -- [ ] [Introduction to Algorithms](https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844) - - To quote Yegge: "But if you want to come into your interviews *prepped*, then consider deferring your application until you've made your way through that book." - - Half.com is a great resource for textbooks at good prices. - - aka CLR, sometimes CLRS, because Stein was late to the game - [ ] [Elements of Programming Interviews](https://www.amazon.com/Elements-Programming-Interviews-Insiders-Guide/dp/1479274836) - all code is in C++, if you're looking to use C++ in your interview - good book on problem solving in general. + +**Perhaps** +- [ ] [Introduction to Algorithms](https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844) + - **Important:** Reading this book will only have limited value. This book is a great review of algorithms and data + structures, but won't teach you how to write good code. You have to be able to code a decent solution efficiently. + - To quote Yegge: "But if you want to come into your interviews *prepped*, then consider deferring your application until you've made your way through that book." + - Half.com is a great resource for textbooks at good prices. + - aka CLR, sometimes CLRS, because Stein was late to the game ## Coding exercises/challenges From 5d9cf81b86af636c111217f7530279c8be1d9e02 Mon Sep 17 00:00:00 2001 From: John Washam Date: Thu, 27 Oct 2016 09:37:29 -0700 Subject: [PATCH 026/109] Moved some items out of prerequisites and into additional knowledge. Moved C into prerequisites. --- README.md | 31 +++++++++++++++++++------------ 1 file changed, 19 insertions(+), 12 deletions(-) diff --git a/README.md b/README.md index 7df381b..0a898a1 100644 --- a/README.md +++ b/README.md @@ -77,6 +77,8 @@ sometimes word-for-word in Google's coaching notes. - [Additional Books](#additional-books) - [Additional Learning](#additional-learning) + - [Compilers](#compilers) + - [Floating Point Numbers](#floating-point-numbers) - [Unicode](#unicode) - [Endianness](#endianness) - [Emacs and vi(m)](#emacs-and-vim) @@ -354,20 +356,17 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input ## Prerequisite Knowledge +- [ ] **Learn C** + - C is everywhere. You'll see examples in books, lectures, videos, *everywhere* while you're studying. + - [ ] [C Programming Language, Vol 2](https://www.amazon.com/Programming-Language-Brian-W-Kernighan/dp/0131103628) + - This is a short book, but it will give you a great handle on the C language and if you practice it a little + you'll quickly get proficient. Understanding C helps you understand how programs and memory work. + - [answers to questions](https://github.com/lekkas/c-algorithms) + - [ ] **How computers process a program:** - [ ] [How does CPU execute program (video)](https://www.youtube.com/watch?v=42KTvGYQYnA) - [ ] [Machine Code Instructions (video)](https://www.youtube.com/watch?v=Mv2XQgpbTNE) -- [ ] **Compilers** - - [ ] [How a Compiler Works in ~1 minute (video)](https://www.youtube.com/watch?v=IhC7sdYe-Jg) - - [ ] [Harvard CS50 - Compilers (video)](https://www.youtube.com/watch?v=CSZLNYF4Klo) - - [ ] [C++ (video)](https://www.youtube.com/watch?v=twodd1KFfGk) - - [ ] [Understanding Compiler Optimization (C++) (video)](https://www.youtube.com/watch?v=FnGCDLhaxKU) - -- [ ] **How floating point numbers are stored:** - - [ ] simple 8-bit: [Representation of Floating Point Numbers - 1 (video - there is an error in calculations - see video description)](https://www.youtube.com/watch?v=ji3SfClm8TU) - - [ ] 32 bit: [IEEE754 32-bit floating point binary (video)](https://www.youtube.com/watch?v=50ZYcZebIec) - ## Algorithmic complexity / Big-O / Asymptotic analysis - nothing to implement - [ ] [Harvard CS50 - Asymptotic Notation (video)](https://www.youtube.com/watch?v=iOq5kSKqeR4) @@ -1380,8 +1379,6 @@ You're never really done. ## Additional Books -- [ ] [C Programming Language, Vol 2](https://www.amazon.com/Programming-Language-Brian-W-Kernighan/dp/0131103628) - - [answers to questions](https://github.com/lekkas/c-algorithms) - [ ] [The Unix Programming Environment](http://product.half.ebay.com/The-UNIX-Programming-Environment-by-Brian-W-Kernighan-and-Rob-Pike-1983-Other/54385&tg=info) - an oldie but a goodie - [ ] [The Linux Command Line: A Complete Introduction](https://www.amazon.com/dp/1593273894/) @@ -1398,6 +1395,16 @@ You're never really done. ## Additional Learning +- ### Compilers + - [ ] [How a Compiler Works in ~1 minute (video)](https://www.youtube.com/watch?v=IhC7sdYe-Jg) + - [ ] [Harvard CS50 - Compilers (video)](https://www.youtube.com/watch?v=CSZLNYF4Klo) + - [ ] [C++ (video)](https://www.youtube.com/watch?v=twodd1KFfGk) + - [ ] [Understanding Compiler Optimization (C++) (video)](https://www.youtube.com/watch?v=FnGCDLhaxKU) + +- ### Floating Point Numbers + - [ ] simple 8-bit: [Representation of Floating Point Numbers - 1 (video - there is an error in calculations - see video description)](https://www.youtube.com/watch?v=ji3SfClm8TU) + - [ ] 32 bit: [IEEE754 32-bit floating point binary (video)](https://www.youtube.com/watch?v=50ZYcZebIec) + - ### Unicode - [ ] [The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets]( http://www.joelonsoftware.com/articles/Unicode.html) - [ ] [What Every Programmer Absolutely, Positively Needs To Know About Encodings And Character Sets To Work With Text](http://kunststube.net/encoding/) From 5b065e3e72bebb40992edf3fedad4d650c4ad4c7 Mon Sep 17 00:00:00 2001 From: Albertux Date: Thu, 27 Oct 2016 22:35:06 -0700 Subject: [PATCH 027/109] Update README.md --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 0a898a1..d210765 100644 --- a/README.md +++ b/README.md @@ -221,6 +221,8 @@ Sometimes the classes are not in session so you have to wait a couple of months, ## Interview Process & General Interview Prep - [ ] Videos: + - [ ] [How to Work at Google: Prepare for an Engineering Interview +](https://www.youtube.com/watch?v=ko-KkSmp-Lk) - [ ] [How to Work at Google - Candidate Coaching Session (video)](https://www.youtube.com/watch?v=oWbUtlUhwa8&feature=youtu.be) - [ ] [Google Recruiters Share Technical Interview Tips (video)](https://www.youtube.com/watch?v=qc1owf2-220&feature=youtu.be) - [ ] [How to Work at Google: Tech Resume Preparation (video)](https://www.youtube.com/watch?v=8npJLXkcmu8) From ba16e4d2db62803badca40c0fbf1ced54321cab9 Mon Sep 17 00:00:00 2001 From: Albertux Date: Thu, 27 Oct 2016 23:29:42 -0700 Subject: [PATCH 028/109] adding the (video) --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index d210765..91b51ed 100644 --- a/README.md +++ b/README.md @@ -221,7 +221,7 @@ Sometimes the classes are not in session so you have to wait a couple of months, ## Interview Process & General Interview Prep - [ ] Videos: - - [ ] [How to Work at Google: Prepare for an Engineering Interview + - [ ] [How to Work at Google: Prepare for an Engineering Interview (video) ](https://www.youtube.com/watch?v=ko-KkSmp-Lk) - [ ] [How to Work at Google - Candidate Coaching Session (video)](https://www.youtube.com/watch?v=oWbUtlUhwa8&feature=youtu.be) - [ ] [Google Recruiters Share Technical Interview Tips (video)](https://www.youtube.com/watch?v=qc1owf2-220&feature=youtu.be) From 7102c4de7d5a0818845aed05e544bf2afd69be30 Mon Sep 17 00:00:00 2001 From: Albertux Date: Thu, 27 Oct 2016 23:30:47 -0700 Subject: [PATCH 029/109] removing extra line --- README.md | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/README.md b/README.md index 91b51ed..0ddfb35 100644 --- a/README.md +++ b/README.md @@ -221,8 +221,7 @@ Sometimes the classes are not in session so you have to wait a couple of months, ## Interview Process & General Interview Prep - [ ] Videos: - - [ ] [How to Work at Google: Prepare for an Engineering Interview (video) -](https://www.youtube.com/watch?v=ko-KkSmp-Lk) + - [ ] [How to Work at Google: Prepare for an Engineering Interview (video)](https://www.youtube.com/watch?v=ko-KkSmp-Lk) - [ ] [How to Work at Google - Candidate Coaching Session (video)](https://www.youtube.com/watch?v=oWbUtlUhwa8&feature=youtu.be) - [ ] [Google Recruiters Share Technical Interview Tips (video)](https://www.youtube.com/watch?v=qc1owf2-220&feature=youtu.be) - [ ] [How to Work at Google: Tech Resume Preparation (video)](https://www.youtube.com/watch?v=8npJLXkcmu8) From 9b674e60ec2e02fbd96b90e565d04420e42e49d8 Mon Sep 17 00:00:00 2001 From: John Washam Date: Fri, 28 Oct 2016 20:29:57 -0700 Subject: [PATCH 030/109] Found a better video for Knuth-Morris-Pratt. --- README.md | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/README.md b/README.md index 0ddfb35..dc658a7 100644 --- a/README.md +++ b/README.md @@ -1189,8 +1189,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [Table Doubling, Karp-Rabin](https://www.youtube.com/watch?v=BRO7mVIFt08&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=9) - [Rolling Hashes, Amortized Analysis](https://www.youtube.com/watch?v=w6nuXg0BISo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=32) - [ ] Knuth-Morris-Pratt (KMP): - - [Pratt Algorithm](https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm) - - [Tutorial: The Knuth-Morris-Pratt (KMP) String Matching Algorithm](https://www.youtube.com/watch?v=2ogqPWJSftE) + - [TThe Knuth-Morris-Pratt (KMP) String Matching Algorithm](https://www.youtube.com/watch?v=5i7oKodCRJo) - [ ] Boyer–Moore string search algorithm - [Boyer-Moore String Search Algorithm](https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm) - [Advanced String Searching Boyer-Moore-Horspool Algorithms (video)](https://www.youtube.com/watch?v=QDZpzctPf10) From 80949bbfe82e5886fa406c0c6cd5395c5378b11c Mon Sep 17 00:00:00 2001 From: John Washam Date: Sat, 29 Oct 2016 20:47:48 -0700 Subject: [PATCH 031/109] Added a new explainer for Fourier Transform. --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index dc658a7..2a4d5b1 100644 --- a/README.md +++ b/README.md @@ -1580,6 +1580,7 @@ You're never really done. - [ ] [Avro](https://avro.apache.org/) - ### Fast Fourier Transform + - [ ] [An Interactive Guide To The Fourier Transform](https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/) - [ ] [What is a Fourier transform? What is it used for?](http://www.askamathematician.com/2012/09/q-what-is-a-fourier-transform-what-is-it-used-for/) - [ ] [What is the Fourier Transform? (video)](https://www.youtube.com/watch?v=Xxut2PN-V8Q) - [ ] [Divide & Conquer: FFT (video)](https://www.youtube.com/watch?v=iTMn0Kt18tg&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=4) From 63bc89d4bf98cf14933048c9e4fec9c5be3ab44a Mon Sep 17 00:00:00 2001 From: John Washam Date: Sun, 30 Oct 2016 11:02:43 -0700 Subject: [PATCH 032/109] Added HyperLogLog, Locality-Sensitive Hashing, and a video for linear programming. --- README.md | 11 +++++++++++ 1 file changed, 11 insertions(+) diff --git a/README.md b/README.md index 2a4d5b1..5c0d6c0 100644 --- a/README.md +++ b/README.md @@ -96,6 +96,8 @@ sometimes word-for-word in Google's coaching notes. - [Messaging, Serialization, and Queueing Systems](#messaging-serialization-and-queueing-systems) - [Fast Fourier Transform](#fast-fourier-transform) - [Bloom Filter](#bloom-filter) + - [HyperLogLog](#hyperloglog) + - [Locality-Sensitive Hashing](#locality-sensitive-hashing) - [van Emde Boas Trees](#van-emde-boas-trees) - [Augmented Data Structures](#augmented-data-structures) - [Skip lists](#skip-lists) @@ -1593,6 +1595,14 @@ You're never really done. - [Tutorial](http://billmill.org/bloomfilter-tutorial/) - [How To Write A Bloom Filter App](http://blog.michaelschmatz.com/2016/04/11/how-to-write-a-bloom-filter-cpp/) +- ### HyperLogLog + - [How To Count A Billion Distinct Objects Using Only 1.5KB Of Memory](http://highscalability.com/blog/2012/4/5/big-data-counting-how-to-count-a-billion-distinct-objects-us.html) + +- ### Locality-Sensitive Hashing + - used to determine similarity of documents + - the opposite of md5 or sha which are used to determine if 2 documents/strings are exactly the same. + - [Simhashing (hopefully) made simple](http://ferd.ca/simhashing-hopefully-made-simple.html) + - ### van Emde Boas Trees - [ ] [Divide & Conquer: van Emde Boas Trees (video)](https://www.youtube.com/watch?v=hmReJCupbNU&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=6) - [ ] [MIT Lecture Notes](https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2012/lecture-notes/MIT6_046JS12_lec15.pdf) @@ -1635,6 +1645,7 @@ You're never really done. - [ ] [Linear Programming](https://www.youtube.com/watch?v=M4K6HYLHREQ) - [ ] [Finding minimum cost](https://www.youtube.com/watch?v=2ACJ9ewUC6U) - [ ] [Finding maximum value](https://www.youtube.com/watch?v=8AA_81xI3ik) + - [ ] [Solve Linear Equations with Python - Simplex Algorithm](https://www.youtube.com/watch?v=44pAWI7v5Zk) - ### Geometry, Convex hull (videos) - [ ] [Graph Alg. IV: Intro to geometric algorithms - Lecture 9](https://youtu.be/XIAQRlNkJAw?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3164) From dbbdad3dad1b2b76f45f5ef3386c18f9dd4aad53 Mon Sep 17 00:00:00 2001 From: John Washam Date: Mon, 31 Oct 2016 10:11:48 -0700 Subject: [PATCH 033/109] Added k-D trees, suffix arrays. --- README.md | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/README.md b/README.md index 5c0d6c0..3ce1384 100644 --- a/README.md +++ b/README.md @@ -100,6 +100,7 @@ sometimes word-for-word in Google's coaching notes. - [Locality-Sensitive Hashing](#locality-sensitive-hashing) - [van Emde Boas Trees](#van-emde-boas-trees) - [Augmented Data Structures](#augmented-data-structures) + - [k-D Trees](#k-d-trees) - [Skip lists](#skip-lists) - [Network Flows](#network-flows) - [Disjoint Sets & Union Find](#disjoint-sets--union-find) @@ -1196,6 +1197,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [Boyer-Moore String Search Algorithm](https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm) - [Advanced String Searching Boyer-Moore-Horspool Algorithms (video)](https://www.youtube.com/watch?v=QDZpzctPf10) - [ ] [Coursera: Algorithms on Strings](https://www.coursera.org/learn/algorithms-on-strings/home/week/1) + - [ ] [Suffix Arrays (video)](https://www.youtube.com/watch?v=HKPrVm5FWvg) --- @@ -1610,6 +1612,12 @@ You're never really done. - ### Augmented Data Structures - [ ] [CS 61B Lecture 39: Augmenting Data Structures](https://youtu.be/zksIj9O8_jc?list=PL4BBB74C7D2A1049C&t=950) +- ### k-D Trees + - great for finding number of points in a rectangle or higher dimension object + - a good fit for k-nearest neighbors + - [ ] [Kd Trees (video)](https://www.youtube.com/watch?v=W94M9D_yXKk) + - [ ] [kNN K-d tree algorithm (video)](https://www.youtube.com/watch?v=Y4ZgLlDfKDg) + - ### Skip lists - "These are somewhat of a cult data structure" - Skiena - [ ] [Randomization: Skip Lists (video)](https://www.youtube.com/watch?v=2g9OSRKJuzM&index=10&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) From 6c5f5bd020b3aba304a9c09819369d6e5975f447 Mon Sep 17 00:00:00 2001 From: John Washam Date: Mon, 31 Oct 2016 17:53:18 -0700 Subject: [PATCH 034/109] My notes on Skiena's book. --- README.md | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/README.md b/README.md index 3ce1384..4a8f88b 100644 --- a/README.md +++ b/README.md @@ -1254,6 +1254,19 @@ Supplemental: **Read as a review and problem recognition** - [ ] [Algorithm Design Manual](http://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202) (Skiena) + - This book has 2 parts: + - class textbook on data structures and algorithms + - pros: + - is a good review as any algorithms textbook would be + - nice stories from his experiences solving problems in industry and academia + - code examples in C + - cons: + - can be as dense or impenetrable as CLRS, and in some cases CLRS may be a better alternative for some subjects + - chapters 7, 8, 9 can be painful to try to follow, as some items are not explained well or require more brain than I have + - don't get me wrong: I like Skiena, his teaching style, and mannerisms, but I may not be Stony Brook material. + - algorithm catalog: + - this is the real reason you buy this book. + - about to get to this part. Will update here once I've made my way through it. - To quote Yegge: "More than any other book it helped me understand just how astonishingly commonplace (and important) graph problems are – they should be part of every working programmer's toolkit. The book also covers basic data structures and sorting algorithms, which is a nice bonus. But the gold mine is the second half From 29337ffd6879f9e6274c332f986572ea7a42644e Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 8 Nov 2016 11:17:17 -0800 Subject: [PATCH 035/109] Added a few more book resources. --- README.md | 17 +++++++++++++++++ 1 file changed, 17 insertions(+) diff --git a/README.md b/README.md index 4a8f88b..344d4f6 100644 --- a/README.md +++ b/README.md @@ -1291,6 +1291,23 @@ Supplemental: - [ ] [Programming Pearls](http://www.amazon.com/Programming-Pearls-2nd-Jon-Bentley/dp/0201657880) - The first couple of chapters present clever solutions to programming problems (some very old using data tape) but that is just an intro. This a guidebook on program design and architecture, much like Code Complete, but much shorter. +- [ ] [Grokking Algorithms](https://www.amazon.com/Grokking-Algorithms-illustrated-programmers-curious/dp/1617292230) + - This is a great book for review of CS concepts, and a very quick read. + - Did not have as much Python code as I had hoped for, but has a great chapter on dynamic programming, so I worked through that and finally got the concept. +- [ ] [Write Great Code: Volume 1: Understanding the Machine](https://www.amazon.com/Write-Great-Code-Understanding-Machine/dp/1593270038) + - The book was published in 2004, and is a bit outdated, but it's a terrific resource for understanding a computer. + - The author invented HLA, so take mentions and examples in HLA with a grain of salt. Not widely used, but decent examples of what assembly looks like. + - These chapters are worth the read to give you a nice foundation: + - Chapter 2 - Numeric Representation + - Chapter 3 - Binary Arithmetic and Bit Operations + - Chapter 4 - Floating-Point Representation + - Chapter 5 - Character Representation + - Chapter 6 - Memory Organization and Access + - Chapter 7 - Composite Data Types and Memory Objects + - Chapter 9 - CPU Architecture + - Chapter 10 - Instruction Set Architecture + - Chapter 11 - Memory Architecture and Organization + - For a richer, more up-to-date (2011), but longer treatment, pick up [Computer Architecture, Fifth Edition: A Quantitative Approach](https://www.amazon.com/dp/012383872X/) - [ ] [Algorithms and Programming: Problems and Solutions](http://www.amazon.com/Algorithms-Programming-Solutions-Alexander-Shen/dp/0817638474) - [ ] [Elements of Programming Interviews](https://www.amazon.com/Elements-Programming-Interviews-Insiders-Guide/dp/1479274836) - all code is in C++, if you're looking to use C++ in your interview From 4d9c8e4b0841f54ca21bb422ad079527e641acf6 Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 8 Nov 2016 17:09:46 -0800 Subject: [PATCH 036/109] Removed "Algorithms and Programming: Problems and Solutions" --- README.md | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 344d4f6..2bc2aa7 100644 --- a/README.md +++ b/README.md @@ -1308,11 +1308,13 @@ Supplemental: - Chapter 10 - Instruction Set Architecture - Chapter 11 - Memory Architecture and Organization - For a richer, more up-to-date (2011), but longer treatment, pick up [Computer Architecture, Fifth Edition: A Quantitative Approach](https://www.amazon.com/dp/012383872X/) -- [ ] [Algorithms and Programming: Problems and Solutions](http://www.amazon.com/Algorithms-Programming-Solutions-Alexander-Shen/dp/0817638474) - [ ] [Elements of Programming Interviews](https://www.amazon.com/Elements-Programming-Interviews-Insiders-Guide/dp/1479274836) - all code is in C++, if you're looking to use C++ in your interview - good book on problem solving in general. - +- **Removed** ~~"Algorithms and Programming: Problems and Solutions" by Shen~~ + - A fine book, but after working through problems on several pages I got frustrated with the Pascal, do while loops, and unclear post-condition satisfaction results. + - Would rather spend time on coding problems from another book or online coding problems. + **Perhaps** - [ ] [Introduction to Algorithms](https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844) - **Important:** Reading this book will only have limited value. This book is a great review of algorithms and data From 39fe10f6b1183382a28474b7e5bf4372eb7bf62f Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 8 Nov 2016 17:11:18 -0800 Subject: [PATCH 037/109] Additional note on A&P. --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 2bc2aa7..4676ce3 100644 --- a/README.md +++ b/README.md @@ -1312,7 +1312,7 @@ Supplemental: - all code is in C++, if you're looking to use C++ in your interview - good book on problem solving in general. - **Removed** ~~"Algorithms and Programming: Problems and Solutions" by Shen~~ - - A fine book, but after working through problems on several pages I got frustrated with the Pascal, do while loops, and unclear post-condition satisfaction results. + - A fine book, but after working through problems on several pages I got frustrated with the Pascal, do while loops, 1-indexed arrays, and unclear post-condition satisfaction results. - Would rather spend time on coding problems from another book or online coding problems. **Perhaps** From 3ccc80d4295bdc58e7fde7dd6b4ab604dc8c1286 Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 8 Nov 2016 17:17:02 -0800 Subject: [PATCH 038/109] Moved A&P down. --- README.md | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 4676ce3..6daa33f 100644 --- a/README.md +++ b/README.md @@ -1311,9 +1311,6 @@ Supplemental: - [ ] [Elements of Programming Interviews](https://www.amazon.com/Elements-Programming-Interviews-Insiders-Guide/dp/1479274836) - all code is in C++, if you're looking to use C++ in your interview - good book on problem solving in general. -- **Removed** ~~"Algorithms and Programming: Problems and Solutions" by Shen~~ - - A fine book, but after working through problems on several pages I got frustrated with the Pascal, do while loops, 1-indexed arrays, and unclear post-condition satisfaction results. - - Would rather spend time on coding problems from another book or online coding problems. **Perhaps** - [ ] [Introduction to Algorithms](https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844) @@ -1322,6 +1319,12 @@ Supplemental: - To quote Yegge: "But if you want to come into your interviews *prepped*, then consider deferring your application until you've made your way through that book." - Half.com is a great resource for textbooks at good prices. - aka CLR, sometimes CLRS, because Stein was late to the game + +**Removed** +- ~~"Algorithms and Programming: Problems and Solutions" by Shen~~ + - A fine book, but after working through problems on several pages I got frustrated with the Pascal, do while loops, 1-indexed arrays, and unclear post-condition satisfaction results. + - Would rather spend time on coding problems from another book or online coding problems. + ## Coding exercises/challenges From 3c4d911ea1073f6d8b685bfe3b9dedc105548f99 Mon Sep 17 00:00:00 2001 From: John Washam Date: Fri, 11 Nov 2016 09:25:26 -0800 Subject: [PATCH 039/109] Added Sedgewick videos to final review. --- README.md | 37 +++++++++++++++++++++---------------- 1 file changed, 21 insertions(+), 16 deletions(-) diff --git a/README.md b/README.md index 6daa33f..7f8fa30 100644 --- a/README.md +++ b/README.md @@ -1205,19 +1205,23 @@ You'll get more graph practice in Skiena's book (see Books section below) and th This section will have shorter videos that can you watch pretty quickly to review most of the important concepts. It's nice if you want a refresher often. - (More items will be added here) - -#### General: - [ ] Series of 2-3 minutes short subject videos (23 videos) - [Videos](https://www.youtube.com/watch?v=r4r1DZcx1cM&list=PLmVb1OknmNJuC5POdcDv5oCS7_OUkDgpj&index=22) - [ ] Series of 2-5 minutes short subject videos - Michael Sambol (18 videos): - [Videos](https://www.youtube.com/channel/UCzDJwLWoYCUQowF_nG3m5OQ) - -#### Sorts: - -- [ ] Merge Sort: https://www.youtube.com/watch?v=GCae1WNvnZM - +- [ ] [Sedgewick Videos - Algorithms I](https://www.youtube.com/user/algorithmscourses/playlists?shelf_id=2&view=50&sort=dd) + - [ ] [01. Union-Find](https://www.youtube.com/watch?v=8mYfZeHtdNc&list=PLe-ggMe31CTexoNYnMhbHaWhQ0dvcy43t) + - [ ] [02. Analysis of Algorithms](https://www.youtube.com/watch?v=ZN-nFW0mEpg&list=PLe-ggMe31CTf0_bkOhh7sa5uqeppp3Sr0) + - [ ] [03. Stacks and Queues](https://www.youtube.com/watch?v=TIC1gappbP8&list=PLe-ggMe31CTe-9jhnj3P_3mmrCh0A7iHh) + - [ ] [04. Elementary Sorts](https://www.youtube.com/watch?v=CD2AL6VO0ak&list=PLe-ggMe31CTe_5WhGV0F--7CK8MoRUqBd) + - [ ] [05. Mergesort](https://www.youtube.com/watch?v=4nKwesx_c8E&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [06. Quicksort](https://www.youtube.com/watch?v=5M5A7qPWk84&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [07. Priority Queues](https://www.youtube.com/watch?v=G9TMe0KC0w0&list=PLe-ggMe31CTducy9LDiGVkdSv0NfiRwn5) + - [ ] [08. Elementary Symbol Tables](https://www.youtube.com/watch?v=up_nlilw3ac&list=PLe-ggMe31CTc3a8nKRDxFZZrWrBvkc9SG) + - [ ] [09. Balanced Search Trees](https://www.youtube.com/watch?v=qC1BLLPK_5w&list=PLe-ggMe31CTf7jHH_mFT50kayjCEA6Rhu) + - [ ] [10. Geometric Applications of BST](https://www.youtube.com/watch?v=Wl30aGAp6TY&list=PLe-ggMe31CTdBsRIw0hXln0hilRs-DqAx) + - [ ] [11. Hash Tables](https://www.youtube.com/watch?v=QA8fJGO-i9o&list=PLe-ggMe31CTcKxIRGqqThMts2eHtSrf11) --- @@ -1664,15 +1668,8 @@ You're never really done. - [ ] [Network Flows (video)](https://www.youtube.com/watch?v=2vhN4Ice5jI) - ### Disjoint Sets & Union Find - - [ ] [Disjoint Set](https://en.wikipedia.org/wiki/Disjoint-set_data_structure) - [ ] [UCB 61B - Disjoint Sets; Sorting & selection (video)](https://www.youtube.com/watch?v=MAEGXTwmUsI&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=21) - - [ ] Coursera (not needed since the above video explains it great): - - [ ] [Overview](https://www.coursera.org/learn/data-structures/lecture/JssSY/overview) - - [ ] [Naive Implementation](https://www.coursera.org/learn/data-structures/lecture/EM5D0/naive-implementations) - - [ ] [Trees](https://www.coursera.org/learn/data-structures/lecture/Mxu0w/trees) - - [ ] [Union By Rank](https://www.coursera.org/learn/data-structures/lecture/qb4c2/union-by-rank) - - [ ] [Path Compression](https://www.coursera.org/learn/data-structures/lecture/Q9CVI/path-compression) - - [ ] [Analysis Options](https://www.coursera.org/learn/data-structures/lecture/GQQLN/analysis-optional) + - [ ] [Sedgewick Algorithms - Union-Find (6 videos)](https://www.youtube.com/watch?v=8mYfZeHtdNc&list=PLe-ggMe31CTexoNYnMhbHaWhQ0dvcy43t) - ### Math for Fast Processing - [ ] [Integer Arithmetic, Karatsuba Multiplication (video)](https://www.youtube.com/watch?v=eCaXlAaN2uE&index=11&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) @@ -1743,6 +1740,14 @@ You're never really done. above because it's just too much. It's easy to overdo it on a subject. You want to get hired in this century, right? +- [ ] **Union-Find** + - [ ] [Overview](https://www.coursera.org/learn/data-structures/lecture/JssSY/overview) + - [ ] [Naive Implementation](https://www.coursera.org/learn/data-structures/lecture/EM5D0/naive-implementations) + - [ ] [Trees](https://www.coursera.org/learn/data-structures/lecture/Mxu0w/trees) + - [ ] [Union By Rank](https://www.coursera.org/learn/data-structures/lecture/qb4c2/union-by-rank) + - [ ] [Path Compression](https://www.coursera.org/learn/data-structures/lecture/Q9CVI/path-compression) + - [ ] [Analysis Options](https://www.coursera.org/learn/data-structures/lecture/GQQLN/analysis-optional) + - [ ] **More Dynamic Programming** (videos) - [ ] [6.006: Dynamic Programming I: Fibonacci, Shortest Paths](https://www.youtube.com/watch?v=OQ5jsbhAv_M&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=19) - [ ] [6.006: Dynamic Programming II: Text Justification, Blackjack](https://www.youtube.com/watch?v=ENyox7kNKeY&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=20) From 23d712668d87e84840492d380e5de7da2e3e6a04 Mon Sep 17 00:00:00 2001 From: John Washam Date: Fri, 11 Nov 2016 09:38:18 -0800 Subject: [PATCH 040/109] Moved some string searching resources into additional detail section. --- README.md | 53 ++++++++++++++++++++++++++++++++++++++++------------- 1 file changed, 40 insertions(+), 13 deletions(-) diff --git a/README.md b/README.md index 7f8fa30..9fcc102 100644 --- a/README.md +++ b/README.md @@ -1184,20 +1184,16 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - can you implement them? - ### String searching & manipulations + - [ ] [Sedgewick - Suffix Arrays (video)](https://www.youtube.com/watch?v=HKPrVm5FWvg) + - [ ] [Sedgewick - Substring Search (videos)](https://www.youtube.com/watch?v=2LvvVFCEIv8&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=5) + - [ ] [1. Introduction to Substring Search](https://www.youtube.com/watch?v=2LvvVFCEIv8&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=5) + - [ ] [2. Brute-Force Substring Search](https://www.youtube.com/watch?v=CcDXwIGEXYU&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=4) + - [ ] [3. Knuth-Morris Pratt](https://www.youtube.com/watch?v=n-7n-FDEWzc&index=3&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) + - [ ] [4. Boyer-Moore](https://www.youtube.com/watch?v=fI7Ch6pZXfM&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=2) + - [ ] [5. Rabin-Karp](https://www.youtube.com/watch?v=QzI0p6zDjK4&index=1&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) - [ ] [Search pattern in text (video)](https://www.coursera.org/learn/data-structures/lecture/tAfHI/search-pattern-in-text) - - [ ] Rabin-Karp (videos): - - [Rabin Karps Algorithm](https://www.coursera.org/learn/data-structures/lecture/c0Qkw/rabin-karps-algorithm) - - [Precomputing](https://www.coursera.org/learn/data-structures/lecture/nYrc8/optimization-precomputation) - - [Optimization: Implementation and Analysis](https://www.coursera.org/learn/data-structures/lecture/h4ZLc/optimization-implementation-and-analysis) - - [Table Doubling, Karp-Rabin](https://www.youtube.com/watch?v=BRO7mVIFt08&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=9) - - [Rolling Hashes, Amortized Analysis](https://www.youtube.com/watch?v=w6nuXg0BISo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=32) - - [ ] Knuth-Morris-Pratt (KMP): - - [TThe Knuth-Morris-Pratt (KMP) String Matching Algorithm](https://www.youtube.com/watch?v=5i7oKodCRJo) - - [ ] Boyer–Moore string search algorithm - - [Boyer-Moore String Search Algorithm](https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm) - - [Advanced String Searching Boyer-Moore-Horspool Algorithms (video)](https://www.youtube.com/watch?v=QDZpzctPf10) - - [ ] [Coursera: Algorithms on Strings](https://www.coursera.org/learn/algorithms-on-strings/home/week/1) - - [ ] [Suffix Arrays (video)](https://www.youtube.com/watch?v=HKPrVm5FWvg) + + If you need more detail on this subject, see "String Matching" section in [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) --- @@ -1222,6 +1218,20 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [ ] [09. Balanced Search Trees](https://www.youtube.com/watch?v=qC1BLLPK_5w&list=PLe-ggMe31CTf7jHH_mFT50kayjCEA6Rhu) - [ ] [10. Geometric Applications of BST](https://www.youtube.com/watch?v=Wl30aGAp6TY&list=PLe-ggMe31CTdBsRIw0hXln0hilRs-DqAx) - [ ] [11. Hash Tables](https://www.youtube.com/watch?v=QA8fJGO-i9o&list=PLe-ggMe31CTcKxIRGqqThMts2eHtSrf11) +- [ ] [Sedgewick Videos - Algorithms II](https://www.youtube.com/user/algorithmscourses/playlists?flow=list&shelf_id=3&view=50) + - [ ] [01. Undirected Graphs](https://www.youtube.com/watch?v=GmVhD-mmMBg&list=PLe-ggMe31CTc0zDzANxl4I2MhMoRVlbRM) + - [ ] [02. Directed Graphs](https://www.youtube.com/watch?v=_z-JsVaUS40&list=PLe-ggMe31CTcEwaU8a1P1Gd95A77HV85K) + - [ ] [03. Minimum Spanning Trees](https://www.youtube.com/watch?v=t8fNk9tfVYY&list=PLe-ggMe31CTceUZxDesGfHGLE7kcSafqj) + - [ ] [04. Shortest Paths](https://www.youtube.com/watch?v=HoGSiB7tSeI&list=PLe-ggMe31CTePpG3jbeOTsnGUGZDKxgZD) + - [ ] [05. Maximum Flow](https://www.youtube.com/watch?v=rYIKlFstBqE&list=PLe-ggMe31CTduQ68XQ-sVj32wYJIspTma) + - [ ] [06. Radix Sorts](https://www.youtube.com/watch?v=HKPrVm5FWvg&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [07. Tries](https://www.youtube.com/watch?v=00YaFPcC65g&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [08. Substring Search](https://www.youtube.com/watch?v=QzI0p6zDjK4&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) + - [ ] [09. Regular Expressions](https://www.youtube.com/watch?v=TQWNQsJSPnk&list=PLe-ggMe31CTetTlJWouM42fyttyKPgSDh) + - [ ] [10. Data Compression](https://www.youtube.com/watch?v=at9tjpxcBh8&list=PLe-ggMe31CTciifRRo6yY0Yt0mzgIXXVZ) + - [ ] [11. Reductions](https://www.youtube.com/watch?v=Ow5x-ooMGv8&list=PLe-ggMe31CTe_yliW5vc3yO-dj1LSSDyF) + - [ ] [12. Linear Programming](https://www.youtube.com/watch?v=rWhcLyiLZLA&list=PLe-ggMe31CTdy6dKzMgkWFuTTN1H8B-E1) + - [ ] [13. Intractability](https://www.youtube.com/watch?v=6qcaaDp4cdQ&list=PLe-ggMe31CTcZCjluBHw53e_ek2k9Kn-S) --- @@ -1773,6 +1783,23 @@ You're never really done. - [ ] [Simonson: Approximation Algorithms (video)](https://www.youtube.com/watch?v=oDniZCmNmNw&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=19) +- [ ] **String Matching** + - [ ] Rabin-Karp (videos): + - [Rabin Karps Algorithm](https://www.coursera.org/learn/data-structures/lecture/c0Qkw/rabin-karps-algorithm) + - [Precomputing](https://www.coursera.org/learn/data-structures/lecture/nYrc8/optimization-precomputation) + - [Optimization: Implementation and Analysis](https://www.coursera.org/learn/data-structures/lecture/h4ZLc/optimization-implementation-and-analysis) + - [Table Doubling, Karp-Rabin](https://www.youtube.com/watch?v=BRO7mVIFt08&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=9) + - [Rolling Hashes, Amortized Analysis](https://www.youtube.com/watch?v=w6nuXg0BISo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=32) + - [ ] Knuth-Morris-Pratt (KMP): + - [TThe Knuth-Morris-Pratt (KMP) String Matching Algorithm](https://www.youtube.com/watch?v=5i7oKodCRJo) + - [ ] Boyer–Moore string search algorithm + - [Boyer-Moore String Search Algorithm](https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm) + - [Advanced String Searching Boyer-Moore-Horspool Algorithms (video)](https://www.youtube.com/watch?v=QDZpzctPf10) + - [ ] [Coursera: Algorithms on Strings](https://www.coursera.org/learn/algorithms-on-strings/home/week/1) + - starts off great, but by the time it gets past KMP it gets more complicated than it needs to be + - nice explanation of tries + - can be skipped + ## Video Series Sit back and enjoy. "netflix and skill" :P From 8f34fb5853aaf8f6b43e69e4d6ddca6d2a09b1ca Mon Sep 17 00:00:00 2001 From: John Washam Date: Fri, 11 Nov 2016 09:55:58 -0800 Subject: [PATCH 041/109] Reorganized sorting section. Moved some lectures to additional section. --- README.md | 74 +++++++++++++++++++++++++++++++++---------------------- 1 file changed, 45 insertions(+), 29 deletions(-) diff --git a/README.md b/README.md index 9fcc102..a3ac3d4 100644 --- a/README.md +++ b/README.md @@ -733,8 +733,7 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input the Completely Fair Scheduler used in current Linux kernels uses red–black trees. In the version 8 of Java, the Collection HashMap has been modified such that instead of using a LinkedList to store identical elements with poor hashcodes, a Red-Black tree is used. - - [ ] [Aduni - Algorithms - Lecture 4 - (link jumps to starting point) (video)](https://youtu.be/1W3x0f_RmUo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3871) + - [ ] [Aduni - Algorithms - Lecture 4 (link jumps to starting point) (video)](https://youtu.be/1W3x0f_RmUo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3871) - [ ] [Aduni - Algorithms - Lecture 5 (video)](https://www.youtube.com/watch?v=hm2GHwyKF1o&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=5) - [ ] [Black Tree](https://en.wikipedia.org/wiki/Red%E2%80%93black_tree) - [ ] [An Introduction To Binary Search And Red Black Tree](https://www.topcoder.com/community/data-science/data-science-tutorials/an-introduction-to-binary-search-and-red-black-trees/) @@ -761,6 +760,25 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input - For heapsort, see Heap data structure above. Heap sort is great, but not stable. +- [ ] [Sedgewick - Mergesort (5 videos)](https://www.youtube.com/watch?v=4nKwesx_c8E&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [1. Mergesort](https://www.youtube.com/watch?v=4nKwesx_c8E&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9&index=1) + - [ ] [2. Bottom up Mergesort](https://www.youtube.com/watch?v=HGOIGUYjeyk&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9&index=2) + - [ ] [3. Sorting Complexity](https://www.youtube.com/watch?v=WvU_mIWo0Ac&index=3&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [4. Comparators](https://www.youtube.com/watch?v=7MvC1kmBza0&index=4&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [5. Stability](https://www.youtube.com/watch?v=XD_5iINB5GI&index=5&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + +- [ ] [Sedgewick - Quicksort (4 videos)](https://www.youtube.com/playlist?list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [1. Quicksort](https://www.youtube.com/watch?v=5M5A7qPWk84&index=1&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [2. Selection](https://www.youtube.com/watch?v=CgVYfSyct_M&index=2&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [3. Duplicate Keys](https://www.youtube.com/watch?v=WBFzOYJ5ybM&index=3&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [4. System Sorts](https://www.youtube.com/watch?v=rejpZ2htBjE&index=4&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + +- [ ] UC Berkeley: + - [ ] [CS 61B Lecture 29: Sorting I (video)](https://www.youtube.com/watch?v=EiUvYS2DT6I&list=PL4BBB74C7D2A1049C&index=29) + - [ ] [CS 61B Lecture 30: Sorting II (video)](https://www.youtube.com/watch?v=2hTY3t80Qsk&list=PL4BBB74C7D2A1049C&index=30) + - [ ] [CS 61B Lecture 32: Sorting III (video)](https://www.youtube.com/watch?v=Y6LOLpxg6Dc&index=32&list=PL4BBB74C7D2A1049C) + - [ ] [CS 61B Lecture 33: Sorting V (video)](https://www.youtube.com/watch?v=qNMQ4ly43p4&index=33&list=PL4BBB74C7D2A1049C) + - [ ] [Bubble Sort (video)](https://www.youtube.com/watch?v=P00xJgWzz2c&index=1&list=PL89B61F78B552C1AB) - [ ] [Analyzing Bubble Sort (video)](https://www.youtube.com/watch?v=ni_zk257Nqo&index=7&list=PL89B61F78B552C1AB) - [ ] [Insertion Sort, Merge Sort (video)](https://www.youtube.com/watch?v=Kg4bqzAqRBM&index=3&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) @@ -769,32 +787,14 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input - [ ] [Quicksort (video)](https://www.youtube.com/watch?v=y_G9BkAm6B8&index=4&list=PL89B61F78B552C1AB) - [ ] [Selection Sort (video)](https://www.youtube.com/watch?v=6nDMgr0-Yyo&index=8&list=PL89B61F78B552C1AB) -- [ ] Stanford lectures on sorting: - - [ ] [Lecture 15 | Programming Abstractions (video)](https://www.youtube.com/watch?v=ENp00xylP7c&index=15&list=PLFE6E58F856038C69) - - [ ] [Lecture 16 | Programming Abstractions (video)](https://www.youtube.com/watch?v=y4M9IVgrVKo&index=16&list=PLFE6E58F856038C69) - -- [ ] Shai Simonson, [Aduni.org](http://www.aduni.org/): - - [ ] [Algorithms - Sorting - Lecture 2 (video)](https://www.youtube.com/watch?v=odNJmw5TOEE&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=2) - - [ ] [Algorithms - Sorting II - Lecture 3 (video)](https://www.youtube.com/watch?v=hj8YKFTFKEE&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=3) - -- [ ] Steven Skiena lectures on sorting: - - [ ] [lecture begins at 26:46 (video)](https://youtu.be/ute-pmMkyuk?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1600) - - [ ] [lecture begins at 27:40 (video)](https://www.youtube.com/watch?v=yLvp-pB8mak&index=8&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) - - [ ] [lecture begins at 35:00 (video)](https://www.youtube.com/watch?v=q7K9otnzlfE&index=9&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) - - [ ] [lecture begins at 23:50 (video)](https://www.youtube.com/watch?v=TvqIGu9Iupw&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=10) - -- [ ] UC Berkeley: - - [ ] [CS 61B Lecture 29: Sorting I (video)](https://www.youtube.com/watch?v=EiUvYS2DT6I&list=PL4BBB74C7D2A1049C&index=29) - - [ ] [CS 61B Lecture 30: Sorting II (video)](https://www.youtube.com/watch?v=2hTY3t80Qsk&list=PL4BBB74C7D2A1049C&index=30) - - [ ] [CS 61B Lecture 32: Sorting III (video)](https://www.youtube.com/watch?v=Y6LOLpxg6Dc&index=32&list=PL4BBB74C7D2A1049C) - - [ ] [CS 61B Lecture 33: Sorting V (video)](https://www.youtube.com/watch?v=qNMQ4ly43p4&index=33&list=PL4BBB74C7D2A1049C) - -- [ ] - Merge sort code: - - [ ] [Using output array](http://www.cs.yale.edu/homes/aspnes/classes/223/examples/sorting/mergesort.c) - - [ ] [In-place](https://github.com/jwasham/practice-cpp/blob/master/merge_sort/merge_sort.cc) -- [ ] - Quick sort code: - - [ ] [Implementation](http://www.cs.yale.edu/homes/aspnes/classes/223/examples/randomization/quick.c) - - [ ] [Implementation](https://github.com/jwasham/practice-c/blob/master/quick_sort/quick_sort.c) +- [ ] Merge sort code: + - [ ] [Using output array (C)](http://www.cs.yale.edu/homes/aspnes/classes/223/examples/sorting/mergesort.c) + - [ ] [Using output array (Python)](https://github.com/jwasham/practice-python/blob/master/merge_sort/merge_sort.py) + - [ ] [In-place (C++)](https://github.com/jwasham/practice-cpp/blob/master/merge_sort/merge_sort.cc) +- [ ] Quick sort code: + - [ ] [Implementation (C)](http://www.cs.yale.edu/homes/aspnes/classes/223/examples/randomization/quick.c) + - [ ] [Implementation (C)](https://github.com/jwasham/practice-c/blob/master/quick_sort/quick_sort.c) + - [ ] [Implementation (Python)](https://github.com/jwasham/practice-python/blob/master/quick_sort/quick_sort.py) - [ ] Implement: - [ ] Mergesort: O(n log n) average and worst case @@ -809,6 +809,8 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input - [ ] [Randomization: Matrix Multiply, Quicksort, Freivalds' algorithm (video)](https://www.youtube.com/watch?v=cNB2lADK3_s&index=8&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) - [ ] [Sorting in Linear Time (video)](https://www.youtube.com/watch?v=pOKy3RZbSws&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf&index=14) +If you need more detail on this subject, see "Sorting" section in [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) + ## Graphs Graphs can be used to represent many problems in computer science, so this section is long, like trees and sorting were. @@ -1193,7 +1195,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [ ] [5. Rabin-Karp](https://www.youtube.com/watch?v=QzI0p6zDjK4&index=1&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) - [ ] [Search pattern in text (video)](https://www.coursera.org/learn/data-structures/lecture/tAfHI/search-pattern-in-text) - If you need more detail on this subject, see "String Matching" section in [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) + If you need more detail on this subject, see "String Matching" section in [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) --- @@ -1800,6 +1802,20 @@ You're never really done. - nice explanation of tries - can be skipped +- [ ] **Sorting** + + - [ ] Stanford lectures on sorting: + - [ ] [Lecture 15 | Programming Abstractions (video)](https://www.youtube.com/watch?v=ENp00xylP7c&index=15&list=PLFE6E58F856038C69) + - [ ] [Lecture 16 | Programming Abstractions (video)](https://www.youtube.com/watch?v=y4M9IVgrVKo&index=16&list=PLFE6E58F856038C69) + - [ ] Shai Simonson, [Aduni.org](http://www.aduni.org/): + - [ ] [Algorithms - Sorting - Lecture 2 (video)](https://www.youtube.com/watch?v=odNJmw5TOEE&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=2) + - [ ] [Algorithms - Sorting II - Lecture 3 (video)](https://www.youtube.com/watch?v=hj8YKFTFKEE&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=3) + - [ ] Steven Skiena lectures on sorting: + - [ ] [lecture begins at 26:46 (video)](https://youtu.be/ute-pmMkyuk?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1600) + - [ ] [lecture begins at 27:40 (video)](https://www.youtube.com/watch?v=yLvp-pB8mak&index=8&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [lecture begins at 35:00 (video)](https://www.youtube.com/watch?v=q7K9otnzlfE&index=9&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [lecture begins at 23:50 (video)](https://www.youtube.com/watch?v=TvqIGu9Iupw&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=10) + ## Video Series Sit back and enjoy. "netflix and skill" :P From d9ffc3c7c12c57e0961b669e0ac73ccf721ba9f5 Mon Sep 17 00:00:00 2001 From: John Washam Date: Fri, 11 Nov 2016 14:20:27 -0800 Subject: [PATCH 042/109] Added Sedgewick Radix sorting videos. --- README.md | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/README.md b/README.md index a3ac3d4..28faeb9 100644 --- a/README.md +++ b/README.md @@ -803,6 +803,13 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input - For heapsort, see Heap data structure above. - [ ] For curiosity - not required: + - [ ] [Sedgewick - Radix Sorts (6 videos)](https://www.youtube.com/playlist?list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [1. Strings in Java](https://www.youtube.com/watch?v=zRzU-FWsjNU&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=6) + - [ ] [2. Key Indexed Counting](https://www.youtube.com/watch?v=CtgKYmXs62w&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=5) + - [ ] [3. Least Significant Digit First String Radix Sort](https://www.youtube.com/watch?v=2pGVq_BwPKs&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=4) + - [ ] [4. Most Significant Digit First String Radix Sort](https://www.youtube.com/watch?v=M3cYNY90R6c&index=3&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [5. 3 Way Radix Quicksort](https://www.youtube.com/watch?v=YVl58kfE6i8&index=2&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [6. Suffix Arrays](https://www.youtube.com/watch?v=HKPrVm5FWvg&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=1) - [ ] [Radix Sort](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#radixSort) - [ ] [Radix Sort (video)](https://www.youtube.com/watch?v=xhr26ia4k38) - [ ] [Radix Sort, Counting Sort (linear time given constraints) (video)](https://www.youtube.com/watch?v=Nz1KZXbghj8&index=7&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) From 3beb6dd516a70a4663d9b3ab0ab9d087dc11f9c1 Mon Sep 17 00:00:00 2001 From: John Washam Date: Fri, 11 Nov 2016 14:21:13 -0800 Subject: [PATCH 043/109] Note on radix sort videos. --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 28faeb9..a9766e5 100644 --- a/README.md +++ b/README.md @@ -802,7 +802,7 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input - Selection sort and insertion sort are both O(n^2) average and worst case - For heapsort, see Heap data structure above. -- [ ] For curiosity - not required: +- [ ] Not required, but I recommended them: - [ ] [Sedgewick - Radix Sorts (6 videos)](https://www.youtube.com/playlist?list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) - [ ] [1. Strings in Java](https://www.youtube.com/watch?v=zRzU-FWsjNU&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=6) - [ ] [2. Key Indexed Counting](https://www.youtube.com/watch?v=CtgKYmXs62w&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=5) From 4c73e74252dc9509d4a7584e262c9b9b83a8db55 Mon Sep 17 00:00:00 2001 From: John Washam Date: Sat, 12 Nov 2016 09:41:17 -0800 Subject: [PATCH 044/109] Sedgewick videos on tries. --- README.md | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/README.md b/README.md index a9766e5..e78a38d 100644 --- a/README.md +++ b/README.md @@ -645,6 +645,10 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input - Note there are different kinds of tries. Some have prefixes, some don't, and some use string instead of bits to track the path. - I read through code, but will not implement. + - [ ] [Sedgewick - Tries (3 videos)](https://www.youtube.com/playlist?list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [1. R Way Tries](https://www.youtube.com/watch?v=buq2bn8x3Vo&index=3&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [2. Ternary Search Tries](https://www.youtube.com/watch?v=LelV-kkYMIg&index=2&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [3. Character Based Operations](https://www.youtube.com/watch?v=00YaFPcC65g&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ&index=1) - [ ] [Notes on Data Structures and Programming Techniques](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#Tries) - [ ] Short course videos: - [ ] [Introduction To Tries (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/08Xyf/core-introduction-to-tries) From 8ce532760d1247c9a145222ab3f3d33f52b168bb Mon Sep 17 00:00:00 2001 From: John Washam Date: Sun, 13 Nov 2016 15:40:39 -0800 Subject: [PATCH 045/109] Added info retention article. --- README.md | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index e78a38d..76fe858 100644 --- a/README.md +++ b/README.md @@ -288,7 +288,11 @@ Here are some mistakes I made so you'll have a better experience. ### 1. You Won't Remember it All I watched hours of videos and took copious notes, and months later there was much I didn't remember. I spent 3 days going -through my notes and making flashcards so I could review (see below). +through my notes and making flashcards so I could review. + +Read please so you won't make my mistakes: + +[Retaining Computer Science Knowledge](https://googleyasheck.com/retaining-computer-science-knowledge/) ### 2. Use Flashcards From 989c9bf6b11cb4ab8234758763b8216ad7d318ff Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 22 Nov 2016 12:31:34 -0800 Subject: [PATCH 046/109] Updating the list of what you need to know (for entry-level engineers) based on recent info. --- README.md | 382 +++++++++++++++++++++++++++++------------------------- 1 file changed, 205 insertions(+), 177 deletions(-) diff --git a/README.md b/README.md index 76fe858..912d68d 100644 --- a/README.md +++ b/README.md @@ -13,6 +13,9 @@ There are extra items I added at the bottom that may come up in the interview or Steve Yegge's "[Get that job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html)" and are reflected sometimes word-for-word in Google's coaching notes. +I've pared down what you need to know from what Yegge says for new software engineers. If you have many years of experience, expect a harder interview. +[Read more here](https://googleyasheck.com/what-you-need-to-know-for-your-google-interview-and-what-you-dont/). + --- ## Table of Contents @@ -46,11 +49,20 @@ sometimes word-for-word in Google's coaching notes. - [Trees - Notes & Background](#trees---notes--background) - [Binary search trees: BSTs](#binary-search-trees-bsts) - [Heap / Priority Queue / Binary Heap](#heap--priority-queue--binary-heap) - - [Tries](#tries) - - [Balanced search trees](#balanced-search-trees) - - [N-ary (K-ary, M-ary) trees](#n-ary-k-ary-m-ary-trees) + - balanced search trees (general concept, not details) + - traversals: preorder, inorder, postorder, BFS, DFS - [Sorting](#sorting) + - selection + - insertion + - heapsort + - quicksort + - merge sort - [Graphs](#graphs) + - directed + - undirected + - adjacency matrix + - adjacency list + - traversals: BFS, DFS - [Even More Knowledge](#even-more-knowledge) - [Recursion](#recursion) - [Dynamic Programming](#dynamic-programming) @@ -58,12 +70,12 @@ sometimes word-for-word in Google's coaching notes. - [NP, NP-Complete and Approximation Algorithms](#np-np-complete-and-approximation-algorithms) - [Caches](#caches) - [Processes and Threads](#processes-and-threads) - - [System Design, Scalability, Data Handling](#system-design-scalability-data-handling) - [Papers](#papers) - [Testing](#testing) - [Scheduling](#scheduling) - [Implement system routines](#implement-system-routines) - [String searching & manipulations](#string-searching--manipulations) +- [System Design, Scalability, Data Handling](#system-design-scalability-data-handling) (if you have 4+ years experience) - [Final Review](#final-review) - [Coding Question Practice](#coding-question-practice) - [Coding exercises/challenges](#coding-exerciseschallenges) @@ -88,7 +100,7 @@ sometimes word-for-word in Google's coaching notes. - [Entropy](#entropy) - [Cryptography](#cryptography) - [Compression](#compression) - - [Networking](#networking) + - [Networking](#networking) (if you have networking experience, expect questions) - [Computer Security](#computer-security) - [Garbage collection](#garbage-collection) - [Parallel Programming](#parallel-programming) @@ -100,6 +112,16 @@ sometimes word-for-word in Google's coaching notes. - [Locality-Sensitive Hashing](#locality-sensitive-hashing) - [van Emde Boas Trees](#van-emde-boas-trees) - [Augmented Data Structures](#augmented-data-structures) + - [Tries](#tries) + - [N-ary (K-ary, M-ary) trees](#n-ary-k-ary-m-ary-trees) + - [Balanced search trees](#balanced-search-trees) + - AVL trees + - Splay trees + - Red/black trees + - 2-3 search trees + - 2-3-4 Trees (aka 2-4 trees) + - N-ary (K-ary, M-ary) trees + - B-Trees - [k-D Trees](#k-d-trees) - [Skip lists](#skip-lists) - [Network Flows](#network-flows) @@ -645,113 +667,6 @@ Write code on a whiteboard or paper, not a computer. Test with some sample input - [ ] heap_sort() - take an unsorted array and turn it into a sorted array in-place using a max heap - note: using a min heap instead would save operations, but double the space needed (cannot do in-place). -- ### Tries - - Note there are different kinds of tries. Some have prefixes, some don't, and some use string instead of bits - to track the path. - - I read through code, but will not implement. - - [ ] [Sedgewick - Tries (3 videos)](https://www.youtube.com/playlist?list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) - - [ ] [1. R Way Tries](https://www.youtube.com/watch?v=buq2bn8x3Vo&index=3&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) - - [ ] [2. Ternary Search Tries](https://www.youtube.com/watch?v=LelV-kkYMIg&index=2&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) - - [ ] [3. Character Based Operations](https://www.youtube.com/watch?v=00YaFPcC65g&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ&index=1) - - [ ] [Notes on Data Structures and Programming Techniques](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#Tries) - - [ ] Short course videos: - - [ ] [Introduction To Tries (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/08Xyf/core-introduction-to-tries) - - [ ] [Performance Of Tries (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/PvlZW/core-performance-of-tries) - - [ ] [Implementing A Trie (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/DFvd3/core-implementing-a-trie) - - [ ] [The Trie: A Neglected Data Structure](https://www.toptal.com/java/the-trie-a-neglected-data-structure) - - [ ] [TopCoder - Using Tries](https://www.topcoder.com/community/data-science/data-science-tutorials/using-tries/) - - [ ] [Stanford Lecture (real world use case) (video)](https://www.youtube.com/watch?v=TJ8SkcUSdbU) - - [ ] [MIT, Advanced Data Structures, Strings (can get pretty obscure about halfway through)](https://www.youtube.com/watch?v=NinWEPPrkDQ&index=16&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf) - -- ### Balanced search trees - - Know least one type of balanced binary tree (and know how it's implemented): - - "Among balanced search trees, AVL and 2/3 trees are now passé, and red-black trees seem to be more popular. - A particularly interesting self-organizing data structure is the splay tree, which uses rotations - to move any accessed key to the root." - Skiena - - Of these, I chose to implement a splay tree. From what I've read, you won't implement a - balanced search tree in your interview. But I wanted exposure to coding one up - and let's face it, splay trees are the bee's knees. I did read a lot of red-black tree code. - - splay tree: insert, search, delete functions - If you end up implementing red/black tree try just these: - - search and insertion functions, skipping delete - - I want to learn more about B-Tree since it's used so widely with very large data sets. - - [ ] [Self-balancing binary search tree](https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree) - - - [ ] **AVL trees** - - In practice: - From what I can tell, these aren't used much in practice, but I could see where they would be: - The AVL tree is another structure supporting O(log n) search, insertion, and removal. It is more rigidly - balanced than red–black trees, leading to slower insertion and removal but faster retrieval. This makes it - attractive for data structures that may be built once and loaded without reconstruction, such as language - dictionaries (or program dictionaries, such as the opcodes of an assembler or interpreter). - - [ ] [MIT AVL Trees / AVL Sort (video)](https://www.youtube.com/watch?v=FNeL18KsWPc&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=6) - - [ ] [AVL Trees (video)](https://www.coursera.org/learn/data-structures/lecture/Qq5E0/avl-trees) - - [ ] [AVL Tree Implementation (video)](https://www.coursera.org/learn/data-structures/lecture/PKEBC/avl-tree-implementation) - - [ ] [Split And Merge](https://www.coursera.org/learn/data-structures/lecture/22BgE/split-and-merge) - - - [ ] **Splay trees** - - In practice: - Splay trees are typically used in the implementation of caches, memory allocators, routers, garbage collectors, - data compression, ropes (replacement of string used for long text strings), in Windows NT (in the virtual memory, - networking, and file system code) etc. - - [ ] [CS 61B: Splay Trees (video)](https://www.youtube.com/watch?v=Najzh1rYQTo&index=23&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd) - - [ ] MIT Lecture: Splay Trees: - - Gets very mathy, but watch the last 10 minutes for sure. - - [Video](https://www.youtube.com/watch?v=QnPl_Y6EqMo) - - - [ ] **2-3 search trees** - - In practice: - 2-3 trees have faster inserts at the expense of slower searches (since height is more compared to AVL trees). - - You would use 2-3 tree very rarely because its implementation involves different types of nodes. Instead, people use Red Black trees. - - [ ] [23-Tree Intuition and Definition (video)](https://www.youtube.com/watch?v=C3SsdUqasD4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=2) - - [ ] [Binary View of 23-Tree](https://www.youtube.com/watch?v=iYvBtGKsqSg&index=3&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) - - [ ] [2-3 Trees (student recitation) (video)](https://www.youtube.com/watch?v=TOb1tuEZ2X4&index=5&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) - - - [ ] **2-3-4 Trees (aka 2-4 trees)** - - In practice: - For every 2-4 tree, there are corresponding red–black trees with data elements in the same order. The insertion and deletion - operations on 2-4 trees are also equivalent to color-flipping and rotations in red–black trees. This makes 2-4 trees an - important tool for understanding the logic behind red–black trees, and this is why many introductory algorithm texts introduce - 2-4 trees just before red–black trees, even though **2-4 trees are not often used in practice**. - - [ ] [CS 61B Lecture 26: Balanced Search Trees (video)](https://www.youtube.com/watch?v=zqrqYXkth6Q&index=26&list=PL4BBB74C7D2A1049C) - - [ ] [Bottom Up 234-Trees (video)](https://www.youtube.com/watch?v=DQdMYevEyE4&index=4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) - - [ ] [Top Down 234-Trees (video)](https://www.youtube.com/watch?v=2679VQ26Fp4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=5) - - - [ ] **B-Trees** - - fun fact: it's a mystery, but the B could stand for Boeing, Balanced, or Bayer (co-inventor) - - In Practice: - B-Trees are widely used in databases. Most modern filesystems use B-trees (or Variants). In addition to - its use in databases, the B-tree is also used in filesystems to allow quick random access to an arbitrary - block in a particular file. The basic problem is turning the file block i address into a disk block - (or perhaps to a cylinder-head-sector) address. - - [ ] [B-Tree](https://en.wikipedia.org/wiki/B-tree) - - [ ] [Introduction to B-Trees (video)](https://www.youtube.com/watch?v=I22wEC1tTGo&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=6) - - [ ] [B-Tree Definition and Insertion (video)](https://www.youtube.com/watch?v=s3bCdZGrgpA&index=7&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) - - [ ] [B-Tree Deletion (video)](https://www.youtube.com/watch?v=svfnVhJOfMc&index=8&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) - - [ ] [MIT 6.851 - Memory Hierarchy Models (video)](https://www.youtube.com/watch?v=V3omVLzI0WE&index=7&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf) - - covers cache-oblivious B-Trees, very interesting data structures - - the first 37 minutes are very technical, may be skipped (B is block size, cache line size) - - - [ ] **Red/black trees** - - In practice: - Red–black trees offer worst-case guarantees for insertion time, deletion time, and search time. - Not only does this make them valuable in time-sensitive applications such as real-time applications, - but it makes them valuable building blocks in other data structures which provide worst-case guarantees; - for example, many data structures used in computational geometry can be based on red–black trees, and - the Completely Fair Scheduler used in current Linux kernels uses red–black trees. In the version 8 of Java, - the Collection HashMap has been modified such that instead of using a LinkedList to store identical elements with poor - hashcodes, a Red-Black tree is used. - - [ ] [Aduni - Algorithms - Lecture 4 (link jumps to starting point) (video)](https://youtu.be/1W3x0f_RmUo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3871) - - [ ] [Aduni - Algorithms - Lecture 5 (video)](https://www.youtube.com/watch?v=hm2GHwyKF1o&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=5) - - [ ] [Black Tree](https://en.wikipedia.org/wiki/Red%E2%80%93black_tree) - - [ ] [An Introduction To Binary Search And Red Black Tree](https://www.topcoder.com/community/data-science/data-science-tutorials/an-introduction-to-binary-search-and-red-black-trees/) - -- ### N-ary (K-ary, M-ary) trees - - note: the N or K is the branching factor (max branches) - - binary trees are a 2-ary tree, with branching factor = 2 - - 2-3 trees are 3-ary - - [ ] [K-Ary Tree](https://en.wikipedia.org/wiki/K-ary_tree) - ## Sorting - [ ] Notes: @@ -1002,9 +917,78 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [ ] [Keynote David Beazley - Topics of Interest (Python Asyncio)](https://www.youtube.com/watch?v=ZzfHjytDceU) - [ ] [Mutex in Python](https://www.youtube.com/watch?v=0zaPs8OtyKY) +- ### Papers + - These are Google papers and well-known papers. + - Reading all from end to end with full comprehension will likely take more time than you have. I recommend being selective on papers and their sections. + - [ ] [1978: Communicating Sequential Processes](http://spinroot.com/courses/summer/Papers/hoare_1978.pdf) + - [implemented in Go](https://godoc.org/github.com/thomas11/csp) + - [Love classic papers?](https://www.cs.cmu.edu/~crary/819-f09/) + - [ ] [2003: The Google File System](http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf) + - replaced by Colossus in 2012 + - [ ] [2004: MapReduce: Simplified Data Processing on Large Clusters]( http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf) + - mostly replaced by Cloud Dataflow? + - [ ] [2007: What Every Programmer Should Know About Memory (very long, and the author encourages skipping of some sections)](https://www.akkadia.org/drepper/cpumemory.pdf) + - [ ] [2012: Google's Colossus](https://www.wired.com/2012/07/google-colossus/) + - paper not available + - [ ] 2012: AddressSanitizer: A Fast Address Sanity Checker: + - [paper](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37752.pdf) + - [video](https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany) + - [ ] 2013: Spanner: Google’s Globally-Distributed Database: + - [paper](http://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf) + - [video](https://www.usenix.org/node/170855) + - [ ] [2014: Machine Learning: The High-Interest Credit Card of Technical Debt](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43146.pdf) + - [ ] [2015: Continuous Pipelines at Google](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43790.pdf) + - [ ] [2015: High-Availability at Massive Scale: Building Google’s Data Infrastructure for Ads](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44686.pdf) + - [ ] [2015: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems](http://download.tensorflow.org/paper/whitepaper2015.pdf ) + - [ ] [2015: How Developers Search for Code: A Case Study](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43835.pdf) + - [ ] [2016: Borg, Omega, and Kubernetes](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44843.pdf) + +- ### Testing + - To cover: + - how unit testing works + - what are mock objects + - what is integration testing + - what is dependency injection + - [ ] [Agile Software Testing with James Bach (video)](https://www.youtube.com/watch?v=SAhJf36_u5U) + - [ ] [Open Lecture by James Bach on Software Testing (video)](https://www.youtube.com/watch?v=ILkT_HV9DVU) + - [ ] [Steve Freeman - Test-Driven Development (that’s not what we meant) (video)](https://vimeo.com/83960706) + - [slides](http://gotocon.com/dl/goto-berlin-2013/slides/SteveFreeman_TestDrivenDevelopmentThatsNotWhatWeMeant.pdf) + - [ ] [TDD is dead. Long live testing.](http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html) + - [ ] [Is TDD dead? (video)](https://www.youtube.com/watch?v=z9quxZsLcfo) + - [ ] [Video series (152 videos) - not all are needed (video)](https://www.youtube.com/watch?v=nzJapzxH_rE&list=PLAwxTw4SYaPkWVHeC_8aSIbSxE_NXI76g) + - [ ] [Test-Driven Web Development with Python](http://www.obeythetestinggoat.com/pages/book.html#toc) + - [ ] Dependency injection: + - [ ] [video](https://www.youtube.com/watch?v=IKD2-MAkXyQ) + - [ ] [Tao Of Testing](http://jasonpolites.github.io/tao-of-testing/ch3-1.1.html) + - [ ] [How to write tests](http://jasonpolites.github.io/tao-of-testing/ch4-1.1.html) + +- ### Scheduling + - in an OS, how it works + - can be gleaned from Operating System videos + +- ### Implement system routines + - understand what lies beneath the programming APIs you use + - can you implement them? + +- ### String searching & manipulations + - [ ] [Sedgewick - Suffix Arrays (video)](https://www.youtube.com/watch?v=HKPrVm5FWvg) + - [ ] [Sedgewick - Substring Search (videos)](https://www.youtube.com/watch?v=2LvvVFCEIv8&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=5) + - [ ] [1. Introduction to Substring Search](https://www.youtube.com/watch?v=2LvvVFCEIv8&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=5) + - [ ] [2. Brute-Force Substring Search](https://www.youtube.com/watch?v=CcDXwIGEXYU&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=4) + - [ ] [3. Knuth-Morris Pratt](https://www.youtube.com/watch?v=n-7n-FDEWzc&index=3&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) + - [ ] [4. Boyer-Moore](https://www.youtube.com/watch?v=fI7Ch6pZXfM&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=2) + - [ ] [5. Rabin-Karp](https://www.youtube.com/watch?v=QzI0p6zDjK4&index=1&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) + - [ ] [Search pattern in text (video)](https://www.coursera.org/learn/data-structures/lecture/tAfHI/search-pattern-in-text) + + If you need more detail on this subject, see "String Matching" section in [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) + +--- Scalability and System Design are very large topics with many topics and resources, since there is a lot to consider when designing a software/hardware system that can scale. Expect to spend quite a bit of time on this. + + You can expect system design questions if you have 4+ years of experience + - ### System Design, Scalability, Data Handling - Considerations from Yegge: @@ -1147,71 +1131,6 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [Design a URL-shortener system: copied from above](http://www.hiredintech.com/system-design/the-system-design-process/) - [Design a cache system](https://www.adayinthelifeof.nl/2011/02/06/memcache-internals/) -- ### Papers - - These are Google papers and well-known papers. - - Reading all from end to end with full comprehension will likely take more time than you have. I recommend being selective on papers and their sections. - - [ ] [1978: Communicating Sequential Processes](http://spinroot.com/courses/summer/Papers/hoare_1978.pdf) - - [implemented in Go](https://godoc.org/github.com/thomas11/csp) - - [Love classic papers?](https://www.cs.cmu.edu/~crary/819-f09/) - - [ ] [2003: The Google File System](http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf) - - replaced by Colossus in 2012 - - [ ] [2004: MapReduce: Simplified Data Processing on Large Clusters]( http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf) - - mostly replaced by Cloud Dataflow? - - [ ] [2007: What Every Programmer Should Know About Memory (very long, and the author encourages skipping of some sections)](https://www.akkadia.org/drepper/cpumemory.pdf) - - [ ] [2012: Google's Colossus](https://www.wired.com/2012/07/google-colossus/) - - paper not available - - [ ] 2012: AddressSanitizer: A Fast Address Sanity Checker: - - [paper](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37752.pdf) - - [video](https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany) - - [ ] 2013: Spanner: Google’s Globally-Distributed Database: - - [paper](http://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf) - - [video](https://www.usenix.org/node/170855) - - [ ] [2014: Machine Learning: The High-Interest Credit Card of Technical Debt](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43146.pdf) - - [ ] [2015: Continuous Pipelines at Google](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43790.pdf) - - [ ] [2015: High-Availability at Massive Scale: Building Google’s Data Infrastructure for Ads](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44686.pdf) - - [ ] [2015: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems](http://download.tensorflow.org/paper/whitepaper2015.pdf ) - - [ ] [2015: How Developers Search for Code: A Case Study](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43835.pdf) - - [ ] [2016: Borg, Omega, and Kubernetes](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44843.pdf) - -- ### Testing - - To cover: - - how unit testing works - - what are mock objects - - what is integration testing - - what is dependency injection - - [ ] [Agile Software Testing with James Bach (video)](https://www.youtube.com/watch?v=SAhJf36_u5U) - - [ ] [Open Lecture by James Bach on Software Testing (video)](https://www.youtube.com/watch?v=ILkT_HV9DVU) - - [ ] [Steve Freeman - Test-Driven Development (that’s not what we meant) (video)](https://vimeo.com/83960706) - - [slides](http://gotocon.com/dl/goto-berlin-2013/slides/SteveFreeman_TestDrivenDevelopmentThatsNotWhatWeMeant.pdf) - - [ ] [TDD is dead. Long live testing.](http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html) - - [ ] [Is TDD dead? (video)](https://www.youtube.com/watch?v=z9quxZsLcfo) - - [ ] [Video series (152 videos) - not all are needed (video)](https://www.youtube.com/watch?v=nzJapzxH_rE&list=PLAwxTw4SYaPkWVHeC_8aSIbSxE_NXI76g) - - [ ] [Test-Driven Web Development with Python](http://www.obeythetestinggoat.com/pages/book.html#toc) - - [ ] Dependency injection: - - [ ] [video](https://www.youtube.com/watch?v=IKD2-MAkXyQ) - - [ ] [Tao Of Testing](http://jasonpolites.github.io/tao-of-testing/ch3-1.1.html) - - [ ] [How to write tests](http://jasonpolites.github.io/tao-of-testing/ch4-1.1.html) - -- ### Scheduling - - in an OS, how it works - - can be gleaned from Operating System videos - -- ### Implement system routines - - understand what lies beneath the programming APIs you use - - can you implement them? - -- ### String searching & manipulations - - [ ] [Sedgewick - Suffix Arrays (video)](https://www.youtube.com/watch?v=HKPrVm5FWvg) - - [ ] [Sedgewick - Substring Search (videos)](https://www.youtube.com/watch?v=2LvvVFCEIv8&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=5) - - [ ] [1. Introduction to Substring Search](https://www.youtube.com/watch?v=2LvvVFCEIv8&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=5) - - [ ] [2. Brute-Force Substring Search](https://www.youtube.com/watch?v=CcDXwIGEXYU&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=4) - - [ ] [3. Knuth-Morris Pratt](https://www.youtube.com/watch?v=n-7n-FDEWzc&index=3&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) - - [ ] [4. Boyer-Moore](https://www.youtube.com/watch?v=fI7Ch6pZXfM&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=2) - - [ ] [5. Rabin-Karp](https://www.youtube.com/watch?v=QzI0p6zDjK4&index=1&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) - - [ ] [Search pattern in text (video)](https://www.coursera.org/learn/data-structures/lecture/tAfHI/search-pattern-in-text) - - If you need more detail on this subject, see "String Matching" section in [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) - --- ## Final Review @@ -1678,6 +1597,115 @@ You're never really done. - ### Augmented Data Structures - [ ] [CS 61B Lecture 39: Augmenting Data Structures](https://youtu.be/zksIj9O8_jc?list=PL4BBB74C7D2A1049C&t=950) +- ### Tries + - Note there are different kinds of tries. Some have prefixes, some don't, and some use string instead of bits + to track the path. + - I read through code, but will not implement. + - [ ] [Sedgewick - Tries (3 videos)](https://www.youtube.com/playlist?list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [1. R Way Tries](https://www.youtube.com/watch?v=buq2bn8x3Vo&index=3&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [2. Ternary Search Tries](https://www.youtube.com/watch?v=LelV-kkYMIg&index=2&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [3. Character Based Operations](https://www.youtube.com/watch?v=00YaFPcC65g&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ&index=1) + - [ ] [Notes on Data Structures and Programming Techniques](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#Tries) + - [ ] Short course videos: + - [ ] [Introduction To Tries (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/08Xyf/core-introduction-to-tries) + - [ ] [Performance Of Tries (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/PvlZW/core-performance-of-tries) + - [ ] [Implementing A Trie (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/DFvd3/core-implementing-a-trie) + - [ ] [The Trie: A Neglected Data Structure](https://www.toptal.com/java/the-trie-a-neglected-data-structure) + - [ ] [TopCoder - Using Tries](https://www.topcoder.com/community/data-science/data-science-tutorials/using-tries/) + - [ ] [Stanford Lecture (real world use case) (video)](https://www.youtube.com/watch?v=TJ8SkcUSdbU) + - [ ] [MIT, Advanced Data Structures, Strings (can get pretty obscure about halfway through)](https://www.youtube.com/watch?v=NinWEPPrkDQ&index=16&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf) + +- ### Balanced search trees + - Know least one type of balanced binary tree (and know how it's implemented): + - "Among balanced search trees, AVL and 2/3 trees are now passé, and red-black trees seem to be more popular. + A particularly interesting self-organizing data structure is the splay tree, which uses rotations + to move any accessed key to the root." - Skiena + - Of these, I chose to implement a splay tree. From what I've read, you won't implement a + balanced search tree in your interview. But I wanted exposure to coding one up + and let's face it, splay trees are the bee's knees. I did read a lot of red-black tree code. + - splay tree: insert, search, delete functions + If you end up implementing red/black tree try just these: + - search and insertion functions, skipping delete + - I want to learn more about B-Tree since it's used so widely with very large data sets. + - [ ] [Self-balancing binary search tree](https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree) + + - [ ] **AVL trees** + - In practice: + From what I can tell, these aren't used much in practice, but I could see where they would be: + The AVL tree is another structure supporting O(log n) search, insertion, and removal. It is more rigidly + balanced than red–black trees, leading to slower insertion and removal but faster retrieval. This makes it + attractive for data structures that may be built once and loaded without reconstruction, such as language + dictionaries (or program dictionaries, such as the opcodes of an assembler or interpreter). + - [ ] [MIT AVL Trees / AVL Sort (video)](https://www.youtube.com/watch?v=FNeL18KsWPc&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=6) + - [ ] [AVL Trees (video)](https://www.coursera.org/learn/data-structures/lecture/Qq5E0/avl-trees) + - [ ] [AVL Tree Implementation (video)](https://www.coursera.org/learn/data-structures/lecture/PKEBC/avl-tree-implementation) + - [ ] [Split And Merge](https://www.coursera.org/learn/data-structures/lecture/22BgE/split-and-merge) + + - [ ] **Splay trees** + - In practice: + Splay trees are typically used in the implementation of caches, memory allocators, routers, garbage collectors, + data compression, ropes (replacement of string used for long text strings), in Windows NT (in the virtual memory, + networking, and file system code) etc. + - [ ] [CS 61B: Splay Trees (video)](https://www.youtube.com/watch?v=Najzh1rYQTo&index=23&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd) + - [ ] MIT Lecture: Splay Trees: + - Gets very mathy, but watch the last 10 minutes for sure. + - [Video](https://www.youtube.com/watch?v=QnPl_Y6EqMo) + + - [ ] **Red/black trees** + - these are a translation of a 2-3 tree (see below) + - In practice: + Red–black trees offer worst-case guarantees for insertion time, deletion time, and search time. + Not only does this make them valuable in time-sensitive applications such as real-time applications, + but it makes them valuable building blocks in other data structures which provide worst-case guarantees; + for example, many data structures used in computational geometry can be based on red–black trees, and + the Completely Fair Scheduler used in current Linux kernels uses red–black trees. In the version 8 of Java, + the Collection HashMap has been modified such that instead of using a LinkedList to store identical elements with poor + hashcodes, a Red-Black tree is used. + - [ ] [Aduni - Algorithms - Lecture 4 (link jumps to starting point) (video)](https://youtu.be/1W3x0f_RmUo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3871) + - [ ] [Aduni - Algorithms - Lecture 5 (video)](https://www.youtube.com/watch?v=hm2GHwyKF1o&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=5) + - [ ] [Black Tree](https://en.wikipedia.org/wiki/Red%E2%80%93black_tree) + - [ ] [An Introduction To Binary Search And Red Black Tree](https://www.topcoder.com/community/data-science/data-science-tutorials/an-introduction-to-binary-search-and-red-black-trees/) + + - [ ] **2-3 search trees** + - In practice: + 2-3 trees have faster inserts at the expense of slower searches (since height is more compared to AVL trees). + - You would use 2-3 tree very rarely because its implementation involves different types of nodes. Instead, people use Red Black trees. + - [ ] [23-Tree Intuition and Definition (video)](https://www.youtube.com/watch?v=C3SsdUqasD4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=2) + - [ ] [Binary View of 23-Tree](https://www.youtube.com/watch?v=iYvBtGKsqSg&index=3&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [2-3 Trees (student recitation) (video)](https://www.youtube.com/watch?v=TOb1tuEZ2X4&index=5&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + + - [ ] **2-3-4 Trees (aka 2-4 trees)** + - In practice: + For every 2-4 tree, there are corresponding red–black trees with data elements in the same order. The insertion and deletion + operations on 2-4 trees are also equivalent to color-flipping and rotations in red–black trees. This makes 2-4 trees an + important tool for understanding the logic behind red–black trees, and this is why many introductory algorithm texts introduce + 2-4 trees just before red–black trees, even though **2-4 trees are not often used in practice**. + - [ ] [CS 61B Lecture 26: Balanced Search Trees (video)](https://www.youtube.com/watch?v=zqrqYXkth6Q&index=26&list=PL4BBB74C7D2A1049C) + - [ ] [Bottom Up 234-Trees (video)](https://www.youtube.com/watch?v=DQdMYevEyE4&index=4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [Top Down 234-Trees (video)](https://www.youtube.com/watch?v=2679VQ26Fp4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=5) + + - [ ] **N-ary (K-ary, M-ary) trees** + - note: the N or K is the branching factor (max branches) + - binary trees are a 2-ary tree, with branching factor = 2 + - 2-3 trees are 3-ary + - [ ] [K-Ary Tree](https://en.wikipedia.org/wiki/K-ary_tree) + + - [ ] **B-Trees** + - fun fact: it's a mystery, but the B could stand for Boeing, Balanced, or Bayer (co-inventor) + - In Practice: + B-Trees are widely used in databases. Most modern filesystems use B-trees (or Variants). In addition to + its use in databases, the B-tree is also used in filesystems to allow quick random access to an arbitrary + block in a particular file. The basic problem is turning the file block i address into a disk block + (or perhaps to a cylinder-head-sector) address. + - [ ] [B-Tree](https://en.wikipedia.org/wiki/B-tree) + - [ ] [Introduction to B-Trees (video)](https://www.youtube.com/watch?v=I22wEC1tTGo&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=6) + - [ ] [B-Tree Definition and Insertion (video)](https://www.youtube.com/watch?v=s3bCdZGrgpA&index=7&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [B-Tree Deletion (video)](https://www.youtube.com/watch?v=svfnVhJOfMc&index=8&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [MIT 6.851 - Memory Hierarchy Models (video)](https://www.youtube.com/watch?v=V3omVLzI0WE&index=7&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf) + - covers cache-oblivious B-Trees, very interesting data structures + - the first 37 minutes are very technical, may be skipped (B is block size, cache line size) + + - ### k-D Trees - great for finding number of points in a rectangle or higher dimension object - a good fit for k-nearest neighbors From 005c841c1f9bcb8293af91b25adabfdbc09f5143 Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 22 Nov 2016 12:32:57 -0800 Subject: [PATCH 047/109] Minor format change. --- README.md | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 912d68d..06f813a 100644 --- a/README.md +++ b/README.md @@ -984,10 +984,11 @@ You'll get more graph practice in Skiena's book (see Books section below) and th --- - Scalability and System Design are very large topics with many topics and resources, since there is a lot to consider - when designing a software/hardware system that can scale. Expect to spend quite a bit of time on this. + Scalability and System Design are very large topics with many topics and resources, since + there is a lot to consider when designing a software/hardware system that can scale. + Expect to spend quite a bit of time on this. - You can expect system design questions if you have 4+ years of experience + You can expect system design questions if you have 4+ years of experience. - ### System Design, Scalability, Data Handling From 61e1ebbab5369bc3888991e8a7f6536617704ded Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 22 Nov 2016 12:33:11 -0800 Subject: [PATCH 048/109] Minor format change. --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 06f813a..fa34337 100644 --- a/README.md +++ b/README.md @@ -991,6 +991,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th You can expect system design questions if you have 4+ years of experience. + - ### System Design, Scalability, Data Handling - Considerations from Yegge: - scalability From 86d6ed179270bb02fbcb949cb2051fe7b34046f4 Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 22 Nov 2016 12:33:45 -0800 Subject: [PATCH 049/109] Minor format change. --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index fa34337..ab8767d 100644 --- a/README.md +++ b/README.md @@ -990,7 +990,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th You can expect system design questions if you have 4+ years of experience. - +- - ### System Design, Scalability, Data Handling - Considerations from Yegge: From 610547b79c5c383bc030cdeea72fc4ef9c2b34b1 Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 22 Nov 2016 12:34:18 -0800 Subject: [PATCH 050/109] Minor format change. --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index ab8767d..419ba7a 100644 --- a/README.md +++ b/README.md @@ -990,7 +990,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th You can expect system design questions if you have 4+ years of experience. -- +--- - ### System Design, Scalability, Data Handling - Considerations from Yegge: From 130e3cd90c31f69894d53a8867388414435821b7 Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 22 Nov 2016 12:34:52 -0800 Subject: [PATCH 051/109] Minor format change. --- README.md | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 419ba7a..9396c5d 100644 --- a/README.md +++ b/README.md @@ -988,9 +988,8 @@ You'll get more graph practice in Skiena's book (see Books section below) and th there is a lot to consider when designing a software/hardware system that can scale. Expect to spend quite a bit of time on this. - You can expect system design questions if you have 4+ years of experience. - ---- + +You can expect system design questions if you have 4+ years of experience. - ### System Design, Scalability, Data Handling - Considerations from Yegge: From 46f69209cf3e050bb92baad9904b42bae57cf786 Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 22 Nov 2016 12:36:13 -0800 Subject: [PATCH 052/109] Minor format change. --- README.md | 281 +++++++++++++++++++++++++++--------------------------- 1 file changed, 141 insertions(+), 140 deletions(-) diff --git a/README.md b/README.md index 9396c5d..57c637f 100644 --- a/README.md +++ b/README.md @@ -991,146 +991,147 @@ You'll get more graph practice in Skiena's book (see Books section below) and th You can expect system design questions if you have 4+ years of experience. -- ### System Design, Scalability, Data Handling - - Considerations from Yegge: - - scalability - - Distill large data sets to single values - - Transform one data set to another - - Handling obscenely large amounts of data - - system design - - features sets - - interfaces - - class hierarchies - - designing a system under certain constraints - - simplicity and robustness - - tradeoffs - - performance analysis and optimization - - [ ] **START HERE**: [System Design from HiredInTech](http://www.hiredintech.com/system-design/) - - [ ] [How Do I Prepare To Answer Design Questions In A Technical Inverview?](https://www.quora.com/How-do-I-prepare-to-answer-design-questions-in-a-technical-interview?redirected_qid=1500023) - - [ ] [8 Things You Need to Know Before a System Design Interview](http://blog.gainlo.co/index.php/2015/10/22/8-things-you-need-to-know-before-system-design-interviews/) - - [ ] [Algorithm design](http://www.hiredintech.com/algorithm-design/) - - [ ] [Database Normalization - 1NF, 2NF, 3NF and 4NF (video)](https://www.youtube.com/watch?v=UrYLYV7WSHM) - - [ ] [System Design Interview](https://github.com/checkcheckzz/system-design-interview) - There are a lot of resources in this one. Look through the articles and examples. I put some of them below. - - [ ] [How to ace a systems design interview](http://www.palantir.com/2011/10/how-to-rock-a-systems-design-interview/) - - [ ] [Numbers Everyone Should Know](http://everythingisdata.wordpress.com/2009/10/17/numbers-everyone-should-know/) - - [ ] [How long does it take to make a context switch?](http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html) - - [ ] [Transactions Across Datacenters (video)](https://www.youtube.com/watch?v=srOgpXECblk) - - [ ] [A plain English introduction to CAP Theorem](http://ksat.me/a-plain-english-introduction-to-cap-theorem/) - - [ ] Paxos Consensus algorithm: - - [short video](https://www.youtube.com/watch?v=s8JqcZtvnsM) - - [extended video with use case and multi-paxos](https://www.youtube.com/watch?v=JEpsBg0AO6o) - - [paper](http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf) - - [ ] [Consistent Hashing](http://www.tom-e-white.com/2007/11/consistent-hashing.html) - - [ ] [NoSQL Patterns](http://horicky.blogspot.com/2009/11/nosql-patterns.html) - - [ ] [Optional: UML 2.0 Series (vido)](https://www.youtube.com/watch?v=OkC7HKtiZC0&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc) - - [ ] OOSE: Software Dev Using UML and Java (21 videos): - - Can skip this if you have a great grasp of OO and OO design practices. - - [OOSE: Software Dev Using UML and Java](https://www.youtube.com/playlist?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) - - [ ] SOLID OOP Principles: - - [ ] [Bob Martin SOLID Principles of Object Oriented and Agile Design (video)](https://www.youtube.com/watch?v=TMuno5RZNeE) - - [ ] [SOLID Design Patterns in C# (video)](https://www.youtube.com/playlist?list=PL8m4NUhTQU48oiGCSgCP1FiJEcg_xJzyQ) - - [ ] [SOLID Principles (video)](https://www.youtube.com/playlist?list=PL4CE9F710017EA77A) - - [ ] S - [Single Responsibility Principle](http://www.oodesign.com/single-responsibility-principle.html) | [Single responsibility to each Object](http://www.javacodegeeks.com/2011/11/solid-single-responsibility-principle.html) - - [more flavor](https://docs.google.com/open?id=0ByOwmqah_nuGNHEtcU5OekdDMkk) - - [ ] O - [Open/Closed Principal](http://www.oodesign.com/open-close-principle.html) | [On production level Objects are ready for extension for not for modification](https://en.wikipedia.org/wiki/Open/closed_principle) - - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgN2M5MTkwM2EtNWFkZC00ZTI3LWFjZTUtNTFhZGZiYmUzODc1&hl=en) - - [ ] L - [Liskov Substitution Principal](http://www.oodesign.com/liskov-s-substitution-principle.html) | [Base Class and Derived class follow ‘IS A’ principal](http://stackoverflow.com/questions/56860/what-is-the-liskov-substitution-principle) - - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgNzAzZjA5ZmItNjU3NS00MzQ5LTkwYjMtMDJhNDU5ZTM0MTlh&hl=en) - - [ ] I - [Interface segregation principle](http://www.oodesign.com/interface-segregation-principle.html) | clients should not be forced to implement interfaces they don't use - - [Interface Segregation Principle in 5 minutes (video)](https://www.youtube.com/watch?v=3CtAfl7aXAQ) - - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgOTViYjJhYzMtMzYxMC00MzFjLWJjMzYtOGJiMDc5N2JkYmJi&hl=en) - - [ ] D -[Dependency Inversion principle](http://www.oodesign.com/dependency-inversion-principle.html) | Reduce the dependency In composition of objects. - - [Why Is The Dependency Inversion Principle And Why Is It Important](http://stackoverflow.com/questions/62539/what-is-the-dependency-inversion-principle-and-why-is-it-important) - - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgMjdlMWIzNGUtZTQ0NC00ZjQ5LTkwYzQtZjRhMDRlNTQ3ZGMz&hl=en) - - [ ] Scalability: - - [ ] [Great overview (video)](https://www.youtube.com/watch?v=-W9F__D3oY4) - - [ ] Short series: - - [Clones](http://www.lecloud.net/post/7295452622/scalability-for-dummies-part-1-clones) - - [Database](http://www.lecloud.net/post/7994751381/scalability-for-dummies-part-2-database) - - [Cache](http://www.lecloud.net/post/9246290032/scalability-for-dummies-part-3-cache) - - [Asynchronism](http://www.lecloud.net/post/9699762917/scalability-for-dummies-part-4-asynchronism) - - [ ] [Scalable Web Architecture and Distributed Systems](http://www.aosabook.org/en/distsys.html) - - [ ] [Fallacies of Distributed Computing Explained](https://pages.cs.wisc.edu/~zuyu/files/fallacies.pdf) - - [ ] [Pragmatic Programming Techniques](http://horicky.blogspot.com/2010/10/scalable-system-design-patterns.html) - - [extra: Google Pregel Graph Processing](http://horicky.blogspot.com/2010/07/google-pregel-graph-processing.html) - - [ ] [Jeff Dean - Building Software Systems At Google and Lessons Learned (video)](https://www.youtube.com/watch?v=modXC5IWTJI) - - [ ] [Introduction to Architecting Systems for Scale](http://lethain.com/introduction-to-architecting-systems-for-scale/) - - [ ] [Scaling mobile games to a global audience using App Engine and Cloud Datastore (video)](https://www.youtube.com/watch?v=9nWyWwY2Onc) - - [ ] [How Google Does Planet-Scale Engineering for Planet-Scale Infra (video)](https://www.youtube.com/watch?v=H4vMcD7zKM0) - - [ ] [The Importance of Algorithms](https://www.topcoder.com/community/data-science/data-science-tutorials/the-importance-of-algorithms/) - - [ ] [Sharding](http://highscalability.com/blog/2009/8/6/an-unorthodox-approach-to-database-design-the-coming-of-the.html) - - [ ] [Scale at Facebook (2009)](https://www.infoq.com/presentations/Scale-at-Facebook) - - [ ] [Scale at Facebook (2012), "Building for a Billion Users" (video)](https://www.youtube.com/watch?v=oodS71YtkGU) - - [ ] [Engineering for the Long Game - Astrid Atkinson Keynote(video)](https://www.youtube.com/watch?v=p0jGmgIrf_M&list=PLRXxvay_m8gqVlExPC5DG3TGWJTaBgqSA&index=4) - - [ ] [7 Years Of YouTube Scalability Lessons In 30 Minutes](http://highscalability.com/blog/2012/3/26/7-years-of-youtube-scalability-lessons-in-30-minutes.html) - - [video](https://www.youtube.com/watch?v=G-lGCC4KKok) - - [ ] [How PayPal Scaled To Billions Of Transactions Daily Using Just 8VMs](http://highscalability.com/blog/2016/8/15/how-paypal-scaled-to-billions-of-transactions-daily-using-ju.html) - - [ ] [How to Remove Duplicates in Large Datasets](https://blog.clevertap.com/how-to-remove-duplicates-in-large-datasets/) - - [ ] [A look inside Etsy's scale and engineering culture with Jon Cowie (video)](https://www.youtube.com/watch?v=3vV4YiqKm1o) - - [ ] [What Led Amazon to its Own Microservices Architecture](http://thenewstack.io/led-amazon-microservices-architecture/) - - [ ] [To Compress Or Not To Compress, That Was Uber's Question](https://eng.uber.com/trip-data-squeeze/) - - [ ] [Asyncio Tarantool Queue, Get In The Queue](http://highscalability.com/blog/2016/3/3/asyncio-tarantool-queue-get-in-the-queue.html) - - [ ] [When Should Approximate Query Processing Be Used?](http://highscalability.com/blog/2016/2/25/when-should-approximate-query-processing-be-used.html) - - [ ] [Google's Transition From Single Datacenter, To Failover, To A Native Multihomed Architecture]( http://highscalability.com/blog/2016/2/23/googles-transition-from-single-datacenter-to-failover-to-a-n.html) - - [ ] [Spanner](http://highscalability.com/blog/2012/9/24/google-spanners-most-surprising-revelation-nosql-is-out-and.html) - - [ ] [Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System](http://highscalability.com/blog/2016/2/15/egnyte-architecture-lessons-learned-in-building-and-scaling.html) - - [ ] [Machine Learning Driven Programming: A New Programming For A New World](http://highscalability.com/blog/2016/7/6/machine-learning-driven-programming-a-new-programming-for-a.html) - - [ ] [The Image Optimization Technology That Serves Millions Of Requests Per Day](http://highscalability.com/blog/2016/6/15/the-image-optimization-technology-that-serves-millions-of-re.html) - - [ ] [A Patreon Architecture Short](http://highscalability.com/blog/2016/2/1/a-patreon-architecture-short.html) - - [ ] [Tinder: How Does One Of The Largest Recommendation Engines Decide Who You'll See Next?](http://highscalability.com/blog/2016/1/27/tinder-how-does-one-of-the-largest-recommendation-engines-de.html) - - [ ] [Design Of A Modern Cache](http://highscalability.com/blog/2016/1/25/design-of-a-modern-cache.html) - - [ ] [Live Video Streaming At Facebook Scale](http://highscalability.com/blog/2016/1/13/live-video-streaming-at-facebook-scale.html) - - [ ] [A Beginner's Guide To Scaling To 11 Million+ Users On Amazon's AWS](http://highscalability.com/blog/2016/1/11/a-beginners-guide-to-scaling-to-11-million-users-on-amazons.html) - - [ ] [How Does The Use Of Docker Effect Latency?](http://highscalability.com/blog/2015/12/16/how-does-the-use-of-docker-effect-latency.html) - - [ ] [Does AMP Counter An Existential Threat To Google?](http://highscalability.com/blog/2015/12/14/does-amp-counter-an-existential-threat-to-google.html) - - [ ] [A 360 Degree View Of The Entire Netflix Stack](http://highscalability.com/blog/2015/11/9/a-360-degree-view-of-the-entire-netflix-stack.html) - - [ ] [Latency Is Everywhere And It Costs You Sales - How To Crush It](http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it) - - [ ] [Serverless (very long, just need the gist)](http://martinfowler.com/articles/serverless.html) - - [ ] [What Powers Instagram: Hundreds of Instances, Dozens of Technologies](http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances) - - [ ] [Cinchcast Architecture - Producing 1,500 Hours Of Audio Every Day](http://highscalability.com/blog/2012/7/16/cinchcast-architecture-producing-1500-hours-of-audio-every-d.html) - - [ ] [Justin.Tv's Live Video Broadcasting Architecture](http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html) - - [ ] [Playfish's Social Gaming Architecture - 50 Million Monthly Users And Growing](http://highscalability.com/blog/2010/9/21/playfishs-social-gaming-architecture-50-million-monthly-user.html) - - [ ] [TripAdvisor Architecture - 40M Visitors, 200M Dynamic Page Views, 30TB Data](http://highscalability.com/blog/2011/6/27/tripadvisor-architecture-40m-visitors-200m-dynamic-page-view.html) - - [ ] [PlentyOfFish Architecture](http://highscalability.com/plentyoffish-architecture) - - [ ] [Salesforce Architecture - How They Handle 1.3 Billion Transactions A Day](http://highscalability.com/blog/2013/9/23/salesforce-architecture-how-they-handle-13-billion-transacti.html) - - [ ] [ESPN's Architecture At Scale - Operating At 100,000 Duh Nuh Nuhs Per Second](http://highscalability.com/blog/2013/11/4/espns-architecture-at-scale-operating-at-100000-duh-nuh-nuhs.html) - - [ ] See "Messaging, Serialization, and Queueing Systems" way below for info on some of the technologies that can glue services together - - [ ] Twitter: - - [O'Reilly MySQL CE 2011: Jeremy Cole, "Big and Small Data at @Twitter" (video)](https://www.youtube.com/watch?v=5cKTP36HVgI) - - [Timelines at Scale](https://www.infoq.com/presentations/Twitter-Timeline-Scalability) - - For even more, see "Mining Massive Datasets" video series in the Video Series section. - - [ ] Practicing the system design process: Here are some ideas to try working through on paper, each with some documentation on how it was handled in the real world: - - review: [System Design from HiredInTech](http://www.hiredintech.com/system-design/) - - [cheat sheet](https://github.com/jwasham/google-interview-university/blob/master/extras/cheat%20sheets/system-design.pdf) - - flow: - 1. Understand the problem and scope: - - define the use cases, with interviewer's help - - suggest additional features - - remove items that interviewer deems out of scope - - assume high availability is required, add as a use case - 2. Think about constraints: - - ask how many requests per month - - ask how many requests per second (they may volunteer it or make you do the math) - - estimate reads vs. writes percentage - - keep 80/20 rule in mind when estimating - - how much data written per second - - total storage required over 5 years - - how much data read per second - 3. Abstract design: - - layers (service, data, caching) - - infrastructure: load balancing, messaging - - rough overview of any key algorithm that drives the service - - consider bottlenecks and determine solutions - - Exercises: - - [Design a CDN network: old article](http://repository.cmu.edu/cgi/viewcontent.cgi?article=2112&context=compsci) - - [Design a random unique ID generation system](https://blog.twitter.com/2010/announcing-snowflake) - - [Design an online multiplayer card game](http://www.indieflashblog.com/how-to-create-an-asynchronous-multiplayer-game.html) - - [Design a key-value database](http://www.slideshare.net/dvirsky/introduction-to-redis) - - [Design a function to return the top k requests during past time interval]( https://icmi.cs.ucsb.edu/research/tech_reports/reports/2005-23.pdf) - - [Design a picture sharing system](http://highscalability.com/blog/2011/12/6/instagram-architecture-14-million-users-terabytes-of-photos.html) - - [Design a recommendation system](http://ijcai13.org/files/tutorial_slides/td3.pdf) - - [Design a URL-shortener system: copied from above](http://www.hiredintech.com/system-design/the-system-design-process/) - - [Design a cache system](https://www.adayinthelifeof.nl/2011/02/06/memcache-internals/) + +## System Design, Scalability, Data Handling +- Considerations from Yegge: + - scalability + - Distill large data sets to single values + - Transform one data set to another + - Handling obscenely large amounts of data + - system design + - features sets + - interfaces + - class hierarchies + - designing a system under certain constraints + - simplicity and robustness + - tradeoffs + - performance analysis and optimization +- [ ] **START HERE**: [System Design from HiredInTech](http://www.hiredintech.com/system-design/) +- [ ] [How Do I Prepare To Answer Design Questions In A Technical Inverview?](https://www.quora.com/How-do-I-prepare-to-answer-design-questions-in-a-technical-interview?redirected_qid=1500023) +- [ ] [8 Things You Need to Know Before a System Design Interview](http://blog.gainlo.co/index.php/2015/10/22/8-things-you-need-to-know-before-system-design-interviews/) +- [ ] [Algorithm design](http://www.hiredintech.com/algorithm-design/) +- [ ] [Database Normalization - 1NF, 2NF, 3NF and 4NF (video)](https://www.youtube.com/watch?v=UrYLYV7WSHM) +- [ ] [System Design Interview](https://github.com/checkcheckzz/system-design-interview) - There are a lot of resources in this one. Look through the articles and examples. I put some of them below. +- [ ] [How to ace a systems design interview](http://www.palantir.com/2011/10/how-to-rock-a-systems-design-interview/) +- [ ] [Numbers Everyone Should Know](http://everythingisdata.wordpress.com/2009/10/17/numbers-everyone-should-know/) +- [ ] [How long does it take to make a context switch?](http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html) +- [ ] [Transactions Across Datacenters (video)](https://www.youtube.com/watch?v=srOgpXECblk) +- [ ] [A plain English introduction to CAP Theorem](http://ksat.me/a-plain-english-introduction-to-cap-theorem/) +- [ ] Paxos Consensus algorithm: + - [short video](https://www.youtube.com/watch?v=s8JqcZtvnsM) + - [extended video with use case and multi-paxos](https://www.youtube.com/watch?v=JEpsBg0AO6o) + - [paper](http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf) +- [ ] [Consistent Hashing](http://www.tom-e-white.com/2007/11/consistent-hashing.html) +- [ ] [NoSQL Patterns](http://horicky.blogspot.com/2009/11/nosql-patterns.html) +- [ ] [Optional: UML 2.0 Series (vido)](https://www.youtube.com/watch?v=OkC7HKtiZC0&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc) +- [ ] OOSE: Software Dev Using UML and Java (21 videos): + - Can skip this if you have a great grasp of OO and OO design practices. + - [OOSE: Software Dev Using UML and Java](https://www.youtube.com/playlist?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) +- [ ] SOLID OOP Principles: + - [ ] [Bob Martin SOLID Principles of Object Oriented and Agile Design (video)](https://www.youtube.com/watch?v=TMuno5RZNeE) + - [ ] [SOLID Design Patterns in C# (video)](https://www.youtube.com/playlist?list=PL8m4NUhTQU48oiGCSgCP1FiJEcg_xJzyQ) + - [ ] [SOLID Principles (video)](https://www.youtube.com/playlist?list=PL4CE9F710017EA77A) + - [ ] S - [Single Responsibility Principle](http://www.oodesign.com/single-responsibility-principle.html) | [Single responsibility to each Object](http://www.javacodegeeks.com/2011/11/solid-single-responsibility-principle.html) + - [more flavor](https://docs.google.com/open?id=0ByOwmqah_nuGNHEtcU5OekdDMkk) + - [ ] O - [Open/Closed Principal](http://www.oodesign.com/open-close-principle.html) | [On production level Objects are ready for extension for not for modification](https://en.wikipedia.org/wiki/Open/closed_principle) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgN2M5MTkwM2EtNWFkZC00ZTI3LWFjZTUtNTFhZGZiYmUzODc1&hl=en) + - [ ] L - [Liskov Substitution Principal](http://www.oodesign.com/liskov-s-substitution-principle.html) | [Base Class and Derived class follow ‘IS A’ principal](http://stackoverflow.com/questions/56860/what-is-the-liskov-substitution-principle) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgNzAzZjA5ZmItNjU3NS00MzQ5LTkwYjMtMDJhNDU5ZTM0MTlh&hl=en) + - [ ] I - [Interface segregation principle](http://www.oodesign.com/interface-segregation-principle.html) | clients should not be forced to implement interfaces they don't use + - [Interface Segregation Principle in 5 minutes (video)](https://www.youtube.com/watch?v=3CtAfl7aXAQ) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgOTViYjJhYzMtMzYxMC00MzFjLWJjMzYtOGJiMDc5N2JkYmJi&hl=en) + - [ ] D -[Dependency Inversion principle](http://www.oodesign.com/dependency-inversion-principle.html) | Reduce the dependency In composition of objects. + - [Why Is The Dependency Inversion Principle And Why Is It Important](http://stackoverflow.com/questions/62539/what-is-the-dependency-inversion-principle-and-why-is-it-important) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgMjdlMWIzNGUtZTQ0NC00ZjQ5LTkwYzQtZjRhMDRlNTQ3ZGMz&hl=en) +- [ ] Scalability: + - [ ] [Great overview (video)](https://www.youtube.com/watch?v=-W9F__D3oY4) + - [ ] Short series: + - [Clones](http://www.lecloud.net/post/7295452622/scalability-for-dummies-part-1-clones) + - [Database](http://www.lecloud.net/post/7994751381/scalability-for-dummies-part-2-database) + - [Cache](http://www.lecloud.net/post/9246290032/scalability-for-dummies-part-3-cache) + - [Asynchronism](http://www.lecloud.net/post/9699762917/scalability-for-dummies-part-4-asynchronism) + - [ ] [Scalable Web Architecture and Distributed Systems](http://www.aosabook.org/en/distsys.html) + - [ ] [Fallacies of Distributed Computing Explained](https://pages.cs.wisc.edu/~zuyu/files/fallacies.pdf) + - [ ] [Pragmatic Programming Techniques](http://horicky.blogspot.com/2010/10/scalable-system-design-patterns.html) + - [extra: Google Pregel Graph Processing](http://horicky.blogspot.com/2010/07/google-pregel-graph-processing.html) + - [ ] [Jeff Dean - Building Software Systems At Google and Lessons Learned (video)](https://www.youtube.com/watch?v=modXC5IWTJI) + - [ ] [Introduction to Architecting Systems for Scale](http://lethain.com/introduction-to-architecting-systems-for-scale/) + - [ ] [Scaling mobile games to a global audience using App Engine and Cloud Datastore (video)](https://www.youtube.com/watch?v=9nWyWwY2Onc) + - [ ] [How Google Does Planet-Scale Engineering for Planet-Scale Infra (video)](https://www.youtube.com/watch?v=H4vMcD7zKM0) + - [ ] [The Importance of Algorithms](https://www.topcoder.com/community/data-science/data-science-tutorials/the-importance-of-algorithms/) + - [ ] [Sharding](http://highscalability.com/blog/2009/8/6/an-unorthodox-approach-to-database-design-the-coming-of-the.html) + - [ ] [Scale at Facebook (2009)](https://www.infoq.com/presentations/Scale-at-Facebook) + - [ ] [Scale at Facebook (2012), "Building for a Billion Users" (video)](https://www.youtube.com/watch?v=oodS71YtkGU) + - [ ] [Engineering for the Long Game - Astrid Atkinson Keynote(video)](https://www.youtube.com/watch?v=p0jGmgIrf_M&list=PLRXxvay_m8gqVlExPC5DG3TGWJTaBgqSA&index=4) + - [ ] [7 Years Of YouTube Scalability Lessons In 30 Minutes](http://highscalability.com/blog/2012/3/26/7-years-of-youtube-scalability-lessons-in-30-minutes.html) + - [video](https://www.youtube.com/watch?v=G-lGCC4KKok) + - [ ] [How PayPal Scaled To Billions Of Transactions Daily Using Just 8VMs](http://highscalability.com/blog/2016/8/15/how-paypal-scaled-to-billions-of-transactions-daily-using-ju.html) + - [ ] [How to Remove Duplicates in Large Datasets](https://blog.clevertap.com/how-to-remove-duplicates-in-large-datasets/) + - [ ] [A look inside Etsy's scale and engineering culture with Jon Cowie (video)](https://www.youtube.com/watch?v=3vV4YiqKm1o) + - [ ] [What Led Amazon to its Own Microservices Architecture](http://thenewstack.io/led-amazon-microservices-architecture/) + - [ ] [To Compress Or Not To Compress, That Was Uber's Question](https://eng.uber.com/trip-data-squeeze/) + - [ ] [Asyncio Tarantool Queue, Get In The Queue](http://highscalability.com/blog/2016/3/3/asyncio-tarantool-queue-get-in-the-queue.html) + - [ ] [When Should Approximate Query Processing Be Used?](http://highscalability.com/blog/2016/2/25/when-should-approximate-query-processing-be-used.html) + - [ ] [Google's Transition From Single Datacenter, To Failover, To A Native Multihomed Architecture]( http://highscalability.com/blog/2016/2/23/googles-transition-from-single-datacenter-to-failover-to-a-n.html) + - [ ] [Spanner](http://highscalability.com/blog/2012/9/24/google-spanners-most-surprising-revelation-nosql-is-out-and.html) + - [ ] [Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System](http://highscalability.com/blog/2016/2/15/egnyte-architecture-lessons-learned-in-building-and-scaling.html) + - [ ] [Machine Learning Driven Programming: A New Programming For A New World](http://highscalability.com/blog/2016/7/6/machine-learning-driven-programming-a-new-programming-for-a.html) + - [ ] [The Image Optimization Technology That Serves Millions Of Requests Per Day](http://highscalability.com/blog/2016/6/15/the-image-optimization-technology-that-serves-millions-of-re.html) + - [ ] [A Patreon Architecture Short](http://highscalability.com/blog/2016/2/1/a-patreon-architecture-short.html) + - [ ] [Tinder: How Does One Of The Largest Recommendation Engines Decide Who You'll See Next?](http://highscalability.com/blog/2016/1/27/tinder-how-does-one-of-the-largest-recommendation-engines-de.html) + - [ ] [Design Of A Modern Cache](http://highscalability.com/blog/2016/1/25/design-of-a-modern-cache.html) + - [ ] [Live Video Streaming At Facebook Scale](http://highscalability.com/blog/2016/1/13/live-video-streaming-at-facebook-scale.html) + - [ ] [A Beginner's Guide To Scaling To 11 Million+ Users On Amazon's AWS](http://highscalability.com/blog/2016/1/11/a-beginners-guide-to-scaling-to-11-million-users-on-amazons.html) + - [ ] [How Does The Use Of Docker Effect Latency?](http://highscalability.com/blog/2015/12/16/how-does-the-use-of-docker-effect-latency.html) + - [ ] [Does AMP Counter An Existential Threat To Google?](http://highscalability.com/blog/2015/12/14/does-amp-counter-an-existential-threat-to-google.html) + - [ ] [A 360 Degree View Of The Entire Netflix Stack](http://highscalability.com/blog/2015/11/9/a-360-degree-view-of-the-entire-netflix-stack.html) + - [ ] [Latency Is Everywhere And It Costs You Sales - How To Crush It](http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it) + - [ ] [Serverless (very long, just need the gist)](http://martinfowler.com/articles/serverless.html) + - [ ] [What Powers Instagram: Hundreds of Instances, Dozens of Technologies](http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances) + - [ ] [Cinchcast Architecture - Producing 1,500 Hours Of Audio Every Day](http://highscalability.com/blog/2012/7/16/cinchcast-architecture-producing-1500-hours-of-audio-every-d.html) + - [ ] [Justin.Tv's Live Video Broadcasting Architecture](http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html) + - [ ] [Playfish's Social Gaming Architecture - 50 Million Monthly Users And Growing](http://highscalability.com/blog/2010/9/21/playfishs-social-gaming-architecture-50-million-monthly-user.html) + - [ ] [TripAdvisor Architecture - 40M Visitors, 200M Dynamic Page Views, 30TB Data](http://highscalability.com/blog/2011/6/27/tripadvisor-architecture-40m-visitors-200m-dynamic-page-view.html) + - [ ] [PlentyOfFish Architecture](http://highscalability.com/plentyoffish-architecture) + - [ ] [Salesforce Architecture - How They Handle 1.3 Billion Transactions A Day](http://highscalability.com/blog/2013/9/23/salesforce-architecture-how-they-handle-13-billion-transacti.html) + - [ ] [ESPN's Architecture At Scale - Operating At 100,000 Duh Nuh Nuhs Per Second](http://highscalability.com/blog/2013/11/4/espns-architecture-at-scale-operating-at-100000-duh-nuh-nuhs.html) + - [ ] See "Messaging, Serialization, and Queueing Systems" way below for info on some of the technologies that can glue services together + - [ ] Twitter: + - [O'Reilly MySQL CE 2011: Jeremy Cole, "Big and Small Data at @Twitter" (video)](https://www.youtube.com/watch?v=5cKTP36HVgI) + - [Timelines at Scale](https://www.infoq.com/presentations/Twitter-Timeline-Scalability) + - For even more, see "Mining Massive Datasets" video series in the Video Series section. +- [ ] Practicing the system design process: Here are some ideas to try working through on paper, each with some documentation on how it was handled in the real world: + - review: [System Design from HiredInTech](http://www.hiredintech.com/system-design/) + - [cheat sheet](https://github.com/jwasham/google-interview-university/blob/master/extras/cheat%20sheets/system-design.pdf) + - flow: + 1. Understand the problem and scope: + - define the use cases, with interviewer's help + - suggest additional features + - remove items that interviewer deems out of scope + - assume high availability is required, add as a use case + 2. Think about constraints: + - ask how many requests per month + - ask how many requests per second (they may volunteer it or make you do the math) + - estimate reads vs. writes percentage + - keep 80/20 rule in mind when estimating + - how much data written per second + - total storage required over 5 years + - how much data read per second + 3. Abstract design: + - layers (service, data, caching) + - infrastructure: load balancing, messaging + - rough overview of any key algorithm that drives the service + - consider bottlenecks and determine solutions + - Exercises: + - [Design a CDN network: old article](http://repository.cmu.edu/cgi/viewcontent.cgi?article=2112&context=compsci) + - [Design a random unique ID generation system](https://blog.twitter.com/2010/announcing-snowflake) + - [Design an online multiplayer card game](http://www.indieflashblog.com/how-to-create-an-asynchronous-multiplayer-game.html) + - [Design a key-value database](http://www.slideshare.net/dvirsky/introduction-to-redis) + - [Design a function to return the top k requests during past time interval]( https://icmi.cs.ucsb.edu/research/tech_reports/reports/2005-23.pdf) + - [Design a picture sharing system](http://highscalability.com/blog/2011/12/6/instagram-architecture-14-million-users-terabytes-of-photos.html) + - [Design a recommendation system](http://ijcai13.org/files/tutorial_slides/td3.pdf) + - [Design a URL-shortener system: copied from above](http://www.hiredintech.com/system-design/the-system-design-process/) + - [Design a cache system](https://www.adayinthelifeof.nl/2011/02/06/memcache-internals/) --- From 30260dde957ea59d799dd9d2ee121ce16f5c0ddd Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 22 Nov 2016 12:37:29 -0800 Subject: [PATCH 053/109] Minor format change. --- README.md | 12 ++++-------- 1 file changed, 4 insertions(+), 8 deletions(-) diff --git a/README.md b/README.md index 57c637f..2e4fd97 100644 --- a/README.md +++ b/README.md @@ -984,15 +984,11 @@ You'll get more graph practice in Skiena's book (see Books section below) and th --- - Scalability and System Design are very large topics with many topics and resources, since - there is a lot to consider when designing a software/hardware system that can scale. - Expect to spend quite a bit of time on this. - - -You can expect system design questions if you have 4+ years of experience. - - ## System Design, Scalability, Data Handling +- **You can expect system design questions if you have 4+ years of experience.** +- Scalability and System Design are very large topics with many topics and resources, since + there is a lot to consider when designing a software/hardware system that can scale. + Expect to spend quite a bit of time on this. - Considerations from Yegge: - scalability - Distill large data sets to single values From bfb02828a32c33247c886ab1887c17861b6e3d2e Mon Sep 17 00:00:00 2001 From: John Washam Date: Wed, 23 Nov 2016 10:10:48 -0800 Subject: [PATCH 054/109] Moved OO and Design Patterns to main need-to-know area. Added notes about networking. --- README.md | 114 +++++++++++++++++++++++++++++------------------------- 1 file changed, 62 insertions(+), 52 deletions(-) diff --git a/README.md b/README.md index 2e4fd97..8913771 100644 --- a/README.md +++ b/README.md @@ -13,9 +13,14 @@ There are extra items I added at the bottom that may come up in the interview or Steve Yegge's "[Get that job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html)" and are reflected sometimes word-for-word in Google's coaching notes. -I've pared down what you need to know from what Yegge says for new software engineers. If you have many years of experience, expect a harder interview. +I've pared down what you need to know from what Yegge recommends. I've altered Yegge's requirements +from information received from my contact at Google. This is meant for **new software engineers** or those switching from +software/web development to software engineering (where computer science knowledge is required). If you have +many years of experience and are claiming many years of software engineering experience, expect a harder interview. [Read more here](https://googleyasheck.com/what-you-need-to-know-for-your-google-interview-and-what-you-dont/). +If you want to be a reliability engineer or systems engineer, study more from the optional list (networking, security). + --- ## Table of Contents @@ -66,6 +71,8 @@ I've pared down what you need to know from what Yegge says for new software engi - [Even More Knowledge](#even-more-knowledge) - [Recursion](#recursion) - [Dynamic Programming](#dynamic-programming) + - [Object-Oriented Programming](#object-oriented-programming) + - [Design Patterns](#design-patterns) - [Combinatorics (n choose k) & Probability](#combinatorics-n-choose-k--probability) - [NP, NP-Complete and Approximation Algorithms](#np-np-complete-and-approximation-algorithms) - [Caches](#caches) @@ -100,11 +107,10 @@ I've pared down what you need to know from what Yegge says for new software engi - [Entropy](#entropy) - [Cryptography](#cryptography) - [Compression](#compression) - - [Networking](#networking) (if you have networking experience, expect questions) + - [Networking](#networking) (if you have networking experience or want to be a systems engineer, expect questions) - [Computer Security](#computer-security) - [Garbage collection](#garbage-collection) - [Parallel Programming](#parallel-programming) - - [Design patterns](#design-patterns) - [Messaging, Serialization, and Queueing Systems](#messaging-serialization-and-queueing-systems) - [Fast Fourier Transform](#fast-fourier-transform) - [Bloom Filter](#bloom-filter) @@ -843,6 +849,56 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [ ] [Global pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/UZ7o6/global-pairwise-sequence-alignment) - [ ] [Local pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/WnNau/local-pairwise-sequence-alignment) +- ### Object-Oriented Programming + - [ ] [Optional: UML 2.0 Series (video)](https://www.youtube.com/watch?v=OkC7HKtiZC0&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc) + - [ ] Object-Oriented Software Engineering: Software Dev Using UML and Java (21 videos): + - Can skip this if you have a great grasp of OO and OO design practices. + - [OOSE: Software Dev Using UML and Java](https://www.youtube.com/playlist?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + - [ ] SOLID OOP Principles: + - [ ] [Bob Martin SOLID Principles of Object Oriented and Agile Design (video)](https://www.youtube.com/watch?v=TMuno5RZNeE) + - [ ] [SOLID Design Patterns in C# (video)](https://www.youtube.com/playlist?list=PL8m4NUhTQU48oiGCSgCP1FiJEcg_xJzyQ) + - [ ] [SOLID Principles (video)](https://www.youtube.com/playlist?list=PL4CE9F710017EA77A) + - [ ] S - [Single Responsibility Principle](http://www.oodesign.com/single-responsibility-principle.html) | [Single responsibility to each Object](http://www.javacodegeeks.com/2011/11/solid-single-responsibility-principle.html) + - [more flavor](https://docs.google.com/open?id=0ByOwmqah_nuGNHEtcU5OekdDMkk) + - [ ] O - [Open/Closed Principal](http://www.oodesign.com/open-close-principle.html) | [On production level Objects are ready for extension for not for modification](https://en.wikipedia.org/wiki/Open/closed_principle) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgN2M5MTkwM2EtNWFkZC00ZTI3LWFjZTUtNTFhZGZiYmUzODc1&hl=en) + - [ ] L - [Liskov Substitution Principal](http://www.oodesign.com/liskov-s-substitution-principle.html) | [Base Class and Derived class follow ‘IS A’ principal](http://stackoverflow.com/questions/56860/what-is-the-liskov-substitution-principle) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgNzAzZjA5ZmItNjU3NS00MzQ5LTkwYjMtMDJhNDU5ZTM0MTlh&hl=en) + - [ ] I - [Interface segregation principle](http://www.oodesign.com/interface-segregation-principle.html) | clients should not be forced to implement interfaces they don't use + - [Interface Segregation Principle in 5 minutes (video)](https://www.youtube.com/watch?v=3CtAfl7aXAQ) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgOTViYjJhYzMtMzYxMC00MzFjLWJjMzYtOGJiMDc5N2JkYmJi&hl=en) + - [ ] D -[Dependency Inversion principle](http://www.oodesign.com/dependency-inversion-principle.html) | Reduce the dependency In composition of objects. + - [Why Is The Dependency Inversion Principle And Why Is It Important](http://stackoverflow.com/questions/62539/what-is-the-dependency-inversion-principle-and-why-is-it-important) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgMjdlMWIzNGUtZTQ0NC00ZjQ5LTkwYzQtZjRhMDRlNTQ3ZGMz&hl=en) + +- ### Design patterns + - [ ] [Quick UML review (video)](https://www.youtube.com/watch?v=3cmzqZzwNDM&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc&index=3) + - [ ] Learn these patterns: + - [ ] strategy + - [ ] singleton + - [ ] adapter + - [ ] prototype + - [ ] decorator + - [ ] visitor + - [ ] factory, abstract factory + - [ ] facade + - [ ] observer + - [ ] proxy + - [ ] delegate + - [ ] command + - [ ] state + - [ ] memento + - [ ] iterator + - [ ] composite + - [ ] flyweight + - [ ] [Chapter 6 (Part 1) - Patterns (video)](https://youtu.be/LAP2A80Ajrg?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO&t=3344) + - [ ] [Chapter 6 (Part 2) - Abstraction-Occurrence, General Hierarchy, Player-Role, Singleton, Observer, Delegation (video)](https://www.youtube.com/watch?v=U8-PGsjvZc4&index=12&list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + - [ ] [Chapter 6 (Part 3) - Adapter, Facade, Immutable, Read-Only Interface, Proxy (video)](https://www.youtube.com/watch?v=7sduBHuex4c&index=13&list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + - [ ] [Series of videos (27 videos)](https://www.youtube.com/playlist?list=PLF206E906175C7E07) + - [ ] [Head First Design Patterns](https://www.amazon.com/Head-First-Design-Patterns-Freeman/dp/0596007124) + - I know the canonical book is "Design Patterns: Elements of Reusable Object-Oriented Software", but Head First is great for beginners to OO. + - [ ] [Handy reference: 101 Design Patterns & Tips for Developers](https://sourcemaking.com/design-patterns-and-tips) + - ### Combinatorics (n choose k) & Probability - [ ] [Math Skills: How to find Factorial, Permutation and Combination (Choose) (video)](https://www.youtube.com/watch?v=8RRo6Ti9d0U) - [ ] [Make School: Probability (video)](https://www.youtube.com/watch?v=sZkAAk9Wwa4) @@ -1019,26 +1075,6 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [paper](http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf) - [ ] [Consistent Hashing](http://www.tom-e-white.com/2007/11/consistent-hashing.html) - [ ] [NoSQL Patterns](http://horicky.blogspot.com/2009/11/nosql-patterns.html) -- [ ] [Optional: UML 2.0 Series (vido)](https://www.youtube.com/watch?v=OkC7HKtiZC0&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc) -- [ ] OOSE: Software Dev Using UML and Java (21 videos): - - Can skip this if you have a great grasp of OO and OO design practices. - - [OOSE: Software Dev Using UML and Java](https://www.youtube.com/playlist?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) -- [ ] SOLID OOP Principles: - - [ ] [Bob Martin SOLID Principles of Object Oriented and Agile Design (video)](https://www.youtube.com/watch?v=TMuno5RZNeE) - - [ ] [SOLID Design Patterns in C# (video)](https://www.youtube.com/playlist?list=PL8m4NUhTQU48oiGCSgCP1FiJEcg_xJzyQ) - - [ ] [SOLID Principles (video)](https://www.youtube.com/playlist?list=PL4CE9F710017EA77A) - - [ ] S - [Single Responsibility Principle](http://www.oodesign.com/single-responsibility-principle.html) | [Single responsibility to each Object](http://www.javacodegeeks.com/2011/11/solid-single-responsibility-principle.html) - - [more flavor](https://docs.google.com/open?id=0ByOwmqah_nuGNHEtcU5OekdDMkk) - - [ ] O - [Open/Closed Principal](http://www.oodesign.com/open-close-principle.html) | [On production level Objects are ready for extension for not for modification](https://en.wikipedia.org/wiki/Open/closed_principle) - - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgN2M5MTkwM2EtNWFkZC00ZTI3LWFjZTUtNTFhZGZiYmUzODc1&hl=en) - - [ ] L - [Liskov Substitution Principal](http://www.oodesign.com/liskov-s-substitution-principle.html) | [Base Class and Derived class follow ‘IS A’ principal](http://stackoverflow.com/questions/56860/what-is-the-liskov-substitution-principle) - - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgNzAzZjA5ZmItNjU3NS00MzQ5LTkwYjMtMDJhNDU5ZTM0MTlh&hl=en) - - [ ] I - [Interface segregation principle](http://www.oodesign.com/interface-segregation-principle.html) | clients should not be forced to implement interfaces they don't use - - [Interface Segregation Principle in 5 minutes (video)](https://www.youtube.com/watch?v=3CtAfl7aXAQ) - - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgOTViYjJhYzMtMzYxMC00MzFjLWJjMzYtOGJiMDc5N2JkYmJi&hl=en) - - [ ] D -[Dependency Inversion principle](http://www.oodesign.com/dependency-inversion-principle.html) | Reduce the dependency In composition of objects. - - [Why Is The Dependency Inversion Principle And Why Is It Important](http://stackoverflow.com/questions/62539/what-is-the-dependency-inversion-principle-and-why-is-it-important) - - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgMjdlMWIzNGUtZTQ0NC00ZjQ5LTkwYzQtZjRhMDRlNTQ3ZGMz&hl=en) - [ ] Scalability: - [ ] [Great overview (video)](https://www.youtube.com/watch?v=-W9F__D3oY4) - [ ] Short series: @@ -1478,7 +1514,9 @@ You're never really done. - [ ] [Compressor Head videos](https://www.youtube.com/playlist?list=PLOU2XLYxmsIJGErt5rrCqaSGTMyyqNt2H) - [ ] [(optional) Google Developers Live: GZIP is not enough!](https://www.youtube.com/watch?v=whGwm0Lky2s) -- ### Networking (videos) +- ### Networking + - **if you have networking experience or want to be a systems engineer, expect questions** + - otherwise, this is just good to know - [ ] [Khan Academy](https://www.khanacademy.org/computing/computer-science/internet-intro) - [ ] [UDP and TCP: Comparison of Transport Protocols](https://www.youtube.com/watch?v=Vdc8TCESIg8) - [ ] [TCP/IP and the OSI Model Explained!](https://www.youtube.com/watch?v=e5DEVa9eSN0) @@ -1516,34 +1554,6 @@ You're never really done. - [ ] [Coursera (Scala)](https://www.coursera.org/learn/parprog1/home/week/1) - [ ] [Efficient Python for High Performance Parallel Computing (video)](https://www.youtube.com/watch?v=uY85GkaYzBk) -- ### Design patterns - - [ ] [Quick UML review (video)](https://www.youtube.com/watch?v=3cmzqZzwNDM&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc&index=3) - - [ ] Learn these patterns: - - [ ] strategy - - [ ] singleton - - [ ] adapter - - [ ] prototype - - [ ] decorator - - [ ] visitor - - [ ] factory, abstract factory - - [ ] facade - - [ ] observer - - [ ] proxy - - [ ] delegate - - [ ] command - - [ ] state - - [ ] memento - - [ ] iterator - - [ ] composite - - [ ] flyweight - - [ ] [Chapter 6 (Part 1) - Patterns (video)](https://youtu.be/LAP2A80Ajrg?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO&t=3344) - - [ ] [Chapter 6 (Part 2) - Abstraction-Occurrence, General Hierarchy, Player-Role, Singleton, Observer, Delegation (video)](https://www.youtube.com/watch?v=U8-PGsjvZc4&index=12&list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) - - [ ] [Chapter 6 (Part 3) - Adapter, Facade, Immutable, Read-Only Interface, Proxy (video)](https://www.youtube.com/watch?v=7sduBHuex4c&index=13&list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) - - [ ] [Series of videos (27 videos)](https://www.youtube.com/playlist?list=PLF206E906175C7E07) - - [ ] [Head First Design Patterns](https://www.amazon.com/Head-First-Design-Patterns-Freeman/dp/0596007124) - - I know the canonical book is "Design Patterns: Elements of Reusable Object-Oriented Software", but Head First is great for beginners to OO. - - [ ] [Handy reference: 101 Design Patterns & Tips for Developers](https://sourcemaking.com/design-patterns-and-tips) - - ### Messaging, Serialization, and Queueing Systems - [ ] [Thrift](https://thrift.apache.org/) - [Tutorial](http://thrift-tutorial.readthedocs.io/en/latest/intro.html) From 0f7daa4612cfe5564be2e0e949e12df373128ee2 Mon Sep 17 00:00:00 2001 From: John Washam Date: Wed, 23 Nov 2016 10:11:27 -0800 Subject: [PATCH 055/109] Adding in notes about how large companies define software engineering differently from development. --- README.md | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/README.md b/README.md index 8913771..07391fb 100644 --- a/README.md +++ b/README.md @@ -19,6 +19,10 @@ software/web development to software engineering (where computer science knowled many years of experience and are claiming many years of software engineering experience, expect a harder interview. [Read more here](https://googleyasheck.com/what-you-need-to-know-for-your-google-interview-and-what-you-dont/). +If you have many years of software/web development experience, note that large companies view software engineering as +different from software/web development and they require computer science knowledge. +[Read more about that here](https://googleyasheck.com/software-engineering-is-not-software-web-development/) + If you want to be a reliability engineer or systems engineer, study more from the optional list (networking, security). --- From 95ecbcc68d6da0d047a08a1c2806a7e36b0adeca Mon Sep 17 00:00:00 2001 From: Ji Yang Date: Wed, 23 Nov 2016 14:19:21 -0700 Subject: [PATCH 056/109] Update README.md Fix typo and grammar --- README.md | 27 +++++++++++++-------------- 1 file changed, 13 insertions(+), 14 deletions(-) diff --git a/README.md b/README.md index 07391fb..911affe 100644 --- a/README.md +++ b/README.md @@ -160,7 +160,7 @@ low-level languages, and how it all works. And if you don't know any of it, Goog When I started this project, I didn't know a stack from a heap, didn't know Big-O anything, anything about trees, or how to traverse a graph. If I had to code a sorting algorithm, I can tell ya it wouldn't have been very good. Every data structure I've ever used was built into the language, and I didn't know how they worked -under the hood at all. I've never had to manage memory, unless a process I was running would give an "out of +under the hood at all. I've never had to manage memory unless a process I was running would give an "out of memory" error, and then I'd have to find a workaround. I've used a few multidimensional arrays in my life and thousands of associative arrays, but I've never created data structures from scratch. @@ -300,7 +300,7 @@ You could also use these, but read around first. There may be caveats: - JavaScript - Ruby -You need to be very comfortable in the language, and be knowledgeable. +You need to be very comfortable in the language and be knowledgeable. Read more about choices: - http://www.byte-by-byte.com/choose-the-right-language-for-your-coding-interview/ @@ -343,7 +343,7 @@ same card and answer it several times correctly before you really know it. Repet your brain. An alternative to using my flashcard site is [Anki](http://ankisrs.net/), which has been recommended to me numerous times. It uses a repetition system to help you remember. -It's user friendly, available on all platforms and has a cloud sync system. It costs $25 on iOS but is free on other platforms. +It's user-friendly, available on all platforms and has a cloud sync system. It costs $25 on iOS but is free on other platforms. My flashcard database in Anki format: https://ankiweb.net/shared/info/25173560 (thanks [@xiewenya](https://github.com/xiewenya)) @@ -355,7 +355,7 @@ Take a break from programming problems for a half hour and go through your flash ### 4. Focus -There are a lot of distractions that can take up valuable time. Focus and concentration is hard. +There are a lot of distractions that can take up valuable time. Focus and concentration are hard. ## What you won't see covered @@ -963,7 +963,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - CPU activity, interrupts, context switching - Modern concurrency constructs with multicore processors - Process resource needs (memory: code, static storage, stack, heap, and also file descriptors, i/o) - - Thread resource needs (shares above (minus stack) with other threads in same process but each has its own pc, stack counter, registers and stack) + - Thread resource needs (shares above (minus stack) with other threads in the same process but each has its own pc, stack counter, registers, and stack) - Forking is really copy on write (read-only) until the new process writes to memory, then it does a full copy. - Context switching - How context switching is initiated by the operating system and underlying hardware @@ -1249,7 +1249,7 @@ Supplemental: - nice stories from his experiences solving problems in industry and academia - code examples in C - cons: - - can be as dense or impenetrable as CLRS, and in some cases CLRS may be a better alternative for some subjects + - can be as dense or impenetrable as CLRS, and in some cases, CLRS may be a better alternative for some subjects - chapters 7, 8, 9 can be painful to try to follow, as some items are not explained well or require more brain than I have - don't get me wrong: I like Skiena, his teaching style, and mannerisms, but I may not be Stony Brook material. - algorithm catalog: @@ -1298,12 +1298,11 @@ Supplemental: - For a richer, more up-to-date (2011), but longer treatment, pick up [Computer Architecture, Fifth Edition: A Quantitative Approach](https://www.amazon.com/dp/012383872X/) - [ ] [Elements of Programming Interviews](https://www.amazon.com/Elements-Programming-Interviews-Insiders-Guide/dp/1479274836) - all code is in C++, if you're looking to use C++ in your interview - - good book on problem solving in general. + - a good book on problem solving in general. **Perhaps** - [ ] [Introduction to Algorithms](https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844) - - **Important:** Reading this book will only have limited value. This book is a great review of algorithms and data - structures, but won't teach you how to write good code. You have to be able to code a decent solution efficiently. + - **Important:** Reading this book will only have limited value. This book is a great review of algorithms and data structures, but won't teach you how to write good code. You have to be able to code a decent solution efficiently. - To quote Yegge: "But if you want to come into your interviews *prepped*, then consider deferring your application until you've made your way through that book." - Half.com is a great resource for textbooks at good prices. - aka CLR, sometimes CLRS, because Stein was late to the game @@ -1350,7 +1349,7 @@ Maybe: ## Be thinking of for when the interview comes -Think of about 20 interview questions you'll get, along the lines of the items below. Have 2-3 answers for each. +Think of about 20 interview questions you'll get, along with the lines of the items below. Have 2-3 answers for each. Have a story, not just data, about something you accomplished. - Why do you want this job? @@ -1598,8 +1597,8 @@ You're never really done. - [How To Count A Billion Distinct Objects Using Only 1.5KB Of Memory](http://highscalability.com/blog/2012/4/5/big-data-counting-how-to-count-a-billion-distinct-objects-us.html) - ### Locality-Sensitive Hashing - - used to determine similarity of documents - - the opposite of md5 or sha which are used to determine if 2 documents/strings are exactly the same. + - used to determine the similarity of documents + - the opposite of MD5 or SHA which are used to determine if 2 documents/strings are exactly the same. - [Simhashing (hopefully) made simple](http://ferd.ca/simhashing-hopefully-made-simple.html) - ### van Emde Boas Trees @@ -1657,7 +1656,7 @@ You're never really done. - In practice: Splay trees are typically used in the implementation of caches, memory allocators, routers, garbage collectors, data compression, ropes (replacement of string used for long text strings), in Windows NT (in the virtual memory, - networking, and file system code) etc. + networking and file system code) etc. - [ ] [CS 61B: Splay Trees (video)](https://www.youtube.com/watch?v=Najzh1rYQTo&index=23&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd) - [ ] MIT Lecture: Splay Trees: - Gets very mathy, but watch the last 10 minutes for sure. @@ -1873,7 +1872,7 @@ You're never really done. ## Video Series -Sit back and enjoy. "netflix and skill" :P +Sit back and enjoy. "Netflix and skill" :P - [ ] [List of individual Dynamic Programming problems (each is short)](https://www.youtube.com/playlist?list=PLrmLmBdmIlpsHaNTPP_jHHDx_os9ItYXr) From e7eb0072d50ce909387923ccff217ccb1c8fae47 Mon Sep 17 00:00:00 2001 From: John Washam Date: Sat, 26 Nov 2016 14:20:40 -0800 Subject: [PATCH 057/109] Added new video from Google of an example coding/engineering interview. --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 07391fb..85d0743 100644 --- a/README.md +++ b/README.md @@ -257,6 +257,7 @@ Sometimes the classes are not in session so you have to wait a couple of months, - [ ] Videos: - [ ] [How to Work at Google: Prepare for an Engineering Interview (video)](https://www.youtube.com/watch?v=ko-KkSmp-Lk) + - [ ] [How to Work at Google: Example Coding/Engineering Interview (video)](https://www.youtube.com/watch?v=XKu_SEDAykw) - [ ] [How to Work at Google - Candidate Coaching Session (video)](https://www.youtube.com/watch?v=oWbUtlUhwa8&feature=youtu.be) - [ ] [Google Recruiters Share Technical Interview Tips (video)](https://www.youtube.com/watch?v=qc1owf2-220&feature=youtu.be) - [ ] [How to Work at Google: Tech Resume Preparation (video)](https://www.youtube.com/watch?v=8npJLXkcmu8) From ecb74f1a6af57c27dcdc7cccebbb66d9e5112049 Mon Sep 17 00:00:00 2001 From: John Washam Date: Sun, 27 Nov 2016 12:33:39 -0800 Subject: [PATCH 058/109] Moved some books around. --- README.md | 72 ++++++++++++++++++++++++++++--------------------------- 1 file changed, 37 insertions(+), 35 deletions(-) diff --git a/README.md b/README.md index 9fabf89..f0863eb 100644 --- a/README.md +++ b/README.md @@ -1241,11 +1241,46 @@ Supplemental: - [MIT Interview Materials](https://web.archive.org/web/20160906124824/http://courses.csail.mit.edu/iap/interview/materials.php) - [Exercises for getting better at a given language](http://exercism.io/languages) -**Read as a review and problem recognition** +**Read and Do Programming Problems (in this order):** +- [ ] [Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition](http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html) + - recommended in Google candidate coaching +- [ ] [Cracking the Coding Interview, 6th Edition](http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/) + - recommended on the [Google Careers site](https://www.google.com/about/careers/how-we-hire/interview/) + - If you see people reference "The Google Resume", it was a book replaced by "Cracking the Coding Interview". + +**If you have time** +- [ ] [Grokking Algorithms](https://www.amazon.com/Grokking-Algorithms-illustrated-programmers-curious/dp/1617292230) + - This is a great book for review of CS concepts, and a very quick read. + - Did not have as much Python code as I had hoped for, but has a great chapter on dynamic programming, so I worked through that and finally got the concept. +- [ ] [Write Great Code: Volume 1: Understanding the Machine](https://www.amazon.com/Write-Great-Code-Understanding-Machine/dp/1593270038) + - The book was published in 2004, and is a bit outdated, but it's a terrific resource for understanding a computer. + - The author invented HLA, so take mentions and examples in HLA with a grain of salt. Not widely used, but decent examples of what assembly looks like. + - These chapters are worth the read to give you a nice foundation: + - Chapter 2 - Numeric Representation + - Chapter 3 - Binary Arithmetic and Bit Operations + - Chapter 4 - Floating-Point Representation + - Chapter 5 - Character Representation + - Chapter 6 - Memory Organization and Access + - Chapter 7 - Composite Data Types and Memory Objects + - Chapter 9 - CPU Architecture + - Chapter 10 - Instruction Set Architecture + - Chapter 11 - Memory Architecture and Organization + - For a richer, more up-to-date (2011), but longer treatment, pick up [Computer Architecture, Fifth Edition: A Quantitative Approach](https://www.amazon.com/dp/012383872X/) +- [ ] [Elements of Programming Interviews](https://www.amazon.com/Elements-Programming-Interviews-Insiders-Guide/dp/1479274836) + - all code is in C++, if you're looking to use C++ in your interview + - a good book on problem solving in general. + +**Perhaps** + +- [ ] [Programming Pearls](http://www.amazon.com/Programming-Pearls-2nd-Jon-Bentley/dp/0201657880) + - The first couple of chapters present clever solutions to programming problems (some very old using data tape) but + that is just an intro. This a guidebook on program design and architecture, much like Code Complete, but much shorter. - [ ] [Algorithm Design Manual](http://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202) (Skiena) + - As a review and problem recognition + - The algorithm catalog portion is well beyond the scope of difficulty you'll get in an interview. - This book has 2 parts: - class textbook on data structures and algorithms - - pros: + - pros: - is a good review as any algorithms textbook would be - nice stories from his experiences solving problems in industry and academia - code examples in C @@ -1269,39 +1304,6 @@ Supplemental: - [Solutions](http://blog.panictank.net/category/algorithmndesignmanualsolutions/page/2/) - [Errata](http://www3.cs.stonybrook.edu/~skiena/algorist/book/errata) -**Read and Do Programming Problems (in this order):** -- [ ] [Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition](http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html) - - recommended in Google candidate coaching -- [ ] [Cracking the Coding Interview, 6th Edition](http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/) - - recommended on the [Google Careers site](https://www.google.com/about/careers/how-we-hire/interview/) - - If you see people reference "The Google Resume", it was a book replaced by "Cracking the Coding Interview". - -**If you have time** -- [ ] [Programming Pearls](http://www.amazon.com/Programming-Pearls-2nd-Jon-Bentley/dp/0201657880) - - The first couple of chapters present clever solutions to programming problems (some very old using data tape) but - that is just an intro. This a guidebook on program design and architecture, much like Code Complete, but much shorter. -- [ ] [Grokking Algorithms](https://www.amazon.com/Grokking-Algorithms-illustrated-programmers-curious/dp/1617292230) - - This is a great book for review of CS concepts, and a very quick read. - - Did not have as much Python code as I had hoped for, but has a great chapter on dynamic programming, so I worked through that and finally got the concept. -- [ ] [Write Great Code: Volume 1: Understanding the Machine](https://www.amazon.com/Write-Great-Code-Understanding-Machine/dp/1593270038) - - The book was published in 2004, and is a bit outdated, but it's a terrific resource for understanding a computer. - - The author invented HLA, so take mentions and examples in HLA with a grain of salt. Not widely used, but decent examples of what assembly looks like. - - These chapters are worth the read to give you a nice foundation: - - Chapter 2 - Numeric Representation - - Chapter 3 - Binary Arithmetic and Bit Operations - - Chapter 4 - Floating-Point Representation - - Chapter 5 - Character Representation - - Chapter 6 - Memory Organization and Access - - Chapter 7 - Composite Data Types and Memory Objects - - Chapter 9 - CPU Architecture - - Chapter 10 - Instruction Set Architecture - - Chapter 11 - Memory Architecture and Organization - - For a richer, more up-to-date (2011), but longer treatment, pick up [Computer Architecture, Fifth Edition: A Quantitative Approach](https://www.amazon.com/dp/012383872X/) -- [ ] [Elements of Programming Interviews](https://www.amazon.com/Elements-Programming-Interviews-Insiders-Guide/dp/1479274836) - - all code is in C++, if you're looking to use C++ in your interview - - a good book on problem solving in general. - -**Perhaps** - [ ] [Introduction to Algorithms](https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844) - **Important:** Reading this book will only have limited value. This book is a great review of algorithms and data structures, but won't teach you how to write good code. You have to be able to code a decent solution efficiently. - To quote Yegge: "But if you want to come into your interviews *prepped*, then consider deferring your application until you've made your way through that book." From 133053e6d41c5f1a39888b08c5396d6fc48a20be Mon Sep 17 00:00:00 2001 From: John Washam Date: Sun, 27 Nov 2016 12:35:18 -0800 Subject: [PATCH 059/109] Added a new article for coding problems. --- README.md | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index f0863eb..1ab2632 100644 --- a/README.md +++ b/README.md @@ -1226,7 +1226,9 @@ Why you need to practice doing programming problems: There is a great intro for methodical, communicative problem solving in an interview. You'll get this from the programming interview books, too, but I found this outstanding: -- [ ] [Algorithm design canvas](http://www.hiredintech.com/algorithm-design/) +[Algorithm design canvas](http://www.hiredintech.com/algorithm-design/) + +[My Process for Coding Interview (Book) Exercises](https://googleyasheck.com/my-process-for-coding-interview-exercises/) No whiteboard at home? That makes sense. I'm a weirdo and have a big whiteboard. Instead of a whiteboard, pick up a large drawing pad from an art store. You can sit on the couch and practice. This is my "sofa whiteboard". From 83a75e513c044f2b53f033096e50b52eb3296b14 Mon Sep 17 00:00:00 2001 From: John Washam Date: Mon, 28 Nov 2016 21:27:37 -0800 Subject: [PATCH 060/109] Note about Programming Interviews Exposed. --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 1ab2632..ad89911 100644 --- a/README.md +++ b/README.md @@ -1246,6 +1246,7 @@ Supplemental: **Read and Do Programming Problems (in this order):** - [ ] [Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition](http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html) - recommended in Google candidate coaching + - this is a good warm-up for Cracking the Coding Interview - [ ] [Cracking the Coding Interview, 6th Edition](http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/) - recommended on the [Google Careers site](https://www.google.com/about/careers/how-we-hire/interview/) - If you see people reference "The Google Resume", it was a book replaced by "Cracking the Coding Interview". From 6f29926286822c9eb67e8389a21323e6389d981e Mon Sep 17 00:00:00 2001 From: John Washam Date: Mon, 28 Nov 2016 21:29:00 -0800 Subject: [PATCH 061/109] Note about Programming Interviews Exposed. --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index ad89911..97335f3 100644 --- a/README.md +++ b/README.md @@ -1247,6 +1247,7 @@ Supplemental: - [ ] [Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition](http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html) - recommended in Google candidate coaching - this is a good warm-up for Cracking the Coding Interview + - not too difficult, most problems may be too easier than what you'll see in an interview (from what I've read) - [ ] [Cracking the Coding Interview, 6th Edition](http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/) - recommended on the [Google Careers site](https://www.google.com/about/careers/how-we-hire/interview/) - If you see people reference "The Google Resume", it was a book replaced by "Cracking the Coding Interview". From b5524e54d10022790719bddbd7bff50c2be94ffb Mon Sep 17 00:00:00 2001 From: John Washam Date: Mon, 28 Nov 2016 21:30:27 -0800 Subject: [PATCH 062/109] Note about Programming Interviews Exposed. --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 97335f3..d86d86f 100644 --- a/README.md +++ b/README.md @@ -1247,7 +1247,7 @@ Supplemental: - [ ] [Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition](http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html) - recommended in Google candidate coaching - this is a good warm-up for Cracking the Coding Interview - - not too difficult, most problems may be too easier than what you'll see in an interview (from what I've read) + - not too difficult, most problems may be easier than what you'll see in an interview (from what I've read) - [ ] [Cracking the Coding Interview, 6th Edition](http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/) - recommended on the [Google Careers site](https://www.google.com/about/careers/how-we-hire/interview/) - If you see people reference "The Google Resume", it was a book replaced by "Cracking the Coding Interview". From 4f4931fa760902b934300c08d3db900069b6264c Mon Sep 17 00:00:00 2001 From: Ian Zhang Date: Mon, 28 Nov 2016 21:39:40 -0800 Subject: [PATCH 063/109] [Doc] Correct Harvard name typo --- README-cn.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README-cn.md b/README-cn.md index 0711e43..5cf9398 100644 --- a/README-cn.md +++ b/README-cn.md @@ -316,7 +316,7 @@ - [ ] **编译器** - [ ] [编译器是如何在 ~1 分钟内工作(视频)](https://www.youtube.com/watch?v=IhC7sdYe-Jg) - - [ ] [Hardvard CS50 —— 编译器(视频)](https://www.youtube.com/watch?v=CSZLNYF4Klo) + - [ ] [Harvard CS50 —— 编译器(视频)](https://www.youtube.com/watch?v=CSZLNYF4Klo) - [ ] [C++(视频)](https://www.youtube.com/watch?v=twodd1KFfGk) - [ ] [掌握编译器的优化(C++)(视频)](https://www.youtube.com/watch?v=FnGCDLhaxKU) From c6cc578815552f756ff589d5625488ca53967c18 Mon Sep 17 00:00:00 2001 From: Ian Zhang Date: Mon, 28 Nov 2016 22:04:59 -0800 Subject: [PATCH 064/109] [Doc] Fix double negative video link name --- README-cn.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README-cn.md b/README-cn.md index 5cf9398..ba4a0a8 100644 --- a/README-cn.md +++ b/README-cn.md @@ -23,7 +23,7 @@ - [拥有一名 Googler 的心态](#拥有一名-googler-的心态) - [我得到了工作吗?](#我得到了工作吗) - [跟随着我](#跟随着我) -- [不要自以为自己足够聪明](#不要自以为自己足够聪明) +- [不要自以为自己不够说明](#不要自以为自己不够聪明) - [关于 Google](#关于-google) - [相关视频资源](#相关视频资源) - [面试过程 & 通用的面试准备](#面试过程--通用的面试准备) @@ -156,7 +156,7 @@ ![John Washam - Google Interview University](https://dng5l3qzreal6.cloudfront.net/2016/Aug/book_stack_photo_resized_18_1469302751157-1472661280368.png) -## 不要自以为自己足够聪明 +## 不要自以为自己不够聪明 - Google 的工程师都是才智过人的。但是,就算是工作在 Google 的他们,仍然会因为自己不够聪明而感到一种不安。 - [天才程序员的神话](https://www.youtube.com/watch?v=0SARbwvhupQ) From 1979e92fdb9efe27965a87b865562257fc4cd442 Mon Sep 17 00:00:00 2001 From: Ian Zhang Date: Mon, 28 Nov 2016 22:11:16 -0800 Subject: [PATCH 065/109] [Doc] Fix video link typo --- README-cn.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README-cn.md b/README-cn.md index ba4a0a8..6a3c439 100644 --- a/README-cn.md +++ b/README-cn.md @@ -23,7 +23,7 @@ - [拥有一名 Googler 的心态](#拥有一名-googler-的心态) - [我得到了工作吗?](#我得到了工作吗) - [跟随着我](#跟随着我) -- [不要自以为自己不够说明](#不要自以为自己不够聪明) +- [不要自以为自己不够聪明](#不要自以为自己不够聪明) - [关于 Google](#关于-google) - [相关视频资源](#相关视频资源) - [面试过程 & 通用的面试准备](#面试过程--通用的面试准备) From 1f7fe85f1ffb58917674f08fad77c09bbabe7e25 Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 13 Dec 2016 16:00:39 -0800 Subject: [PATCH 066/109] Reorganized to add a book list. --- README.md | 213 +++++++++++++++++++++++++++++++++++------------------- 1 file changed, 140 insertions(+), 73 deletions(-) diff --git a/README.md b/README.md index d86d86f..edd1d31 100644 --- a/README.md +++ b/README.md @@ -40,6 +40,7 @@ If you want to be a reliability engineer or systems engineer, study more from th - [About Video Resources](#about-video-resources) - [Interview Process & General Interview Prep](#interview-process--general-interview-prep) - [Pick One Language for the Interview](#pick-one-language-for-the-interview) +- [Book List](#book-list) - [Before you Get Started](#before-you-get-started) - [What you Won't See Covered](#what-you-wont-see-covered) - [Prerequisite Knowledge](#prerequisite-knowledge) @@ -312,6 +313,140 @@ Read more about choices: You'll see some C, C++, and Python learning included below, because I'm learning. There are a few books involved, see the bottom. +## Book List + +This is a shorter list than what I used. This is abbreviated to save you time. + +### Interview Prep + +- [ ] [Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition](http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html) + - answers in C++ and Java + - recommended in Google candidate coaching + - this is a good warm-up for Cracking the Coding Interview + - not too difficult, most problems may be easier than what you'll see in an interview (from what I've read) +- [ ] [Cracking the Coding Interview, 6th Edition](http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/) + - answers in Java + - recommended on the [Google Careers site](https://www.google.com/about/careers/how-we-hire/interview/) + - If you see people reference "The Google Resume", it was a book replaced by "Cracking the Coding Interview". + +If you have tons of extra time: + +- [ ] [Elements of Programming Interviews](https://www.amazon.com/Elements-Programming-Interviews-Insiders-Guide/dp/1479274836) + - all code is in C++, very good if you're looking to use C++ in your interview + - a good book on problem solving in general. + +### Computer Architecture + +If short on time: + +- [ ] [Write Great Code: Volume 1: Understanding the Machine](https://www.amazon.com/Write-Great-Code-Understanding-Machine/dp/1593270038) + - The book was published in 2004, and is somehat outdated, but it's a terrific resource for understanding a computer in brief. + - The author invented HLA, so take mentions and examples in HLA with a grain of salt. Not widely used, but decent examples of what assembly looks like. + - These chapters are worth the read to give you a nice foundation: + - Chapter 2 - Numeric Representation + - Chapter 3 - Binary Arithmetic and Bit Operations + - Chapter 4 - Floating-Point Representation + - Chapter 5 - Character Representation + - Chapter 6 - Memory Organization and Access + - Chapter 7 - Composite Data Types and Memory Objects + - Chapter 9 - CPU Architecture + - Chapter 10 - Instruction Set Architecture + - Chapter 11 - Memory Architecture and Organization + +If you have more time (I want this book): + +- [ ] [Computer Architecture, Fifth Edition: A Quantitative Approach](https://www.amazon.com/dp/012383872X/) + - For a richer, more up-to-date (2011), but longer treatment + +### Language Specific + +**You need to choose a language for the interview (see above).** Here are my recommendations by language. I don't have resources for all languages. I welcome additions. + +If you read though one of these, you should have all the data structures and algoritms knowledge you'll need to start doing coding problems. +**You can skip all the video lectures in this project**, unless you'd like a review. + +[Additional language-specific resources here.](programming-language-resources.md) + +### C++ + +I haven't read these two, but they are highly rated and written by Sedgewick. He's awesome. + +- [ ] [Algorithms in C++, Parts 1-4: Fundamentals, Data Structure, Sorting, Searching](https://www.amazon.com/Algorithms-Parts-1-4-Fundamentals-Structure/dp/0201350882/) +- [ ] [Algorithms in C++ Part 5: Graph Algorithms](https://www.amazon.com/Algorithms-Part-Graph-3rd-Pt-5/dp/0201361183/) + +If you have a better recommendation for C++, please let me know. Looking for a comprehensive resource. + +### Java + +- [ ] [Algorithms (Sedgewick and Wayne)](https://www.amazon.com/Algorithms-4th-Robert-Sedgewick/dp/032157351X/) + - videos with book content (and Sedgewick!): + - [Algorithms I](https://www.youtube.com/user/algorithmscourses/playlists?view=50&sort=dd&shelf_id=2) + - [Algorithms II](https://www.youtube.com/user/algorithmscourses/playlists?shelf_id=3&view=50&sort=dd) + +OR: + +- [ ] [Data Structures and Algorithms in Java](https://www.amazon.com/Data-Structures-Algorithms-Michael-Goodrich/dp/1118771338/) + - by Goodrich, Tamassia, Goldwasser + - used as optional text for CS intro course at UC Berkeley + - see my book report on the Python version below. This book covers the same topics. + +### Python + +- [ ] [Data Structures and Algorithms in Python](https://www.amazon.com/Structures-Algorithms-Python-Michael-Goodrich/dp/1118290275/) + - by Goodrich, Tamassia, Goldwasser + - I loved this book. It covered everything and more. + - Pythonic code + - my glowing book report: https://googleyasheck.com/book-report-data-structures-and-algorithms-in-python/ + + +### Optional Books + +**Some people recommend these, but I think it's going overboard, unless you have many years of software engineering experience and expect a much harder interview:** + +- [ ] [Algorithm Design Manual](http://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202) (Skiena) + - As a review and problem recognition + - The algorithm catalog portion is well beyond the scope of difficulty you'll get in an interview. + - This book has 2 parts: + - class textbook on data structures and algorithms + - pros: + - is a good review as any algorithms textbook would be + - nice stories from his experiences solving problems in industry and academia + - code examples in C + - cons: + - can be as dense or impenetrable as CLRS, and in some cases, CLRS may be a better alternative for some subjects + - chapters 7, 8, 9 can be painful to try to follow, as some items are not explained well or require more brain than I have + - don't get me wrong: I like Skiena, his teaching style, and mannerisms, but I may not be Stony Brook material. + - algorithm catalog: + - this is the real reason you buy this book. + - about to get to this part. Will update here once I've made my way through it. + - To quote Yegge: "More than any other book it helped me understand just how astonishingly commonplace + (and important) graph problems are – they should be part of every working programmer's toolkit. The book also + covers basic data structures and sorting algorithms, which is a nice bonus. But the gold mine is the second half + of the book, which is a sort of encyclopedia of 1-pagers on zillions of useful problems and various ways to solve + them, without too much detail. Almost every 1-pager has a simple picture, making it easy to remember. This is a + great way to learn how to identify hundreds of problem types." + - Can rent it on kindle + - Half.com is a great resource for textbooks at good prices. + - Answers: + - [Solutions](http://www.algorithm.cs.sunysb.edu/algowiki/index.php/The_Algorithms_Design_Manual_(Second_Edition)) + - [Solutions](http://blog.panictank.net/category/algorithmndesignmanualsolutions/page/2/) + - [Errata](http://www3.cs.stonybrook.edu/~skiena/algorist/book/errata) + +- [ ] [Introduction to Algorithms](https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844) + - **Important:** Reading this book will only have limited value. This book is a great review of algorithms and data structures, but won't teach you how to write good code. You have to be able to code a decent solution efficiently. + - To quote Yegge: "But if you want to come into your interviews *prepped*, then consider deferring your application until you've made your way through that book." + - Half.com is a great resource for textbooks at good prices. + - aka CLR, sometimes CLRS, because Stein was late to the game + +- [ ] [Programming Pearls](http://www.amazon.com/Programming-Pearls-2nd-Jon-Bentley/dp/0201657880) + - The first couple of chapters present clever solutions to programming problems (some very old using data tape) but + that is just an intro. This a guidebook on program design and architecture, much like Code Complete, but much shorter. + +- ~~"Algorithms and Programming: Problems and Solutions" by Shen~~ + - A fine book, but after working through problems on several pages I got frustrated with the Pascal, do while loops, 1-indexed arrays, and unclear post-condition satisfaction results. + - Would rather spend time on coding problems from another book or online coding problems. + + ## Before you Get Started This list grew over many months, and yes, it kind of got out of hand. @@ -1232,7 +1367,7 @@ interview books, too, but I found this outstanding: No whiteboard at home? That makes sense. I'm a weirdo and have a big whiteboard. Instead of a whiteboard, pick up a large drawing pad from an art store. You can sit on the couch and practice. This is my "sofa whiteboard". -I added the pen in the photo for scale. +I added the pen in the photo for scale. If you use a pen, you'll wish you could erase. Gets messy quick. ![my sofa whiteboard](https://dng5l3qzreal6.cloudfront.net/2016/Oct/art_board_sm_2-1476233630368.jpg) @@ -1244,81 +1379,13 @@ Supplemental: - [Exercises for getting better at a given language](http://exercism.io/languages) **Read and Do Programming Problems (in this order):** + - [ ] [Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition](http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html) - - recommended in Google candidate coaching - - this is a good warm-up for Cracking the Coding Interview - - not too difficult, most problems may be easier than what you'll see in an interview (from what I've read) + - answers in C, C++ and Java - [ ] [Cracking the Coding Interview, 6th Edition](http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/) - - recommended on the [Google Careers site](https://www.google.com/about/careers/how-we-hire/interview/) - - If you see people reference "The Google Resume", it was a book replaced by "Cracking the Coding Interview". - -**If you have time** -- [ ] [Grokking Algorithms](https://www.amazon.com/Grokking-Algorithms-illustrated-programmers-curious/dp/1617292230) - - This is a great book for review of CS concepts, and a very quick read. - - Did not have as much Python code as I had hoped for, but has a great chapter on dynamic programming, so I worked through that and finally got the concept. -- [ ] [Write Great Code: Volume 1: Understanding the Machine](https://www.amazon.com/Write-Great-Code-Understanding-Machine/dp/1593270038) - - The book was published in 2004, and is a bit outdated, but it's a terrific resource for understanding a computer. - - The author invented HLA, so take mentions and examples in HLA with a grain of salt. Not widely used, but decent examples of what assembly looks like. - - These chapters are worth the read to give you a nice foundation: - - Chapter 2 - Numeric Representation - - Chapter 3 - Binary Arithmetic and Bit Operations - - Chapter 4 - Floating-Point Representation - - Chapter 5 - Character Representation - - Chapter 6 - Memory Organization and Access - - Chapter 7 - Composite Data Types and Memory Objects - - Chapter 9 - CPU Architecture - - Chapter 10 - Instruction Set Architecture - - Chapter 11 - Memory Architecture and Organization - - For a richer, more up-to-date (2011), but longer treatment, pick up [Computer Architecture, Fifth Edition: A Quantitative Approach](https://www.amazon.com/dp/012383872X/) -- [ ] [Elements of Programming Interviews](https://www.amazon.com/Elements-Programming-Interviews-Insiders-Guide/dp/1479274836) - - all code is in C++, if you're looking to use C++ in your interview - - a good book on problem solving in general. - -**Perhaps** - -- [ ] [Programming Pearls](http://www.amazon.com/Programming-Pearls-2nd-Jon-Bentley/dp/0201657880) - - The first couple of chapters present clever solutions to programming problems (some very old using data tape) but - that is just an intro. This a guidebook on program design and architecture, much like Code Complete, but much shorter. -- [ ] [Algorithm Design Manual](http://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202) (Skiena) - - As a review and problem recognition - - The algorithm catalog portion is well beyond the scope of difficulty you'll get in an interview. - - This book has 2 parts: - - class textbook on data structures and algorithms - - pros: - - is a good review as any algorithms textbook would be - - nice stories from his experiences solving problems in industry and academia - - code examples in C - - cons: - - can be as dense or impenetrable as CLRS, and in some cases, CLRS may be a better alternative for some subjects - - chapters 7, 8, 9 can be painful to try to follow, as some items are not explained well or require more brain than I have - - don't get me wrong: I like Skiena, his teaching style, and mannerisms, but I may not be Stony Brook material. - - algorithm catalog: - - this is the real reason you buy this book. - - about to get to this part. Will update here once I've made my way through it. - - To quote Yegge: "More than any other book it helped me understand just how astonishingly commonplace - (and important) graph problems are – they should be part of every working programmer's toolkit. The book also - covers basic data structures and sorting algorithms, which is a nice bonus. But the gold mine is the second half - of the book, which is a sort of encyclopedia of 1-pagers on zillions of useful problems and various ways to solve - them, without too much detail. Almost every 1-pager has a simple picture, making it easy to remember. This is a - great way to learn how to identify hundreds of problem types." - - Can rent it on kindle - - Half.com is a great resource for textbooks at good prices. - - Answers: - - [Solutions](http://www.algorithm.cs.sunysb.edu/algowiki/index.php/The_Algorithms_Design_Manual_(Second_Edition)) - - [Solutions](http://blog.panictank.net/category/algorithmndesignmanualsolutions/page/2/) - - [Errata](http://www3.cs.stonybrook.edu/~skiena/algorist/book/errata) - -- [ ] [Introduction to Algorithms](https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844) - - **Important:** Reading this book will only have limited value. This book is a great review of algorithms and data structures, but won't teach you how to write good code. You have to be able to code a decent solution efficiently. - - To quote Yegge: "But if you want to come into your interviews *prepped*, then consider deferring your application until you've made your way through that book." - - Half.com is a great resource for textbooks at good prices. - - aka CLR, sometimes CLRS, because Stein was late to the game - -**Removed** -- ~~"Algorithms and Programming: Problems and Solutions" by Shen~~ - - A fine book, but after working through problems on several pages I got frustrated with the Pascal, do while loops, 1-indexed arrays, and unclear post-condition satisfaction results. - - Would rather spend time on coding problems from another book or online coding problems. + - answers in Java +See [Book List above](#book-list) ## Coding exercises/challenges From 268bcc1ff37ca6c8c8cdd9db5ee662975986b5a1 Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 13 Dec 2016 16:06:24 -0800 Subject: [PATCH 067/109] Fixed typo, and added note about languages. --- README.md | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index edd1d31..7f0f47c 100644 --- a/README.md +++ b/README.md @@ -362,7 +362,7 @@ If you have more time (I want this book): **You need to choose a language for the interview (see above).** Here are my recommendations by language. I don't have resources for all languages. I welcome additions. -If you read though one of these, you should have all the data structures and algoritms knowledge you'll need to start doing coding problems. +If you read though one of these, you should have all the data structures and algorithms knowledge you'll need to start doing coding problems. **You can skip all the video lectures in this project**, unless you'd like a review. [Additional language-specific resources here.](programming-language-resources.md) @@ -514,6 +514,8 @@ Each day I take one subject from the list below, watch videos about that subject - and write tests to ensure I'm doing it right, sometimes just using simple assert() statements - You may do Java or something else, this is just my thing. +You don't need all these. You need only [one language for the interview]((#pick-one-language-for-the-interview)). + Why code in all of these? - Practice, practice, practice, until I'm sick of it, and can do it with no problem (some have many edge cases and bookkeeping details to remember) - Work within the raw constraints (allocating/freeing memory without help of garbage collection (except Python)) From b8e920581f56f800df53a706363e7ac560de3d80 Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 13 Dec 2016 16:14:33 -0800 Subject: [PATCH 068/109] Added link to Medium post. --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 7f0f47c..b0df14b 100644 --- a/README.md +++ b/README.md @@ -214,6 +214,8 @@ apply through a referral I've been holding onto since February (yes, February). ## Follow Along with Me +My story: [Why I Studied Full-Time for 8 Months for a Google Interview](https://medium.com/@googleyasheck/why-i-studied-full-time-for-8-months-for-a-google-interview-cc662ce9bb13) + I'm on the journey, too. Follow along: - **Blog**: [GoogleyAsHeck.com](https://googleyasheck.com/) From 1483e39b11a85258444746285d6cd6d4b3584ca4 Mon Sep 17 00:00:00 2001 From: Ilya Smelkov Date: Fri, 16 Dec 2016 13:05:46 +0300 Subject: [PATCH 069/109] Fix broken link --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index b0df14b..e07979b 100644 --- a/README.md +++ b/README.md @@ -516,7 +516,7 @@ Each day I take one subject from the list below, watch videos about that subject - and write tests to ensure I'm doing it right, sometimes just using simple assert() statements - You may do Java or something else, this is just my thing. -You don't need all these. You need only [one language for the interview]((#pick-one-language-for-the-interview)). +You don't need all these. You need only [one language for the interview](#pick-one-language-for-the-interview). Why code in all of these? - Practice, practice, practice, until I'm sick of it, and can do it with no problem (some have many edge cases and bookkeeping details to remember) From f4a61d7348ca4a0cab35a00f3c33ef9a695c0dd0 Mon Sep 17 00:00:00 2001 From: John Washam Date: Fri, 16 Dec 2016 12:23:34 -0800 Subject: [PATCH 070/109] Minor edit. --- README.md | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/README.md b/README.md index b0df14b..cdad76f 100644 --- a/README.md +++ b/README.md @@ -19,9 +19,8 @@ software/web development to software engineering (where computer science knowled many years of experience and are claiming many years of software engineering experience, expect a harder interview. [Read more here](https://googleyasheck.com/what-you-need-to-know-for-your-google-interview-and-what-you-dont/). -If you have many years of software/web development experience, note that large companies view software engineering as +If you have many years of software/web development experience, note that Google views software engineering as different from software/web development and they require computer science knowledge. -[Read more about that here](https://googleyasheck.com/software-engineering-is-not-software-web-development/) If you want to be a reliability engineer or systems engineer, study more from the optional list (networking, security). From eb9d1ee7ce4165b66cf49975ca5e967599bd7cb0 Mon Sep 17 00:00:00 2001 From: John Washam Date: Fri, 16 Dec 2016 13:07:05 -0800 Subject: [PATCH 071/109] Added Geeks for Geeks. --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 6be69fe..95394d4 100644 --- a/README.md +++ b/README.md @@ -1406,6 +1406,7 @@ Challenge sites: - [HackerRank](https://www.hackerrank.com/) - [Codility](https://codility.com/programmers/) - [InterviewCake](https://www.interviewcake.com/) +- [Geeks for Geeks](http://www.geeksforgeeks.org/) - [InterviewBit](https://www.interviewbit.com/invite/icjf) Maybe: From 52291a3e6b6a7a64e6dd7897da681f34939b40da Mon Sep 17 00:00:00 2001 From: John Washam Date: Fri, 16 Dec 2016 21:36:22 -0800 Subject: [PATCH 072/109] Moved dynamic programming to optional. I was mistaken, in that it wasn't in the Yegge article or Google's coaching notes. --- README.md | 52 ++++++++++++++++++++++++++-------------------------- 1 file changed, 26 insertions(+), 26 deletions(-) diff --git a/README.md b/README.md index 95394d4..764cb2b 100644 --- a/README.md +++ b/README.md @@ -74,7 +74,6 @@ If you want to be a reliability engineer or systems engineer, study more from th - traversals: BFS, DFS - [Even More Knowledge](#even-more-knowledge) - [Recursion](#recursion) - - [Dynamic Programming](#dynamic-programming) - [Object-Oriented Programming](#object-oriented-programming) - [Design Patterns](#design-patterns) - [Combinatorics (n choose k) & Probability](#combinatorics-n-choose-k--probability) @@ -100,6 +99,7 @@ If you want to be a reliability engineer or systems engineer, study more from th - [Additional Books](#additional-books) - [Additional Learning](#additional-learning) + - [Dynamic Programming](#dynamic-programming) - [Compilers](#compilers) - [Floating Point Numbers](#floating-point-numbers) - [Unicode](#unicode) @@ -967,31 +967,6 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [ ] [What Is Tail Recursion Why Is It So Bad?](https://www.quora.com/What-is-tail-recursion-Why-is-it-so-bad) - [ ] [Tail Recursion (video)](https://www.youtube.com/watch?v=L1jjXGfxozc) -- ### Dynamic Programming - - This subject can be pretty difficult, as each DP soluble problem must be defined as a recursion relation, and coming up with it can be tricky. - - I suggest looking at many examples of DP problems until you have a solid understanding of the pattern involved. - - [ ] Videos: - - the Skiena videos can be hard to follow since he sometimes uses the whiteboard, which is too small to see - - [ ] [Skiena: CSE373 2012 - Lecture 19 - Introduction to Dynamic Programming (video)](https://youtu.be/Qc2ieXRgR0k?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1718) - - [ ] [Skiena: CSE373 2012 - Lecture 20 - Edit Distance (video)](https://youtu.be/IsmMhMdyeGY?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=2749) - - [ ] [Skiena: CSE373 2012 - Lecture 21 - Dynamic Programming Examples (video)](https://youtu.be/o0V9eYF4UI8?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=406) - - [ ] [Skiena: CSE373 2012 - Lecture 22 - Applications of Dynamic Programming (video)](https://www.youtube.com/watch?v=dRbMC1Ltl3A&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=22) - - [ ] [Simonson: Dynamic Programming 0 (starts at 59:18) (video)](https://youtu.be/J5aJEcOr6Eo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3558) - - [ ] [Simonson: Dynamic Programming I - Lecture 11 (video)](https://www.youtube.com/watch?v=0EzHjQ_SOeU&index=11&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) - - [ ] [Simonson: Dynamic programming II - Lecture 12 (video)](https://www.youtube.com/watch?v=v1qiRwuJU7g&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=12) - - [ ] List of individual DP problems (each is short): - [Dynamic Programming (video)](https://www.youtube.com/playlist?list=PLrmLmBdmIlpsHaNTPP_jHHDx_os9ItYXr) - - [ ] Yale Lecture notes: - - [ ] [Dynamic Programming](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#dynamicProgramming) - - [ ] Coursera: - - [ ] [The RNA secondary structure problem (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/80RrW/the-rna-secondary-structure-problem) - - [ ] [A dynamic programming algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/PSonq/a-dynamic-programming-algorithm) - - [ ] [Illustrating the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/oUEK2/illustrating-the-dp-algorithm) - - [ ] [Running time of the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/nfK2r/running-time-of-the-dp-algorithm) - - [ ] [DP vs. recursive implementation (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/M999a/dp-vs-recursive-implementation) - - [ ] [Global pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/UZ7o6/global-pairwise-sequence-alignment) - - [ ] [Local pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/WnNau/local-pairwise-sequence-alignment) - - ### Object-Oriented Programming - [ ] [Optional: UML 2.0 Series (video)](https://www.youtube.com/watch?v=OkC7HKtiZC0&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc) - [ ] Object-Oriented Software Engineering: Software Dev Using UML and Java (21 videos): @@ -1499,6 +1474,31 @@ You're never really done. ## Additional Learning +- ### Dynamic Programming + - This subject can be pretty difficult, as each DP soluble problem must be defined as a recursion relation, and coming up with it can be tricky. + - I suggest looking at many examples of DP problems until you have a solid understanding of the pattern involved. + - [ ] Videos: + - the Skiena videos can be hard to follow since he sometimes uses the whiteboard, which is too small to see + - [ ] [Skiena: CSE373 2012 - Lecture 19 - Introduction to Dynamic Programming (video)](https://youtu.be/Qc2ieXRgR0k?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1718) + - [ ] [Skiena: CSE373 2012 - Lecture 20 - Edit Distance (video)](https://youtu.be/IsmMhMdyeGY?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=2749) + - [ ] [Skiena: CSE373 2012 - Lecture 21 - Dynamic Programming Examples (video)](https://youtu.be/o0V9eYF4UI8?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=406) + - [ ] [Skiena: CSE373 2012 - Lecture 22 - Applications of Dynamic Programming (video)](https://www.youtube.com/watch?v=dRbMC1Ltl3A&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=22) + - [ ] [Simonson: Dynamic Programming 0 (starts at 59:18) (video)](https://youtu.be/J5aJEcOr6Eo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3558) + - [ ] [Simonson: Dynamic Programming I - Lecture 11 (video)](https://www.youtube.com/watch?v=0EzHjQ_SOeU&index=11&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [Simonson: Dynamic programming II - Lecture 12 (video)](https://www.youtube.com/watch?v=v1qiRwuJU7g&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=12) + - [ ] List of individual DP problems (each is short): + [Dynamic Programming (video)](https://www.youtube.com/playlist?list=PLrmLmBdmIlpsHaNTPP_jHHDx_os9ItYXr) + - [ ] Yale Lecture notes: + - [ ] [Dynamic Programming](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#dynamicProgramming) + - [ ] Coursera: + - [ ] [The RNA secondary structure problem (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/80RrW/the-rna-secondary-structure-problem) + - [ ] [A dynamic programming algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/PSonq/a-dynamic-programming-algorithm) + - [ ] [Illustrating the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/oUEK2/illustrating-the-dp-algorithm) + - [ ] [Running time of the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/nfK2r/running-time-of-the-dp-algorithm) + - [ ] [DP vs. recursive implementation (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/M999a/dp-vs-recursive-implementation) + - [ ] [Global pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/UZ7o6/global-pairwise-sequence-alignment) + - [ ] [Local pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/WnNau/local-pairwise-sequence-alignment) + - ### Compilers - [ ] [How a Compiler Works in ~1 minute (video)](https://www.youtube.com/watch?v=IhC7sdYe-Jg) - [ ] [Harvard CS50 - Compilers (video)](https://www.youtube.com/watch?v=CSZLNYF4Klo) From ba3d7d67a0843c21b8ac0f0f2d13b830425d3f9f Mon Sep 17 00:00:00 2001 From: John Washam Date: Mon, 19 Dec 2016 18:09:15 -0800 Subject: [PATCH 073/109] Added status and follow-up. --- README.md | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 764cb2b..b655430 100644 --- a/README.md +++ b/README.md @@ -204,10 +204,7 @@ Print out a "[future Googler](https://github.com/jwasham/google-interview-univer ## Did I Get the Job? -I haven't applied yet. - -Right now I'm doing programming problems all day long. That will continue for a few weeks, and then I'll -apply through a referral I've been holding onto since February (yes, February). +I'm in the queue right now. Hope to interview soon. Thanks for the referral, JP. @@ -229,6 +226,10 @@ I'm on the journey, too. Follow along: - Google engineers are smart, but many have an insecurity that they aren't smart enough, even though they work at Google. - [The myth of the Genius Programmer](https://www.youtube.com/watch?v=0SARbwvhupQ) +## Don't overdo it + +A follow-up for my story: [Don’t Be Like Me  —  I Studied Too Much](https://medium.com/@googleyasheck/dont-be-like-me-i-studied-too-much-e12e71a3ca7e) + ## About Google - [ ] For students - [Google Careers: Technical Development Guide](https://www.google.com/about/careers/students/guide-to-technical-development.html) From e5ca92332a057e224c1abe96bc0c177e1c827054 Mon Sep 17 00:00:00 2001 From: John Washam Date: Mon, 19 Dec 2016 18:10:43 -0800 Subject: [PATCH 074/109] Added follow-up to TOC. --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index b655430..b402cf5 100644 --- a/README.md +++ b/README.md @@ -35,6 +35,7 @@ If you want to be a reliability engineer or systems engineer, study more from th - [Did I Get the Job?](#did-i-get-the-job) - [Follow Along with Me](#follow-along-with-me) - [Don't feel you aren't smart enough](#dont-feel-you-arent-smart-enough) +- [Don't overdo it](#dont-overdo-it) - [About Google](#about-google) - [About Video Resources](#about-video-resources) - [Interview Process & General Interview Prep](#interview-process--general-interview-prep) From 756f6d656689c07cec60cafe1930f9d506dec42c Mon Sep 17 00:00:00 2001 From: John Washam Date: Mon, 19 Dec 2016 22:11:59 -0800 Subject: [PATCH 075/109] Back to it. --- README.md | 5 ----- 1 file changed, 5 deletions(-) diff --git a/README.md b/README.md index b402cf5..64919c1 100644 --- a/README.md +++ b/README.md @@ -35,7 +35,6 @@ If you want to be a reliability engineer or systems engineer, study more from th - [Did I Get the Job?](#did-i-get-the-job) - [Follow Along with Me](#follow-along-with-me) - [Don't feel you aren't smart enough](#dont-feel-you-arent-smart-enough) -- [Don't overdo it](#dont-overdo-it) - [About Google](#about-google) - [About Video Resources](#about-video-resources) - [Interview Process & General Interview Prep](#interview-process--general-interview-prep) @@ -227,10 +226,6 @@ I'm on the journey, too. Follow along: - Google engineers are smart, but many have an insecurity that they aren't smart enough, even though they work at Google. - [The myth of the Genius Programmer](https://www.youtube.com/watch?v=0SARbwvhupQ) -## Don't overdo it - -A follow-up for my story: [Don’t Be Like Me  —  I Studied Too Much](https://medium.com/@googleyasheck/dont-be-like-me-i-studied-too-much-e12e71a3ca7e) - ## About Google - [ ] For students - [Google Careers: Technical Development Guide](https://www.google.com/about/careers/students/guide-to-technical-development.html) From dedfc52c5fa2bd5b9343d4ea71ab4aa6b77af6d2 Mon Sep 17 00:00:00 2001 From: John Washam Date: Mon, 19 Dec 2016 22:19:05 -0800 Subject: [PATCH 076/109] Added video on Imposter Syndrome. --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 64919c1..8d8bcbc 100644 --- a/README.md +++ b/README.md @@ -225,6 +225,7 @@ I'm on the journey, too. Follow along: ## Don't feel you aren't smart enough - Google engineers are smart, but many have an insecurity that they aren't smart enough, even though they work at Google. - [The myth of the Genius Programmer](https://www.youtube.com/watch?v=0SARbwvhupQ) +- [It's Dangerous to Go Alone: Battling the Invisible Monsters in Tech](https://www.youtube.com/watch?v=1i8ylq4j_EY) ## About Google From 52b676a5753a49fa0057027fa20c222e8a0c579f Mon Sep 17 00:00:00 2001 From: Daniel Ossorio Date: Tue, 20 Dec 2016 09:12:54 +0000 Subject: [PATCH 077/109] Spanish translation file created and first start --- README-es.md | 2019 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2019 insertions(+) create mode 100644 README-es.md diff --git a/README-es.md b/README-es.md new file mode 100644 index 0000000..38ff7a8 --- /dev/null +++ b/README-es.md @@ -0,0 +1,2019 @@ +# Google Interview University + +Version original: [Inglés](README.md) + +## Qué es? + +Es mi guía de estudio en varios meses para ir de desarrollador web (Autodidacta, sin grado en Ciencias de Computadores) a ingeniero de software en Google. + +![Coding at the whiteboard - from HBO's Silicon Valley](https://dng5l3qzreal6.cloudfront.net/2016/Aug/coding_board_small-1470866369118.jpg) + +This long list has been extracted and expanded from **Google's coaching notes**, so these are the things you need to know. +There are extra items I added at the bottom that may come up in the interview or be helpful in solving a problem. Many items are from +Steve Yegge's "[Get that job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html)" and are reflected +sometimes word-for-word in Google's coaching notes. + +I've pared down what you need to know from what Yegge recommends. I've altered Yegge's requirements +from information received from my contact at Google. This is meant for **new software engineers** or those switching from +software/web development to software engineering (where computer science knowledge is required). If you have +many years of experience and are claiming many years of software engineering experience, expect a harder interview. +[Read more here](https://googleyasheck.com/what-you-need-to-know-for-your-google-interview-and-what-you-dont/). + +If you have many years of software/web development experience, note that Google views software engineering as +different from software/web development and they require computer science knowledge. + +If you want to be a reliability engineer or systems engineer, study more from the optional list (networking, security). + +--- + +## Table of Contents + +- [What is it?](#what-is-it) +- [Why use it?](#why-use-it) +- [How to use it](#how-to-use-it) +- [Get in a Googley Mood](#get-in-a-googley-mood) +- [Did I Get the Job?](#did-i-get-the-job) +- [Follow Along with Me](#follow-along-with-me) +- [Don't feel you aren't smart enough](#dont-feel-you-arent-smart-enough) +- [About Google](#about-google) +- [About Video Resources](#about-video-resources) +- [Interview Process & General Interview Prep](#interview-process--general-interview-prep) +- [Pick One Language for the Interview](#pick-one-language-for-the-interview) +- [Book List](#book-list) +- [Before you Get Started](#before-you-get-started) +- [What you Won't See Covered](#what-you-wont-see-covered) +- [Prerequisite Knowledge](#prerequisite-knowledge) +- [The Daily Plan](#the-daily-plan) +- [Algorithmic complexity / Big-O / Asymptotic analysis](#algorithmic-complexity--big-o--asymptotic-analysis) +- [Data Structures](#data-structures) + - [Arrays](#arrays) + - [Linked Lists](#linked-lists) + - [Stack](#stack) + - [Queue](#queue) + - [Hash table](#hash-table) +- [More Knowledge](#more-knowledge) + - [Binary search](#binary-search) + - [Bitwise operations](#bitwise-operations) +- [Trees](#trees) + - [Trees - Notes & Background](#trees---notes--background) + - [Binary search trees: BSTs](#binary-search-trees-bsts) + - [Heap / Priority Queue / Binary Heap](#heap--priority-queue--binary-heap) + - balanced search trees (general concept, not details) + - traversals: preorder, inorder, postorder, BFS, DFS +- [Sorting](#sorting) + - selection + - insertion + - heapsort + - quicksort + - merge sort +- [Graphs](#graphs) + - directed + - undirected + - adjacency matrix + - adjacency list + - traversals: BFS, DFS +- [Even More Knowledge](#even-more-knowledge) + - [Recursion](#recursion) + - [Object-Oriented Programming](#object-oriented-programming) + - [Design Patterns](#design-patterns) + - [Combinatorics (n choose k) & Probability](#combinatorics-n-choose-k--probability) + - [NP, NP-Complete and Approximation Algorithms](#np-np-complete-and-approximation-algorithms) + - [Caches](#caches) + - [Processes and Threads](#processes-and-threads) + - [Papers](#papers) + - [Testing](#testing) + - [Scheduling](#scheduling) + - [Implement system routines](#implement-system-routines) + - [String searching & manipulations](#string-searching--manipulations) +- [System Design, Scalability, Data Handling](#system-design-scalability-data-handling) (if you have 4+ years experience) +- [Final Review](#final-review) +- [Coding Question Practice](#coding-question-practice) +- [Coding exercises/challenges](#coding-exerciseschallenges) +- [Once you're closer to the interview](#once-youre-closer-to-the-interview) +- [Your Resume](#your-resume) +- [Be thinking of for when the interview comes](#be-thinking-of-for-when-the-interview-comes) +- [Have questions for the interviewer](#have-questions-for-the-interviewer) +- [Once You've Got The Job](#once-youve-got-the-job) + +---------------- Everything below this point is optional ---------------- + +- [Additional Books](#additional-books) +- [Additional Learning](#additional-learning) + - [Dynamic Programming](#dynamic-programming) + - [Compilers](#compilers) + - [Floating Point Numbers](#floating-point-numbers) + - [Unicode](#unicode) + - [Endianness](#endianness) + - [Emacs and vi(m)](#emacs-and-vim) + - [Unix command line tools](#unix-command-line-tools) + - [Information theory](#information-theory) + - [Parity & Hamming Code](#parity--hamming-code) + - [Entropy](#entropy) + - [Cryptography](#cryptography) + - [Compression](#compression) + - [Networking](#networking) (if you have networking experience or want to be a systems engineer, expect questions) + - [Computer Security](#computer-security) + - [Garbage collection](#garbage-collection) + - [Parallel Programming](#parallel-programming) + - [Messaging, Serialization, and Queueing Systems](#messaging-serialization-and-queueing-systems) + - [Fast Fourier Transform](#fast-fourier-transform) + - [Bloom Filter](#bloom-filter) + - [HyperLogLog](#hyperloglog) + - [Locality-Sensitive Hashing](#locality-sensitive-hashing) + - [van Emde Boas Trees](#van-emde-boas-trees) + - [Augmented Data Structures](#augmented-data-structures) + - [Tries](#tries) + - [N-ary (K-ary, M-ary) trees](#n-ary-k-ary-m-ary-trees) + - [Balanced search trees](#balanced-search-trees) + - AVL trees + - Splay trees + - Red/black trees + - 2-3 search trees + - 2-3-4 Trees (aka 2-4 trees) + - N-ary (K-ary, M-ary) trees + - B-Trees + - [k-D Trees](#k-d-trees) + - [Skip lists](#skip-lists) + - [Network Flows](#network-flows) + - [Disjoint Sets & Union Find](#disjoint-sets--union-find) + - [Math for Fast Processing](#math-for-fast-processing) + - [Treap](#treap) + - [Linear Programming](#linear-programming) + - [Geometry, Convex hull](#geometry-convex-hull) + - [Discrete math](#discrete-math) + - [Machine Learning](#machine-learning) + - [Go](#go) +- [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) +- [Video Series](#video-series) +- [Computer Science Courses](#computer-science-courses) + +--- + +## Why use it? + +I'm following this plan to prepare for my Google interview. I've been building the web, building +services, and launching startups since 1997. I have an economics degree, not a CS degree. I've +been very successful in my career, but I want to work at Google. I want to progress into larger systems +and get a real understanding of computer systems, algorithmic efficiency, data structure performance, +low-level languages, and how it all works. And if you don't know any of it, Google won't hire you. + +When I started this project, I didn't know a stack from a heap, didn't know Big-O anything, anything about trees, or how to +traverse a graph. If I had to code a sorting algorithm, I can tell ya it wouldn't have been very good. +Every data structure I've ever used was built into the language, and I didn't know how they worked +under the hood at all. I've never had to manage memory unless a process I was running would give an "out of +memory" error, and then I'd have to find a workaround. I've used a few multidimensional arrays in my life and +thousands of associative arrays, but I've never created data structures from scratch. + +But after going through this study plan I have high confidence I'll be hired. It's a long plan. It's going to take me +months. If you are familiar with a lot of this already it will take you a lot less time. + +## How to use it + +Everything below is an outline, and you should tackle the items in order from top to bottom. + +I'm using Github's special markdown flavor, including tasks lists to check progress. + +- [x] Create a new branch so you can check items like this, just put an x in the brackets: [x] + + + Fork a branch and follow the commands below + +`git checkout -b progress` + +`git remote add jwasham https://github.com/jwasham/google-interview-university` + +`git fetch --all` + + Mark all boxes with X after you completed your changes + +`git add . ` + +`git commit -m "Marked x" ` + +`git rebase jwasham/master ` + +`git push --force ` + +[More about Github-flavored markdown](https://guides.github.com/features/mastering-markdown/#GitHub-flavored-markdown) + +## Get in a Googley Mood + +Print out a "[future Googler](https://github.com/jwasham/google-interview-university/blob/master/extras/future-googler.pdf)" sign (or two) and keep your eyes on the prize. + +[![future Googler sign](https://dng5l3qzreal6.cloudfront.net/2016/Oct/Screen_Shot_2016_10_04_at_10_13_24_AM-1475601104364.png)](https://github.com/jwasham/google-interview-university/blob/master/extras/future-googler.pdf) + +## Did I Get the Job? + +I haven't applied yet. + +Right now I'm doing programming problems all day long. That will continue for a few weeks, and then I'll +apply through a referral I've been holding onto since February (yes, February). + + Thanks for the referral, JP. + +## Follow Along with Me + +My story: [Why I Studied Full-Time for 8 Months for a Google Interview](https://medium.com/@googleyasheck/why-i-studied-full-time-for-8-months-for-a-google-interview-cc662ce9bb13) + +I'm on the journey, too. Follow along: + +- **Blog**: [GoogleyAsHeck.com](https://googleyasheck.com/) +- Twitter: [@googleyasheck](https://twitter.com/googleyasheck) +- Twitter: [@StartupNextDoor](https://twitter.com/StartupNextDoor) +- Google+: [+Googleyasheck](https://plus.google.com/+Googleyasheck) +- LinkedIn: [johnawasham](https://www.linkedin.com/in/johnawasham) + +![John Washam - Google Interview University](https://dng5l3qzreal6.cloudfront.net/2016/Aug/book_stack_photo_resized_18_1469302751157-1472661280368.png) + +## Don't feel you aren't smart enough +- Google engineers are smart, but many have an insecurity that they aren't smart enough, even though they work at Google. +- [The myth of the Genius Programmer](https://www.youtube.com/watch?v=0SARbwvhupQ) + +## About Google + +- [ ] For students - [Google Careers: Technical Development Guide](https://www.google.com/about/careers/students/guide-to-technical-development.html) +- [ ] How Search Works: + - [ ] [The Evolution of Search (video)](https://www.youtube.com/watch?v=mTBShTwCnD4) + - [ ] [How Search Works - the story](https://www.google.com/insidesearch/howsearchworks/thestory/) + - [ ] [How Search Works](https://www.google.com/insidesearch/howsearchworks/) + - [ ] [How Search Works - Matt Cutts (video)](https://www.youtube.com/watch?v=BNHR6IQJGZs) + - [ ] [How Google makes improvements to its search algorithm (video)](https://www.youtube.com/watch?v=J5RZOU6vK4Q) +- [ ] Series: + - [ ] [How Google Search Dealt With Mobile](https://backchannel.com/how-google-search-dealt-with-mobile-33bc09852dc9) + - [ ] [Google's Secret Study To Find Out Our Needs](https://backchannel.com/googles-secret-study-to-find-out-our-needs-eba8700263bf) + - [ ] [Google Search Will Be Your Next Brain](https://backchannel.com/google-search-will-be-your-next-brain-5207c26e4523) + - [ ] [The Deep Mind Of Demis Hassabis](https://backchannel.com/the-deep-mind-of-demis-hassabis-156112890d8a) +- [ ] [Book: How Google Works](https://www.amazon.com/How-Google-Works-Eric-Schmidt/dp/1455582344) +- [ ] [Made by Google announcement - Oct 2016 (video)](https://www.youtube.com/watch?v=q4y0KOeXViI) + +## About Video Resources + +Some videos are available only by enrolling in a Coursera, EdX, or Lynda.com class. These are called MOOCs. +Sometimes the classes are not in session so you have to wait a couple of months, so you have no access. Lynda.com courses are not free. + + I'd appreciate your help to add free and always-available public sources, such as YouTube videos to accompany the online course videos. + I like using university lectures. + + +## Interview Process & General Interview Prep + +- [ ] Videos: + - [ ] [How to Work at Google: Prepare for an Engineering Interview (video)](https://www.youtube.com/watch?v=ko-KkSmp-Lk) + - [ ] [How to Work at Google: Example Coding/Engineering Interview (video)](https://www.youtube.com/watch?v=XKu_SEDAykw) + - [ ] [How to Work at Google - Candidate Coaching Session (video)](https://www.youtube.com/watch?v=oWbUtlUhwa8&feature=youtu.be) + - [ ] [Google Recruiters Share Technical Interview Tips (video)](https://www.youtube.com/watch?v=qc1owf2-220&feature=youtu.be) + - [ ] [How to Work at Google: Tech Resume Preparation (video)](https://www.youtube.com/watch?v=8npJLXkcmu8) + +- [ ] Articles: + - [ ] [Becoming a Googler in Three Steps](http://www.google.com/about/careers/lifeatgoogle/hiringprocess/) + - [ ] [Get That Job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html) + - all the things he mentions that you need to know are listed below + - [ ] _(very dated)_ [How To Get A Job At Google, Interview Questions, Hiring Process](http://dondodge.typepad.com/the_next_big_thing/2010/09/how-to-get-a-job-at-google-interview-questions-hiring-process.html) + - [ ] [Phone Screen Questions](http://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions) + +- [ ] Prep Courses: + - [ ] [Software Engineer Interview Unleashed (paid course)](https://www.udemy.com/software-engineer-interview-unleashed): + - Learn how to make yourself ready for software engineer interviews from a former Google interviewer. + +- [ ] Additional (not suggested by Google but I added): + - [ ] [ABC: Always Be Coding](https://medium.com/always-be-coding/abc-always-be-coding-d5f8051afce2#.4heg8zvm4) + - [ ] [Four Steps To Google Without A Degree](https://medium.com/always-be-coding/four-steps-to-google-without-a-degree-8f381aa6bd5e#.asalo1vfx) + - [ ] [Whiteboarding](https://medium.com/@dpup/whiteboarding-4df873dbba2e#.hf6jn45g1) + - [ ] [How Google Thinks About Hiring, Management And Culture](http://www.kpcb.com/blog/lessons-learned-how-google-thinks-about-hiring-management-and-culture) + - [ ] [Effective Whiteboarding during Programming Interviews](http://www.coderust.com/blog/2014/04/10/effective-whiteboarding-during-programming-interviews/) + - [ ] Cracking The Coding Interview Set 1: + - [ ] [Gayle L McDowell - Cracking The Coding Interview (video)](https://www.youtube.com/watch?v=rEJzOhC5ZtQ) + - [ ] [Cracking the Coding Interview with Author Gayle Laakmann McDowell (video)](https://www.youtube.com/watch?v=aClxtDcdpsQ) + - [ ] How to Get a Job at the Big 4: + - [ ] ['How to Get a Job at the Big 4 - Amazon, Facebook, Google & Microsoft' (video)](https://www.youtube.com/watch?v=YJZCUhxNCv8) + - [ ] [Failing at Google Interviews](http://alexbowe.com/failing-at-google-interviews/) + +## Pick One Language for the Interview + +I wrote this short article about it: [Important: Pick One Language for the Google Interview](https://googleyasheck.com/important-pick-one-language-for-the-google-interview/) + +You can use a language you are comfortable in to do the coding part of the interview, but for Google, these are solid choices: + +- C++ +- Java +- Python + +You could also use these, but read around first. There may be caveats: + +- JavaScript +- Ruby + +You need to be very comfortable in the language and be knowledgeable. + +Read more about choices: +- http://www.byte-by-byte.com/choose-the-right-language-for-your-coding-interview/ +- http://blog.codingforinterviews.com/best-programming-language-jobs/ +- https://www.quora.com/What-is-the-best-language-to-program-in-for-an-in-person-Google-interview + +[See language resources here](programming-language-resources.md) + +You'll see some C, C++, and Python learning included below, because I'm learning. There are a few books involved, see the bottom. + +## Book List + +This is a shorter list than what I used. This is abbreviated to save you time. + +### Interview Prep + +- [ ] [Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition](http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html) + - answers in C++ and Java + - recommended in Google candidate coaching + - this is a good warm-up for Cracking the Coding Interview + - not too difficult, most problems may be easier than what you'll see in an interview (from what I've read) +- [ ] [Cracking the Coding Interview, 6th Edition](http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/) + - answers in Java + - recommended on the [Google Careers site](https://www.google.com/about/careers/how-we-hire/interview/) + - If you see people reference "The Google Resume", it was a book replaced by "Cracking the Coding Interview". + +If you have tons of extra time: + +- [ ] [Elements of Programming Interviews](https://www.amazon.com/Elements-Programming-Interviews-Insiders-Guide/dp/1479274836) + - all code is in C++, very good if you're looking to use C++ in your interview + - a good book on problem solving in general. + +### Computer Architecture + +If short on time: + +- [ ] [Write Great Code: Volume 1: Understanding the Machine](https://www.amazon.com/Write-Great-Code-Understanding-Machine/dp/1593270038) + - The book was published in 2004, and is somehat outdated, but it's a terrific resource for understanding a computer in brief. + - The author invented HLA, so take mentions and examples in HLA with a grain of salt. Not widely used, but decent examples of what assembly looks like. + - These chapters are worth the read to give you a nice foundation: + - Chapter 2 - Numeric Representation + - Chapter 3 - Binary Arithmetic and Bit Operations + - Chapter 4 - Floating-Point Representation + - Chapter 5 - Character Representation + - Chapter 6 - Memory Organization and Access + - Chapter 7 - Composite Data Types and Memory Objects + - Chapter 9 - CPU Architecture + - Chapter 10 - Instruction Set Architecture + - Chapter 11 - Memory Architecture and Organization + +If you have more time (I want this book): + +- [ ] [Computer Architecture, Fifth Edition: A Quantitative Approach](https://www.amazon.com/dp/012383872X/) + - For a richer, more up-to-date (2011), but longer treatment + +### Language Specific + +**You need to choose a language for the interview (see above).** Here are my recommendations by language. I don't have resources for all languages. I welcome additions. + +If you read though one of these, you should have all the data structures and algorithms knowledge you'll need to start doing coding problems. +**You can skip all the video lectures in this project**, unless you'd like a review. + +[Additional language-specific resources here.](programming-language-resources.md) + +### C++ + +I haven't read these two, but they are highly rated and written by Sedgewick. He's awesome. + +- [ ] [Algorithms in C++, Parts 1-4: Fundamentals, Data Structure, Sorting, Searching](https://www.amazon.com/Algorithms-Parts-1-4-Fundamentals-Structure/dp/0201350882/) +- [ ] [Algorithms in C++ Part 5: Graph Algorithms](https://www.amazon.com/Algorithms-Part-Graph-3rd-Pt-5/dp/0201361183/) + +If you have a better recommendation for C++, please let me know. Looking for a comprehensive resource. + +### Java + +- [ ] [Algorithms (Sedgewick and Wayne)](https://www.amazon.com/Algorithms-4th-Robert-Sedgewick/dp/032157351X/) + - videos with book content (and Sedgewick!): + - [Algorithms I](https://www.youtube.com/user/algorithmscourses/playlists?view=50&sort=dd&shelf_id=2) + - [Algorithms II](https://www.youtube.com/user/algorithmscourses/playlists?shelf_id=3&view=50&sort=dd) + +OR: + +- [ ] [Data Structures and Algorithms in Java](https://www.amazon.com/Data-Structures-Algorithms-Michael-Goodrich/dp/1118771338/) + - by Goodrich, Tamassia, Goldwasser + - used as optional text for CS intro course at UC Berkeley + - see my book report on the Python version below. This book covers the same topics. + +### Python + +- [ ] [Data Structures and Algorithms in Python](https://www.amazon.com/Structures-Algorithms-Python-Michael-Goodrich/dp/1118290275/) + - by Goodrich, Tamassia, Goldwasser + - I loved this book. It covered everything and more. + - Pythonic code + - my glowing book report: https://googleyasheck.com/book-report-data-structures-and-algorithms-in-python/ + + +### Optional Books + +**Some people recommend these, but I think it's going overboard, unless you have many years of software engineering experience and expect a much harder interview:** + +- [ ] [Algorithm Design Manual](http://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202) (Skiena) + - As a review and problem recognition + - The algorithm catalog portion is well beyond the scope of difficulty you'll get in an interview. + - This book has 2 parts: + - class textbook on data structures and algorithms + - pros: + - is a good review as any algorithms textbook would be + - nice stories from his experiences solving problems in industry and academia + - code examples in C + - cons: + - can be as dense or impenetrable as CLRS, and in some cases, CLRS may be a better alternative for some subjects + - chapters 7, 8, 9 can be painful to try to follow, as some items are not explained well or require more brain than I have + - don't get me wrong: I like Skiena, his teaching style, and mannerisms, but I may not be Stony Brook material. + - algorithm catalog: + - this is the real reason you buy this book. + - about to get to this part. Will update here once I've made my way through it. + - To quote Yegge: "More than any other book it helped me understand just how astonishingly commonplace + (and important) graph problems are – they should be part of every working programmer's toolkit. The book also + covers basic data structures and sorting algorithms, which is a nice bonus. But the gold mine is the second half + of the book, which is a sort of encyclopedia of 1-pagers on zillions of useful problems and various ways to solve + them, without too much detail. Almost every 1-pager has a simple picture, making it easy to remember. This is a + great way to learn how to identify hundreds of problem types." + - Can rent it on kindle + - Half.com is a great resource for textbooks at good prices. + - Answers: + - [Solutions](http://www.algorithm.cs.sunysb.edu/algowiki/index.php/The_Algorithms_Design_Manual_(Second_Edition)) + - [Solutions](http://blog.panictank.net/category/algorithmndesignmanualsolutions/page/2/) + - [Errata](http://www3.cs.stonybrook.edu/~skiena/algorist/book/errata) + +- [ ] [Introduction to Algorithms](https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844) + - **Important:** Reading this book will only have limited value. This book is a great review of algorithms and data structures, but won't teach you how to write good code. You have to be able to code a decent solution efficiently. + - To quote Yegge: "But if you want to come into your interviews *prepped*, then consider deferring your application until you've made your way through that book." + - Half.com is a great resource for textbooks at good prices. + - aka CLR, sometimes CLRS, because Stein was late to the game + +- [ ] [Programming Pearls](http://www.amazon.com/Programming-Pearls-2nd-Jon-Bentley/dp/0201657880) + - The first couple of chapters present clever solutions to programming problems (some very old using data tape) but + that is just an intro. This a guidebook on program design and architecture, much like Code Complete, but much shorter. + +- ~~"Algorithms and Programming: Problems and Solutions" by Shen~~ + - A fine book, but after working through problems on several pages I got frustrated with the Pascal, do while loops, 1-indexed arrays, and unclear post-condition satisfaction results. + - Would rather spend time on coding problems from another book or online coding problems. + + +## Before you Get Started + +This list grew over many months, and yes, it kind of got out of hand. + +Here are some mistakes I made so you'll have a better experience. + +### 1. You Won't Remember it All + +I watched hours of videos and took copious notes, and months later there was much I didn't remember. I spent 3 days going +through my notes and making flashcards so I could review. + +Read please so you won't make my mistakes: + +[Retaining Computer Science Knowledge](https://googleyasheck.com/retaining-computer-science-knowledge/) + +### 2. Use Flashcards + +To solve the problem, I made a little flashcards site where I could add flashcards of 2 types: general and code. +Each card has different formatting. + +I made a mobile-first website so I could review on my phone and tablet, wherever I am. + +Make your own for free: + +- [Flashcards site repo](https://github.com/jwasham/computer-science-flash-cards) +- [My flash cards database](https://github.com/jwasham/computer-science-flash-cards/blob/master/cards-jwasham.db): Keep in mind I went overboard and have cards covering everything from assembly language and Python trivia to machine learning and statistics. It's way too much for what's required by Google. + +**Note on flashcards:** The first time you recognize you know the answer, don't mark it as known. You have to see the +same card and answer it several times correctly before you really know it. Repetition will put that knowledge deeper in +your brain. + +An alternative to using my flashcard site is [Anki](http://ankisrs.net/), which has been recommended to me numerous times. It uses a repetition system to help you remember. +It's user-friendly, available on all platforms and has a cloud sync system. It costs $25 on iOS but is free on other platforms. + +My flashcard database in Anki format: https://ankiweb.net/shared/info/25173560 (thanks [@xiewenya](https://github.com/xiewenya)) + +### 3. Review, review, review + +I keep a set of cheat sheets on ASCII, OSI stack, Big-O notations, and more. I study them when I have some spare time. + +Take a break from programming problems for a half hour and go through your flashcards. + +### 4. Focus + +There are a lot of distractions that can take up valuable time. Focus and concentration are hard. + +## What you won't see covered + +This big list all started as a personal to-do list made from Google interview coaching notes. These are prevalent +technologies but were not mentioned in those notes: + +- SQL +- Javascript +- HTML, CSS, and other front-end technologies + +## The Daily Plan + +Some subjects take one day, and some will take multiple days. Some are just learning with nothing to implement. + +Each day I take one subject from the list below, watch videos about that subject, and write an implementation in: +- C - using structs and functions that take a struct * and something else as args. +- C++ - without using built-in types +- C++ - using built-in types, like STL's std::list for a linked list +- Python - using built-in types (to keep practicing Python) +- and write tests to ensure I'm doing it right, sometimes just using simple assert() statements +- You may do Java or something else, this is just my thing. + +You don't need all these. You need only [one language for the interview](#pick-one-language-for-the-interview). + +Why code in all of these? +- Practice, practice, practice, until I'm sick of it, and can do it with no problem (some have many edge cases and bookkeeping details to remember) +- Work within the raw constraints (allocating/freeing memory without help of garbage collection (except Python)) +- Make use of built-in types so I have experience using the built-in tools for real-world use (not going to write my own linked list implementation in production) + +I may not have time to do all of these for every subject, but I'll try. + +You can see my code here: + - [C] (https://github.com/jwasham/practice-c) + - [C++] (https://github.com/jwasham/practice-cpp) + - [Python] (https://github.com/jwasham/practice-python) + +You don't need to memorize the guts of every algorithm. + +Write code on a whiteboard or paper, not a computer. Test with some sample inputs. Then test it out on a computer. + +## Prerequisite Knowledge + +- [ ] **Learn C** + - C is everywhere. You'll see examples in books, lectures, videos, *everywhere* while you're studying. + - [ ] [C Programming Language, Vol 2](https://www.amazon.com/Programming-Language-Brian-W-Kernighan/dp/0131103628) + - This is a short book, but it will give you a great handle on the C language and if you practice it a little + you'll quickly get proficient. Understanding C helps you understand how programs and memory work. + - [answers to questions](https://github.com/lekkas/c-algorithms) + +- [ ] **How computers process a program:** + - [ ] [How does CPU execute program (video)](https://www.youtube.com/watch?v=42KTvGYQYnA) + - [ ] [Machine Code Instructions (video)](https://www.youtube.com/watch?v=Mv2XQgpbTNE) + +## Algorithmic complexity / Big-O / Asymptotic analysis +- nothing to implement +- [ ] [Harvard CS50 - Asymptotic Notation (video)](https://www.youtube.com/watch?v=iOq5kSKqeR4) +- [ ] [Big O Notations (general quick tutorial) (video)](https://www.youtube.com/watch?v=V6mKVRU1evU) +- [ ] [Big O Notation (and Omega and Theta) - best mathematical explanation (video)](https://www.youtube.com/watch?v=ei-A_wy5Yxw&index=2&list=PL1BaGV1cIH4UhkL8a9bJGG356covJ76qN) +- [ ] Skiena: + - [video](https://www.youtube.com/watch?v=gSyDMtdPNpU&index=2&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [slides](http://www3.cs.stonybrook.edu/~algorith/video-lectures/2007/lecture2.pdf) +- [ ] [A Gentle Introduction to Algorithm Complexity Analysis](http://discrete.gr/complexity/) +- [ ] [Orders of Growth (video)](https://class.coursera.org/algorithmicthink1-004/lecture/59) +- [ ] [Asymptotics (video)](https://class.coursera.org/algorithmicthink1-004/lecture/61) +- [ ] [UC Berkeley Big O (video)](https://youtu.be/VIS4YDpuP98) +- [ ] [UC Berkeley Big Omega (video)](https://youtu.be/ca3e7UVmeUc) +- [ ] [Amortized Analysis (video)](https://www.youtube.com/watch?v=B3SpQZaAZP4&index=10&list=PL1BaGV1cIH4UhkL8a9bJGG356covJ76qN) +- [ ] [Illustrating "Big O" (video)](https://class.coursera.org/algorithmicthink1-004/lecture/63) +- [ ] TopCoder (includes recurrence relations and master theorem): + - [Computational Complexity: Section 1](https://www.topcoder.com/community/data-science/data-science-tutorials/computational-complexity-section-1/) + - [Computational Complexity: Section 2](https://www.topcoder.com/community/data-science/data-science-tutorials/computational-complexity-section-2/) +- [ ] [Cheat sheet](http://bigocheatsheet.com/) + + + If some of the lectures are too mathy, you can jump down to the bottom and + watch the discrete mathematics videos to get the background knowledge. + +## Data Structures + +- ### Arrays + - Implement an automatically resizing vector. + - [ ] Description: + - [Arrays (video)](https://www.coursera.org/learn/data-structures/lecture/OsBSF/arrays) + - [UCBerkley CS61B - Linear and Multi-Dim Arrays (video)](https://youtu.be/Wp8oiO_CZZE?t=15m32s) + - [Basic Arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Basic-arrays/149042/177104-4.html) + - [Multi-dim (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Multidimensional-arrays/149042/177105-4.html) + - [Dynamic Arrays (video)](https://www.coursera.org/learn/data-structures/lecture/EwbnV/dynamic-arrays) + - [Jagged Arrays (video)](https://www.youtube.com/watch?v=1jtrQqYpt7g) + - [Jagged Arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Jagged-arrays/149042/177106-4.html) + - [Resizing arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Resizable-arrays/149042/177108-4.html) + - [ ] Implement a vector (mutable array with automatic resizing): + - [ ] Practice coding using arrays and pointers, and pointer math to jump to an index instead of using indexing. + - [ ] new raw data array with allocated memory + - can allocate int array under the hood, just not use its features + - start with 16, or if starting number is greater, use power of 2 - 16, 32, 64, 128 + - [ ] size() - number of items + - [ ] capacity() - number of items it can hold + - [ ] is_empty() + - [ ] at(index) - returns item at given index, blows up if index out of bounds + - [ ] push(item) + - [ ] insert(index, item) - inserts item at index, shifts that index's value and trailing elements to the right + - [ ] prepend(item) - can use insert above at index 0 + - [ ] pop() - remove from end, return value + - [ ] delete(index) - delete item at index, shifting all trailing elements left + - [ ] remove(item) - looks for value and removes index holding it (even if in multiple places) + - [ ] find(item) - looks for value and returns first index with that value, -1 if not found + - [ ] resize(new_capacity) // private function + - when you reach capacity, resize to double the size + - when popping an item, if size is 1/4 of capacity, resize to half + - [ ] Time + - O(1) to add/remove at end (amortized for allocations for more space), index, or update + - O(n) to insert/remove elsewhere + - [ ] Space + - contiguous in memory, so proximity helps performance + - space needed = (array capacity, which is >= n) * size of item, but even if 2n, still O(n) + +- ### Linked Lists + - [ ] Description: + - [ ] [Singly Linked Lists (video)](https://www.coursera.org/learn/data-structures/lecture/kHhgK/singly-linked-lists) + - [ ] [CS 61B - Linked Lists (video)](https://www.youtube.com/watch?v=sJtJOtXCW_M&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=5) + - [ ] [C Code (video)](https://www.youtube.com/watch?v=QN6FPiD0Gzo) + - not the whole video, just portions about Node struct and memory allocation. + - [ ] Linked List vs Arrays: + - [Core Linked Lists Vs Arrays (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/rjBs9/core-linked-lists-vs-arrays) + - [In The Real World Linked Lists Vs Arrays (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/QUaUd/in-the-real-world-lists-vs-arrays) + - [ ] [why you should avoid linked lists (video)](https://www.youtube.com/watch?v=YQs6IC-vgmo) + - [ ] Gotcha: you need pointer to pointer knowledge: + (for when you pass a pointer to a function that may change the address where that pointer points) + This page is just to get a grasp on ptr to ptr. I don't recommend this list traversal style. Readability and maintainability suffer due to cleverness. + - [Pointers to Pointers](https://www.eskimo.com/~scs/cclass/int/sx8.html) + - [ ] implement (I did with tail pointer & without): + - [ ] size() - returns number of data elements in list + - [ ] empty() - bool returns true if empty + - [ ] value_at(index) - returns the value of the nth item (starting at 0 for first) + - [ ] push_front(value) - adds an item to the front of the list + - [ ] pop_front() - remove front item and return its value + - [ ] push_back(value) - adds an item at the end + - [ ] pop_back() - removes end item and returns its value + - [ ] front() - get value of front item + - [ ] back() - get value of end item + - [ ] insert(index, value) - insert value at index, so current item at that index is pointed to by new item at index + - [ ] erase(index) - removes node at given index + - [ ] value_n_from_end(n) - returns the value of the node at nth position from the end of the list + - [ ] reverse() - reverses the list + - [ ] remove_value(value) - removes the first item in the list with this value + - [ ] Doubly-linked List + - [Description (video)](https://www.coursera.org/learn/data-structures/lecture/jpGKD/doubly-linked-lists) + - No need to implement + +- ### Stack + - [ ] [Stacks (video)](https://www.coursera.org/learn/data-structures/lecture/UdKzQ/stacks) + - [ ] [Using Stacks Last-In First-Out (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-stacks-last-first-out/149042/177120-4.html) + - [ ] Will not implement. Implementing with array is trivial. + +- ### Queue + - [ ] [Using Queues First-In First-Out(video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-queues-first-first-out/149042/177122-4.html) + - [ ] [Queue (video)](https://www.coursera.org/learn/data-structures/lecture/EShpq/queue) + - [ ] [Circular buffer/FIFO](https://en.wikipedia.org/wiki/Circular_buffer) + - [ ] [Priority Queues (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Priority-queues-deques/149042/177123-4.html) + - [ ] Implement using linked-list, with tail pointer: + - enqueue(value) - adds value at position at tail + - dequeue() - returns value and removes least recently added element (front) + - empty() + - [ ] Implement using fixed-sized array: + - enqueue(value) - adds item at end of available storage + - dequeue() - returns value and removes least recently added element + - empty() + - full() + - [ ] Cost: + - a bad implementation using linked list where you enqueue at head and dequeue at tail would be O(n) + because you'd need the next to last element, causing a full traversal each dequeue + - enqueue: O(1) (amortized, linked list and array [probing]) + - dequeue: O(1) (linked list and array) + - empty: O(1) (linked list and array) + +- ### Hash table + - [ ] Videos: + - [ ] [Hashing with Chaining (video)](https://www.youtube.com/watch?v=0M_kIqhwbFo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=8) + - [ ] [Table Doubling, Karp-Rabin (video)](https://www.youtube.com/watch?v=BRO7mVIFt08&index=9&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [Open Addressing, Cryptographic Hashing (video)](https://www.youtube.com/watch?v=rvdJDijO2Ro&index=10&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [PyCon 2010: The Mighty Dictionary (video)](https://www.youtube.com/watch?v=C4Kc8xzcA68) + - [ ] [(Advanced) Randomization: Universal & Perfect Hashing (video)](https://www.youtube.com/watch?v=z0lJ2k0sl1g&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=11) + - [ ] [(Advanced) Perfect hashing (video)](https://www.youtube.com/watch?v=N0COwN14gt0&list=PL2B4EEwhKD-NbwZ4ezj7gyc_3yNrojKM9&index=4) + + - [ ] Online Courses: + - [ ] [Understanding Hash Functions (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Understanding-hash-functions/149042/177126-4.html) + - [ ] [Using Hash Tables (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-hash-tables/149042/177127-4.html) + - [ ] [Supporting Hashing (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Supporting-hashing/149042/177128-4.html) + - [ ] [Language Support Hash Tables (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Language-support-hash-tables/149042/177129-4.html) + - [ ] [Core Hash Tables (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/m7UuP/core-hash-tables) + - [ ] [Data Structures (video)](https://www.coursera.org/learn/data-structures/home/week/3) + - [ ] [Phone Book Problem (video)](https://www.coursera.org/learn/data-structures/lecture/NYZZP/phone-book-problem) + - [ ] distributed hash tables: + - [Instant Uploads And Storage Optimization In Dropbox (video)](https://www.coursera.org/learn/data-structures/lecture/DvaIb/instant-uploads-and-storage-optimization-in-dropbox) + - [Distributed Hash Tables (video)](https://www.coursera.org/learn/data-structures/lecture/tvH8H/distributed-hash-tables) + + - [ ] implement with array using linear probing + - hash(k, m) - m is size of hash table + - add(key, value) - if key already exists, update value + - exists(key) + - get(key) + - remove(key) + +## More Knowledge + +- ### Binary search + - [ ] [Binary Search (video)](https://www.youtube.com/watch?v=D5SrAga1pno) + - [ ] [Binary Search (video)](https://www.khanacademy.org/computing/computer-science/algorithms/binary-search/a/binary-search) + - [ ] [detail](https://www.topcoder.com/community/data-science/data-science-tutorials/binary-search/) + - [ ] Implement: + - binary search (on sorted array of integers) + - binary search using recursion + +- ### Bitwise operations + - [ ] [Bits cheat sheet](https://github.com/jwasham/google-interview-university/blob/master/extras/cheat%20sheets/bits-cheat-cheet.pdf) - you should know many of the powers of 2 from (2^1 to 2^16 and 2^32) + - [ ] Get a really good understanding of manipulating bits with: &, |, ^, ~, >>, << + - [ ] [words](https://en.wikipedia.org/wiki/Word_(computer_architecture)) + - [ ] Good intro: + [Bit Manipulation (video)](https://www.youtube.com/watch?v=7jkIUgLC29I) + - [ ] [C Programming Tutorial 2-10: Bitwise Operators (video)](https://www.youtube.com/watch?v=d0AwjSpNXR0) + - [ ] [Bit Manipulation](https://en.wikipedia.org/wiki/Bit_manipulation) + - [ ] [Bitwise Operation](https://en.wikipedia.org/wiki/Bitwise_operation) + - [ ] [Bithacks](https://graphics.stanford.edu/~seander/bithacks.html) + - [ ] [The Bit Twiddler](http://bits.stephan-brumme.com/) + - [ ] [The Bit Twiddler Interactive](http://bits.stephan-brumme.com/interactive.html) + - [ ] 2s and 1s complement + - [Binary: Plusses & Minuses (Why We Use Two's Complement) (video)](https://www.youtube.com/watch?v=lKTsv6iVxV4) + - [1s Complement](https://en.wikipedia.org/wiki/Ones%27_complement) + - [2s Complement](https://en.wikipedia.org/wiki/Two%27s_complement) + - [ ] count set bits + - [4 ways to count bits in a byte (video)](https://youtu.be/Hzuzo9NJrlc) + - [Count Bits](https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetKernighan) + - [How To Count The Number Of Set Bits In a 32 Bit Integer](http://stackoverflow.com/questions/109023/how-to-count-the-number-of-set-bits-in-a-32-bit-integer) + - [ ] round to next power of 2: + - [Round Up To Next Power Of Two](http://bits.stephan-brumme.com/roundUpToNextPowerOfTwo.html) + - [ ] swap values: + - [Swap](http://bits.stephan-brumme.com/swap.html) + - [ ] absolute value: + - [Absolute Integer](http://bits.stephan-brumme.com/absInteger.html) + +## Trees + +- ### Trees - Notes & Background + - [ ] [Series: Core Trees (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/ovovP/core-trees) + - [ ] [Series: Trees (video)](https://www.coursera.org/learn/data-structures/lecture/95qda/trees) + - basic tree construction + - traversal + - manipulation algorithms + - BFS (breadth-first search) + - [MIT (video)](https://www.youtube.com/watch?v=s-CYnVz-uh4&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=13) + - level order (BFS, using queue) + time complexity: O(n) + space complexity: best: O(1), worst: O(n/2)=O(n) + - DFS (depth-first search) + - [MIT (video)](https://www.youtube.com/watch?v=AfSk24UTFS8&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=14) + - notes: + time complexity: O(n) + space complexity: + best: O(log n) - avg. height of tree + worst: O(n) + - inorder (DFS: left, self, right) + - postorder (DFS: left, right, self) + - preorder (DFS: self, left, right) + +- ### Binary search trees: BSTs + - [ ] [Binary Search Tree Review (video)](https://www.youtube.com/watch?v=x6At0nzX92o&index=1&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [Series (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/p82sw/core-introduction-to-binary-search-trees) + - starts with symbol table and goes through BST applications + - [ ] [Introduction (video)](https://www.coursera.org/learn/data-structures/lecture/E7cXP/introduction) + - [ ] [MIT (video)](https://www.youtube.com/watch?v=9Jry5-82I68) + - C/C++: + - [ ] [Binary search tree - Implementation in C/C++ (video)](https://www.youtube.com/watch?v=COZK7NATh4k&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=28) + - [ ] [BST implementation - memory allocation in stack and heap (video)](https://www.youtube.com/watch?v=hWokyBoo0aI&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=29) + - [ ] [Find min and max element in a binary search tree (video)](https://www.youtube.com/watch?v=Ut90klNN264&index=30&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Find height of a binary tree (video)](https://www.youtube.com/watch?v=_pnqMz5nrRs&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=31) + - [ ] [Binary tree traversal - breadth-first and depth-first strategies (video)](https://www.youtube.com/watch?v=9RHO6jU--GU&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=32) + - [ ] [Binary tree: Level Order Traversal (video)](https://www.youtube.com/watch?v=86g8jAQug04&index=33&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Binary tree traversal: Preorder, Inorder, Postorder (video)](https://www.youtube.com/watch?v=gm8DUJJhmY4&index=34&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Check if a binary tree is binary search tree or not (video)](https://www.youtube.com/watch?v=yEwSGhSsT0U&index=35&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Delete a node from Binary Search Tree (video)](https://www.youtube.com/watch?v=gcULXE7ViZw&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=36) + - [ ] [Inorder Successor in a binary search tree (video)](https://www.youtube.com/watch?v=5cPbNCrdotA&index=37&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] Implement: + - [ ] insert // insert value into tree + - [ ] get_node_count // get count of values stored + - [ ] print_values // prints the values in the tree, from min to max + - [ ] delete_tree + - [ ] is_in_tree // returns true if given value exists in the tree + - [ ] get_height // returns the height in nodes (single node's height is 1) + - [ ] get_min // returns the minimum value stored in the tree + - [ ] get_max // returns the maximum value stored in the tree + - [ ] is_binary_search_tree + - [ ] delete_value + - [ ] get_successor // returns next-highest value in tree after given value, -1 if none + +- ### Heap / Priority Queue / Binary Heap + - visualized as a tree, but is usually linear in storage (array, linked list) + - [ ] [Heap](https://en.wikipedia.org/wiki/Heap_(data_structure)) + - [ ] [Introduction (video)](https://www.coursera.org/learn/data-structures/lecture/2OpTs/introduction) + - [ ] [Naive Implementations (video)](https://www.coursera.org/learn/data-structures/lecture/z3l9N/naive-implementations) + - [ ] [Binary Trees (video)](https://www.coursera.org/learn/data-structures/lecture/GRV2q/binary-trees) + - [ ] [Tree Height Remark (video)](https://www.coursera.org/learn/data-structures/supplement/S5xxz/tree-height-remark) + - [ ] [Basic Operations (video)](https://www.coursera.org/learn/data-structures/lecture/0g1dl/basic-operations) + - [ ] [Complete Binary Trees (video)](https://www.coursera.org/learn/data-structures/lecture/gl5Ni/complete-binary-trees) + - [ ] [Pseudocode (video)](https://www.coursera.org/learn/data-structures/lecture/HxQo9/pseudocode) + - [ ] [Heap Sort - jumps to start (video)](https://youtu.be/odNJmw5TOEE?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3291) + - [ ] [Heap Sort (video)](https://www.coursera.org/learn/data-structures/lecture/hSzMO/heap-sort) + - [ ] [Building a heap (video)](https://www.coursera.org/learn/data-structures/lecture/dwrOS/building-a-heap) + - [ ] [MIT: Heaps and Heap Sort (video)](https://www.youtube.com/watch?v=B7hVxCmfPtM&index=4&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [CS 61B Lecture 24: Priority Queues (video)](https://www.youtube.com/watch?v=yIUFT6AKBGE&index=24&list=PL4BBB74C7D2A1049C) + - [ ] [Linear Time BuildHeap (max-heap)](https://www.youtube.com/watch?v=MiyLo8adrWw) + - [ ] Implement a max-heap: + - [ ] insert + - [ ] sift_up - needed for insert + - [ ] get_max - returns the max item, without removing it + - [ ] get_size() - return number of elements stored + - [ ] is_empty() - returns true if heap contains no elements + - [ ] extract_max - returns the max item, removing it + - [ ] sift_down - needed for extract_max + - [ ] remove(i) - removes item at index x + - [ ] heapify - create a heap from an array of elements, needed for heap_sort + - [ ] heap_sort() - take an unsorted array and turn it into a sorted array in-place using a max heap + - note: using a min heap instead would save operations, but double the space needed (cannot do in-place). + +## Sorting + +- [ ] Notes: + - Implement sorts & know best case/worst case, average complexity of each: + - no bubble sort - it's terrible - O(n^2), except when n <= 16 + - [ ] stability in sorting algorithms ("Is Quicksort stable?") + - [Sorting Algorithm Stability](https://en.wikipedia.org/wiki/Sorting_algorithm#Stability) + - [Stability In Sorting Algorithms](http://stackoverflow.com/questions/1517793/stability-in-sorting-algorithms) + - [Stability In Sorting Algorithms](http://www.geeksforgeeks.org/stability-in-sorting-algorithms/) + - [Sorting Algorithms - Stability](http://homepages.math.uic.edu/~leon/cs-mcs401-s08/handouts/stability.pdf) + - [ ] Which algorithms can be used on linked lists? Which on arrays? Which on both? + - I wouldn't recommend sorting a linked list, but merge sort is doable. + - [Merge Sort For Linked List](http://www.geeksforgeeks.org/merge-sort-for-linked-list/) + +- For heapsort, see Heap data structure above. Heap sort is great, but not stable. + +- [ ] [Sedgewick - Mergesort (5 videos)](https://www.youtube.com/watch?v=4nKwesx_c8E&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [1. Mergesort](https://www.youtube.com/watch?v=4nKwesx_c8E&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9&index=1) + - [ ] [2. Bottom up Mergesort](https://www.youtube.com/watch?v=HGOIGUYjeyk&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9&index=2) + - [ ] [3. Sorting Complexity](https://www.youtube.com/watch?v=WvU_mIWo0Ac&index=3&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [4. Comparators](https://www.youtube.com/watch?v=7MvC1kmBza0&index=4&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [5. Stability](https://www.youtube.com/watch?v=XD_5iINB5GI&index=5&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + +- [ ] [Sedgewick - Quicksort (4 videos)](https://www.youtube.com/playlist?list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [1. Quicksort](https://www.youtube.com/watch?v=5M5A7qPWk84&index=1&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [2. Selection](https://www.youtube.com/watch?v=CgVYfSyct_M&index=2&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [3. Duplicate Keys](https://www.youtube.com/watch?v=WBFzOYJ5ybM&index=3&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [4. System Sorts](https://www.youtube.com/watch?v=rejpZ2htBjE&index=4&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + +- [ ] UC Berkeley: + - [ ] [CS 61B Lecture 29: Sorting I (video)](https://www.youtube.com/watch?v=EiUvYS2DT6I&list=PL4BBB74C7D2A1049C&index=29) + - [ ] [CS 61B Lecture 30: Sorting II (video)](https://www.youtube.com/watch?v=2hTY3t80Qsk&list=PL4BBB74C7D2A1049C&index=30) + - [ ] [CS 61B Lecture 32: Sorting III (video)](https://www.youtube.com/watch?v=Y6LOLpxg6Dc&index=32&list=PL4BBB74C7D2A1049C) + - [ ] [CS 61B Lecture 33: Sorting V (video)](https://www.youtube.com/watch?v=qNMQ4ly43p4&index=33&list=PL4BBB74C7D2A1049C) + +- [ ] [Bubble Sort (video)](https://www.youtube.com/watch?v=P00xJgWzz2c&index=1&list=PL89B61F78B552C1AB) +- [ ] [Analyzing Bubble Sort (video)](https://www.youtube.com/watch?v=ni_zk257Nqo&index=7&list=PL89B61F78B552C1AB) +- [ ] [Insertion Sort, Merge Sort (video)](https://www.youtube.com/watch?v=Kg4bqzAqRBM&index=3&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) +- [ ] [Insertion Sort (video)](https://www.youtube.com/watch?v=c4BRHC7kTaQ&index=2&list=PL89B61F78B552C1AB) +- [ ] [Merge Sort (video)](https://www.youtube.com/watch?v=GCae1WNvnZM&index=3&list=PL89B61F78B552C1AB) +- [ ] [Quicksort (video)](https://www.youtube.com/watch?v=y_G9BkAm6B8&index=4&list=PL89B61F78B552C1AB) +- [ ] [Selection Sort (video)](https://www.youtube.com/watch?v=6nDMgr0-Yyo&index=8&list=PL89B61F78B552C1AB) + +- [ ] Merge sort code: + - [ ] [Using output array (C)](http://www.cs.yale.edu/homes/aspnes/classes/223/examples/sorting/mergesort.c) + - [ ] [Using output array (Python)](https://github.com/jwasham/practice-python/blob/master/merge_sort/merge_sort.py) + - [ ] [In-place (C++)](https://github.com/jwasham/practice-cpp/blob/master/merge_sort/merge_sort.cc) +- [ ] Quick sort code: + - [ ] [Implementation (C)](http://www.cs.yale.edu/homes/aspnes/classes/223/examples/randomization/quick.c) + - [ ] [Implementation (C)](https://github.com/jwasham/practice-c/blob/master/quick_sort/quick_sort.c) + - [ ] [Implementation (Python)](https://github.com/jwasham/practice-python/blob/master/quick_sort/quick_sort.py) + +- [ ] Implement: + - [ ] Mergesort: O(n log n) average and worst case + - [ ] Quicksort O(n log n) average case + - Selection sort and insertion sort are both O(n^2) average and worst case + - For heapsort, see Heap data structure above. + +- [ ] Not required, but I recommended them: + - [ ] [Sedgewick - Radix Sorts (6 videos)](https://www.youtube.com/playlist?list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [1. Strings in Java](https://www.youtube.com/watch?v=zRzU-FWsjNU&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=6) + - [ ] [2. Key Indexed Counting](https://www.youtube.com/watch?v=CtgKYmXs62w&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=5) + - [ ] [3. Least Significant Digit First String Radix Sort](https://www.youtube.com/watch?v=2pGVq_BwPKs&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=4) + - [ ] [4. Most Significant Digit First String Radix Sort](https://www.youtube.com/watch?v=M3cYNY90R6c&index=3&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [5. 3 Way Radix Quicksort](https://www.youtube.com/watch?v=YVl58kfE6i8&index=2&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [6. Suffix Arrays](https://www.youtube.com/watch?v=HKPrVm5FWvg&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=1) + - [ ] [Radix Sort](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#radixSort) + - [ ] [Radix Sort (video)](https://www.youtube.com/watch?v=xhr26ia4k38) + - [ ] [Radix Sort, Counting Sort (linear time given constraints) (video)](https://www.youtube.com/watch?v=Nz1KZXbghj8&index=7&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [Randomization: Matrix Multiply, Quicksort, Freivalds' algorithm (video)](https://www.youtube.com/watch?v=cNB2lADK3_s&index=8&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [Sorting in Linear Time (video)](https://www.youtube.com/watch?v=pOKy3RZbSws&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf&index=14) + +If you need more detail on this subject, see "Sorting" section in [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) + +## Graphs + +Graphs can be used to represent many problems in computer science, so this section is long, like trees and sorting were. + +- Notes from Yegge: + - There are three basic ways to represent a graph in memory: + - objects and pointers + - matrix + - adjacency list + - Familiarize yourself with each representation and its pros & cons + - BFS and DFS - know their computational complexity, their tradeoffs, and how to implement them in real code + - When asked a question, look for a graph-based solution first, then move on if none. + +- [ ] Skiena Lectures - great intro: + - [ ] [CSE373 2012 - Lecture 11 - Graph Data Structures (video)](https://www.youtube.com/watch?v=OiXxhDrFruw&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=11) + - [ ] [CSE373 2012 - Lecture 12 - Breadth-First Search (video)](https://www.youtube.com/watch?v=g5vF8jscteo&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=12) + - [ ] [CSE373 2012 - Lecture 13 - Graph Algorithms (video)](https://www.youtube.com/watch?v=S23W6eTcqdY&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=13) + - [ ] [CSE373 2012 - Lecture 14 - Graph Algorithms (con't) (video)](https://www.youtube.com/watch?v=WitPBKGV0HY&index=14&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [CSE373 2012 - Lecture 15 - Graph Algorithms (con't 2) (video)](https://www.youtube.com/watch?v=ia1L30l7OIg&index=15&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [CSE373 2012 - Lecture 16 - Graph Algorithms (con't 3) (video)](https://www.youtube.com/watch?v=jgDOQq6iWy8&index=16&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + +- [ ] Graphs (review and more): + + - [ ] [6.006 Single-Source Shortest Paths Problem (video)](https://www.youtube.com/watch?v=Aa2sqUhIn-E&index=15&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [6.006 Dijkstra (video)](https://www.youtube.com/watch?v=2E7MmKv0Y24&index=16&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [6.006 Bellman-Ford (video)](https://www.youtube.com/watch?v=ozsuci5pIso&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=17) + - [ ] [6.006 Speeding Up Dijkstra (video)](https://www.youtube.com/watch?v=CHvQ3q_gJ7E&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=18) + - [ ] [Aduni: Graph Algorithms I - Topological Sorting, Minimum Spanning Trees, Prim's Algorithm - Lecture 6 (video)]( https://www.youtube.com/watch?v=i_AQT_XfvD8&index=6&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [Aduni: Graph Algorithms II - DFS, BFS, Kruskal's Algorithm, Union Find Data Structure - Lecture 7 (video)]( https://www.youtube.com/watch?v=ufj5_bppBsA&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=7) + - [ ] [Aduni: Graph Algorithms III: Shortest Path - Lecture 8 (video)](https://www.youtube.com/watch?v=DiedsPsMKXc&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=8) + - [ ] [Aduni: Graph Alg. IV: Intro to geometric algorithms - Lecture 9 (video)](https://www.youtube.com/watch?v=XIAQRlNkJAw&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=9) + - [ ] [CS 61B 2014 (starting at 58:09) (video)](https://youtu.be/dgjX4HdMI-Q?list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&t=3489) + - [ ] [CS 61B 2014: Weighted graphs (video)](https://www.youtube.com/watch?v=aJjlQCFwylA&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=19) + - [ ] [Greedy Algorithms: Minimum Spanning Tree (video)](https://www.youtube.com/watch?v=tKwnms5iRBU&index=16&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [Strongly Connected Components Kosaraju's Algorithm Graph Algorithm (video)](https://www.youtube.com/watch?v=RpgcYiky7uw) + +- Full Coursera Course: + - [ ] [Algorithms on Graphs (video)](https://www.coursera.org/learn/algorithms-on-graphs/home/welcome) + +- Yegge: If you get a chance, try to study up on fancier algorithms: + - [ ] Dijkstra's algorithm - see above - 6.006 + - [ ] A* + - [ ] [A Search Algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm) + - [ ] [A* Pathfinding Tutorial (video)](https://www.youtube.com/watch?v=KNXfSOx4eEE) + - [ ] [A* Pathfinding (E01: algorithm explanation) (video)](https://www.youtube.com/watch?v=-L-WgKMFuhE) + +- I'll implement: + - [ ] DFS with adjacency list (recursive) + - [ ] DFS with adjacency list (iterative with stack) + - [ ] DFS with adjacency matrix (recursive) + - [ ] DFS with adjacency matrix (iterative with stack) + - [ ] BFS with adjacency list + - [ ] BFS with adjacency matrix + - [ ] single-source shortest path (Dijkstra) + - [ ] minimum spanning tree + - DFS-based algorithms (see Aduni videos above): + - [ ] check for cycle (needed for topological sort, since we'll check for cycle before starting) + - [ ] topological sort + - [ ] count connected components in a graph + - [ ] list strongly connected components + - [ ] check for bipartite graph + +You'll get more graph practice in Skiena's book (see Books section below) and the interview books + +## Even More Knowledge + +- ### Recursion + - [ ] Stanford lectures on recursion & backtracking: + - [ ] [Lecture 8 | Programming Abstractions (video)](https://www.youtube.com/watch?v=gl3emqCuueQ&list=PLFE6E58F856038C69&index=8) + - [ ] [Lecture 9 | Programming Abstractions (video)](https://www.youtube.com/watch?v=uFJhEPrbycQ&list=PLFE6E58F856038C69&index=9) + - [ ] [Lecture 10 | Programming Abstractions (video)](https://www.youtube.com/watch?v=NdF1QDTRkck&index=10&list=PLFE6E58F856038C69) + - [ ] [Lecture 11 | Programming Abstractions (video)](https://www.youtube.com/watch?v=p-gpaIGRCQI&list=PLFE6E58F856038C69&index=11) + - when it is appropriate to use it + - how is tail recursion better than not? + - [ ] [What Is Tail Recursion Why Is It So Bad?](https://www.quora.com/What-is-tail-recursion-Why-is-it-so-bad) + - [ ] [Tail Recursion (video)](https://www.youtube.com/watch?v=L1jjXGfxozc) + +- ### Object-Oriented Programming + - [ ] [Optional: UML 2.0 Series (video)](https://www.youtube.com/watch?v=OkC7HKtiZC0&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc) + - [ ] Object-Oriented Software Engineering: Software Dev Using UML and Java (21 videos): + - Can skip this if you have a great grasp of OO and OO design practices. + - [OOSE: Software Dev Using UML and Java](https://www.youtube.com/playlist?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + - [ ] SOLID OOP Principles: + - [ ] [Bob Martin SOLID Principles of Object Oriented and Agile Design (video)](https://www.youtube.com/watch?v=TMuno5RZNeE) + - [ ] [SOLID Design Patterns in C# (video)](https://www.youtube.com/playlist?list=PL8m4NUhTQU48oiGCSgCP1FiJEcg_xJzyQ) + - [ ] [SOLID Principles (video)](https://www.youtube.com/playlist?list=PL4CE9F710017EA77A) + - [ ] S - [Single Responsibility Principle](http://www.oodesign.com/single-responsibility-principle.html) | [Single responsibility to each Object](http://www.javacodegeeks.com/2011/11/solid-single-responsibility-principle.html) + - [more flavor](https://docs.google.com/open?id=0ByOwmqah_nuGNHEtcU5OekdDMkk) + - [ ] O - [Open/Closed Principal](http://www.oodesign.com/open-close-principle.html) | [On production level Objects are ready for extension for not for modification](https://en.wikipedia.org/wiki/Open/closed_principle) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgN2M5MTkwM2EtNWFkZC00ZTI3LWFjZTUtNTFhZGZiYmUzODc1&hl=en) + - [ ] L - [Liskov Substitution Principal](http://www.oodesign.com/liskov-s-substitution-principle.html) | [Base Class and Derived class follow ‘IS A’ principal](http://stackoverflow.com/questions/56860/what-is-the-liskov-substitution-principle) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgNzAzZjA5ZmItNjU3NS00MzQ5LTkwYjMtMDJhNDU5ZTM0MTlh&hl=en) + - [ ] I - [Interface segregation principle](http://www.oodesign.com/interface-segregation-principle.html) | clients should not be forced to implement interfaces they don't use + - [Interface Segregation Principle in 5 minutes (video)](https://www.youtube.com/watch?v=3CtAfl7aXAQ) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgOTViYjJhYzMtMzYxMC00MzFjLWJjMzYtOGJiMDc5N2JkYmJi&hl=en) + - [ ] D -[Dependency Inversion principle](http://www.oodesign.com/dependency-inversion-principle.html) | Reduce the dependency In composition of objects. + - [Why Is The Dependency Inversion Principle And Why Is It Important](http://stackoverflow.com/questions/62539/what-is-the-dependency-inversion-principle-and-why-is-it-important) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgMjdlMWIzNGUtZTQ0NC00ZjQ5LTkwYzQtZjRhMDRlNTQ3ZGMz&hl=en) + +- ### Design patterns + - [ ] [Quick UML review (video)](https://www.youtube.com/watch?v=3cmzqZzwNDM&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc&index=3) + - [ ] Learn these patterns: + - [ ] strategy + - [ ] singleton + - [ ] adapter + - [ ] prototype + - [ ] decorator + - [ ] visitor + - [ ] factory, abstract factory + - [ ] facade + - [ ] observer + - [ ] proxy + - [ ] delegate + - [ ] command + - [ ] state + - [ ] memento + - [ ] iterator + - [ ] composite + - [ ] flyweight + - [ ] [Chapter 6 (Part 1) - Patterns (video)](https://youtu.be/LAP2A80Ajrg?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO&t=3344) + - [ ] [Chapter 6 (Part 2) - Abstraction-Occurrence, General Hierarchy, Player-Role, Singleton, Observer, Delegation (video)](https://www.youtube.com/watch?v=U8-PGsjvZc4&index=12&list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + - [ ] [Chapter 6 (Part 3) - Adapter, Facade, Immutable, Read-Only Interface, Proxy (video)](https://www.youtube.com/watch?v=7sduBHuex4c&index=13&list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + - [ ] [Series of videos (27 videos)](https://www.youtube.com/playlist?list=PLF206E906175C7E07) + - [ ] [Head First Design Patterns](https://www.amazon.com/Head-First-Design-Patterns-Freeman/dp/0596007124) + - I know the canonical book is "Design Patterns: Elements of Reusable Object-Oriented Software", but Head First is great for beginners to OO. + - [ ] [Handy reference: 101 Design Patterns & Tips for Developers](https://sourcemaking.com/design-patterns-and-tips) + +- ### Combinatorics (n choose k) & Probability + - [ ] [Math Skills: How to find Factorial, Permutation and Combination (Choose) (video)](https://www.youtube.com/watch?v=8RRo6Ti9d0U) + - [ ] [Make School: Probability (video)](https://www.youtube.com/watch?v=sZkAAk9Wwa4) + - [ ] [Make School: More Probability and Markov Chains (video)](https://www.youtube.com/watch?v=dNaJg-mLobQ) + - [ ] Khan Academy: + - Course layout: + - [ ] [Basic Theoretical Probability](https://www.khanacademy.org/math/probability/probability-and-combinatorics-topic) + - Just the videos - 41 (each are simple and each are short): + - [ ] [Probability Explained (video)](https://www.youtube.com/watch?v=uzkc-qNVoOk&list=PLC58778F28211FA19) + +- ### NP, NP-Complete and Approximation Algorithms + - Know about the most famous classes of NP-complete problems, such as traveling salesman and the knapsack problem, + and be able to recognize them when an interviewer asks you them in disguise. + - Know what NP-complete means. + - [ ] [Computational Complexity (video)](https://www.youtube.com/watch?v=moPtwq_cVH8&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=23) + - [ ] Simonson: + - [ ] [Greedy Algs. II & Intro to NP Completeness (video)](https://youtu.be/qcGnJ47Smlo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=2939) + - [ ] [NP Completeness II & Reductions (video)](https://www.youtube.com/watch?v=e0tGC6ZQdQE&index=16&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [NP Completeness III (Video)](https://www.youtube.com/watch?v=fCX1BGT3wjE&index=17&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [NP Completeness IV (video)](https://www.youtube.com/watch?v=NKLDp3Rch3M&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=18) + - [ ] Skiena: + - [ ] [CSE373 2012 - Lecture 23 - Introduction to NP-Completeness (video)](https://youtu.be/KiK5TVgXbFg?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1508) + - [ ] [CSE373 2012 - Lecture 24 - NP-Completeness Proofs (video)](https://www.youtube.com/watch?v=27Al52X3hd4&index=24&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [CSE373 2012 - Lecture 25 - NP-Completeness Challenge (video)](https://www.youtube.com/watch?v=xCPH4gwIIXM&index=25&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [Complexity: P, NP, NP-completeness, Reductions (video)](https://www.youtube.com/watch?v=eHZifpgyH_4&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=22) + - [ ] [Complexity: Approximation Algorithms (video)](https://www.youtube.com/watch?v=MEz1J9wY2iM&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=24) + - [ ] [Complexity: Fixed-Parameter Algorithms (video)](https://www.youtube.com/watch?v=4q-jmGrmxKs&index=25&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - Peter Norvik discusses near-optimal solutions to traveling salesman problem: + - [Jupyter Notebook](http://nbviewer.jupyter.org/url/norvig.com/ipython/TSP.ipynb) + - Pages 1048 - 1140 in CLRS if you have it. + +- ### Caches + - [ ] LRU cache: + - [ ] [The Magic of LRU Cache (100 Days of Google Dev) (video)](https://www.youtube.com/watch?v=R5ON3iwx78M) + - [ ] [Implementing LRU (video)](https://www.youtube.com/watch?v=bq6N7Ym81iI) + - [ ] [LeetCode - 146 LRU Cache (C++) (video)](https://www.youtube.com/watch?v=8-FZRAjR7qU) + - [ ] CPU cache: + - [ ] [MIT 6.004 L15: The Memory Hierarchy (video)](https://www.youtube.com/watch?v=vjYF_fAZI5E&list=PLrRW1w6CGAcXbMtDFj205vALOGmiRc82-&index=24) + - [ ] [MIT 6.004 L16: Cache Issues (video)](https://www.youtube.com/watch?v=ajgC3-pyGlk&index=25&list=PLrRW1w6CGAcXbMtDFj205vALOGmiRc82-) + +- ### Processes and Threads + - [ ] Computer Science 162 - Operating Systems (25 videos): + - for processes and threads see videos 1-11 + - [Operating Systems and System Programming (video)](https://www.youtube.com/playlist?list=PL-XXv-cvA_iBDyz-ba4yDskqMDY6A1w_c) + - [What Is The Difference Between A Process And A Thread?](https://www.quora.com/What-is-the-difference-between-a-process-and-a-thread) + - Covers: + - Processes, Threads, Concurrency issues + - difference between processes and threads + - processes + - threads + - locks + - mutexes + - semaphores + - monitors + - how they work + - deadlock + - livelock + - CPU activity, interrupts, context switching + - Modern concurrency constructs with multicore processors + - Process resource needs (memory: code, static storage, stack, heap, and also file descriptors, i/o) + - Thread resource needs (shares above (minus stack) with other threads in the same process but each has its own pc, stack counter, registers, and stack) + - Forking is really copy on write (read-only) until the new process writes to memory, then it does a full copy. + - Context switching + - How context switching is initiated by the operating system and underlying hardware + - [ ] [threads in C++ (series - 10 videos)](https://www.youtube.com/playlist?list=PL5jc9xFGsL8E12so1wlMS0r0hTQoJL74M) + - [ ] concurrency in Python (videos): + - [ ] [Short series on threads](https://www.youtube.com/playlist?list=PL1H1sBF1VAKVMONJWJkmUh6_p8g4F2oy1) + - [ ] [Python Threads](https://www.youtube.com/watch?v=Bs7vPNbB9JM) + - [ ] [Understanding the Python GIL (2010)](https://www.youtube.com/watch?v=Obt-vMVdM8s) + - [reference](http://www.dabeaz.com/GIL) + - [ ] [David Beazley - Python Concurrency From the Ground Up: LIVE! - PyCon 2015](https://www.youtube.com/watch?v=MCs5OvhV9S4) + - [ ] [Keynote David Beazley - Topics of Interest (Python Asyncio)](https://www.youtube.com/watch?v=ZzfHjytDceU) + - [ ] [Mutex in Python](https://www.youtube.com/watch?v=0zaPs8OtyKY) + +- ### Papers + - These are Google papers and well-known papers. + - Reading all from end to end with full comprehension will likely take more time than you have. I recommend being selective on papers and their sections. + - [ ] [1978: Communicating Sequential Processes](http://spinroot.com/courses/summer/Papers/hoare_1978.pdf) + - [implemented in Go](https://godoc.org/github.com/thomas11/csp) + - [Love classic papers?](https://www.cs.cmu.edu/~crary/819-f09/) + - [ ] [2003: The Google File System](http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf) + - replaced by Colossus in 2012 + - [ ] [2004: MapReduce: Simplified Data Processing on Large Clusters]( http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf) + - mostly replaced by Cloud Dataflow? + - [ ] [2007: What Every Programmer Should Know About Memory (very long, and the author encourages skipping of some sections)](https://www.akkadia.org/drepper/cpumemory.pdf) + - [ ] [2012: Google's Colossus](https://www.wired.com/2012/07/google-colossus/) + - paper not available + - [ ] 2012: AddressSanitizer: A Fast Address Sanity Checker: + - [paper](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37752.pdf) + - [video](https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany) + - [ ] 2013: Spanner: Google’s Globally-Distributed Database: + - [paper](http://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf) + - [video](https://www.usenix.org/node/170855) + - [ ] [2014: Machine Learning: The High-Interest Credit Card of Technical Debt](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43146.pdf) + - [ ] [2015: Continuous Pipelines at Google](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43790.pdf) + - [ ] [2015: High-Availability at Massive Scale: Building Google’s Data Infrastructure for Ads](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44686.pdf) + - [ ] [2015: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems](http://download.tensorflow.org/paper/whitepaper2015.pdf ) + - [ ] [2015: How Developers Search for Code: A Case Study](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43835.pdf) + - [ ] [2016: Borg, Omega, and Kubernetes](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44843.pdf) + +- ### Testing + - To cover: + - how unit testing works + - what are mock objects + - what is integration testing + - what is dependency injection + - [ ] [Agile Software Testing with James Bach (video)](https://www.youtube.com/watch?v=SAhJf36_u5U) + - [ ] [Open Lecture by James Bach on Software Testing (video)](https://www.youtube.com/watch?v=ILkT_HV9DVU) + - [ ] [Steve Freeman - Test-Driven Development (that’s not what we meant) (video)](https://vimeo.com/83960706) + - [slides](http://gotocon.com/dl/goto-berlin-2013/slides/SteveFreeman_TestDrivenDevelopmentThatsNotWhatWeMeant.pdf) + - [ ] [TDD is dead. Long live testing.](http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html) + - [ ] [Is TDD dead? (video)](https://www.youtube.com/watch?v=z9quxZsLcfo) + - [ ] [Video series (152 videos) - not all are needed (video)](https://www.youtube.com/watch?v=nzJapzxH_rE&list=PLAwxTw4SYaPkWVHeC_8aSIbSxE_NXI76g) + - [ ] [Test-Driven Web Development with Python](http://www.obeythetestinggoat.com/pages/book.html#toc) + - [ ] Dependency injection: + - [ ] [video](https://www.youtube.com/watch?v=IKD2-MAkXyQ) + - [ ] [Tao Of Testing](http://jasonpolites.github.io/tao-of-testing/ch3-1.1.html) + - [ ] [How to write tests](http://jasonpolites.github.io/tao-of-testing/ch4-1.1.html) + +- ### Scheduling + - in an OS, how it works + - can be gleaned from Operating System videos + +- ### Implement system routines + - understand what lies beneath the programming APIs you use + - can you implement them? + +- ### String searching & manipulations + - [ ] [Sedgewick - Suffix Arrays (video)](https://www.youtube.com/watch?v=HKPrVm5FWvg) + - [ ] [Sedgewick - Substring Search (videos)](https://www.youtube.com/watch?v=2LvvVFCEIv8&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=5) + - [ ] [1. Introduction to Substring Search](https://www.youtube.com/watch?v=2LvvVFCEIv8&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=5) + - [ ] [2. Brute-Force Substring Search](https://www.youtube.com/watch?v=CcDXwIGEXYU&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=4) + - [ ] [3. Knuth-Morris Pratt](https://www.youtube.com/watch?v=n-7n-FDEWzc&index=3&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) + - [ ] [4. Boyer-Moore](https://www.youtube.com/watch?v=fI7Ch6pZXfM&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=2) + - [ ] [5. Rabin-Karp](https://www.youtube.com/watch?v=QzI0p6zDjK4&index=1&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) + - [ ] [Search pattern in text (video)](https://www.coursera.org/learn/data-structures/lecture/tAfHI/search-pattern-in-text) + + If you need more detail on this subject, see "String Matching" section in [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) + +--- + +## System Design, Scalability, Data Handling +- **You can expect system design questions if you have 4+ years of experience.** +- Scalability and System Design are very large topics with many topics and resources, since + there is a lot to consider when designing a software/hardware system that can scale. + Expect to spend quite a bit of time on this. +- Considerations from Yegge: + - scalability + - Distill large data sets to single values + - Transform one data set to another + - Handling obscenely large amounts of data + - system design + - features sets + - interfaces + - class hierarchies + - designing a system under certain constraints + - simplicity and robustness + - tradeoffs + - performance analysis and optimization +- [ ] **START HERE**: [System Design from HiredInTech](http://www.hiredintech.com/system-design/) +- [ ] [How Do I Prepare To Answer Design Questions In A Technical Inverview?](https://www.quora.com/How-do-I-prepare-to-answer-design-questions-in-a-technical-interview?redirected_qid=1500023) +- [ ] [8 Things You Need to Know Before a System Design Interview](http://blog.gainlo.co/index.php/2015/10/22/8-things-you-need-to-know-before-system-design-interviews/) +- [ ] [Algorithm design](http://www.hiredintech.com/algorithm-design/) +- [ ] [Database Normalization - 1NF, 2NF, 3NF and 4NF (video)](https://www.youtube.com/watch?v=UrYLYV7WSHM) +- [ ] [System Design Interview](https://github.com/checkcheckzz/system-design-interview) - There are a lot of resources in this one. Look through the articles and examples. I put some of them below. +- [ ] [How to ace a systems design interview](http://www.palantir.com/2011/10/how-to-rock-a-systems-design-interview/) +- [ ] [Numbers Everyone Should Know](http://everythingisdata.wordpress.com/2009/10/17/numbers-everyone-should-know/) +- [ ] [How long does it take to make a context switch?](http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html) +- [ ] [Transactions Across Datacenters (video)](https://www.youtube.com/watch?v=srOgpXECblk) +- [ ] [A plain English introduction to CAP Theorem](http://ksat.me/a-plain-english-introduction-to-cap-theorem/) +- [ ] Paxos Consensus algorithm: + - [short video](https://www.youtube.com/watch?v=s8JqcZtvnsM) + - [extended video with use case and multi-paxos](https://www.youtube.com/watch?v=JEpsBg0AO6o) + - [paper](http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf) +- [ ] [Consistent Hashing](http://www.tom-e-white.com/2007/11/consistent-hashing.html) +- [ ] [NoSQL Patterns](http://horicky.blogspot.com/2009/11/nosql-patterns.html) +- [ ] Scalability: + - [ ] [Great overview (video)](https://www.youtube.com/watch?v=-W9F__D3oY4) + - [ ] Short series: + - [Clones](http://www.lecloud.net/post/7295452622/scalability-for-dummies-part-1-clones) + - [Database](http://www.lecloud.net/post/7994751381/scalability-for-dummies-part-2-database) + - [Cache](http://www.lecloud.net/post/9246290032/scalability-for-dummies-part-3-cache) + - [Asynchronism](http://www.lecloud.net/post/9699762917/scalability-for-dummies-part-4-asynchronism) + - [ ] [Scalable Web Architecture and Distributed Systems](http://www.aosabook.org/en/distsys.html) + - [ ] [Fallacies of Distributed Computing Explained](https://pages.cs.wisc.edu/~zuyu/files/fallacies.pdf) + - [ ] [Pragmatic Programming Techniques](http://horicky.blogspot.com/2010/10/scalable-system-design-patterns.html) + - [extra: Google Pregel Graph Processing](http://horicky.blogspot.com/2010/07/google-pregel-graph-processing.html) + - [ ] [Jeff Dean - Building Software Systems At Google and Lessons Learned (video)](https://www.youtube.com/watch?v=modXC5IWTJI) + - [ ] [Introduction to Architecting Systems for Scale](http://lethain.com/introduction-to-architecting-systems-for-scale/) + - [ ] [Scaling mobile games to a global audience using App Engine and Cloud Datastore (video)](https://www.youtube.com/watch?v=9nWyWwY2Onc) + - [ ] [How Google Does Planet-Scale Engineering for Planet-Scale Infra (video)](https://www.youtube.com/watch?v=H4vMcD7zKM0) + - [ ] [The Importance of Algorithms](https://www.topcoder.com/community/data-science/data-science-tutorials/the-importance-of-algorithms/) + - [ ] [Sharding](http://highscalability.com/blog/2009/8/6/an-unorthodox-approach-to-database-design-the-coming-of-the.html) + - [ ] [Scale at Facebook (2009)](https://www.infoq.com/presentations/Scale-at-Facebook) + - [ ] [Scale at Facebook (2012), "Building for a Billion Users" (video)](https://www.youtube.com/watch?v=oodS71YtkGU) + - [ ] [Engineering for the Long Game - Astrid Atkinson Keynote(video)](https://www.youtube.com/watch?v=p0jGmgIrf_M&list=PLRXxvay_m8gqVlExPC5DG3TGWJTaBgqSA&index=4) + - [ ] [7 Years Of YouTube Scalability Lessons In 30 Minutes](http://highscalability.com/blog/2012/3/26/7-years-of-youtube-scalability-lessons-in-30-minutes.html) + - [video](https://www.youtube.com/watch?v=G-lGCC4KKok) + - [ ] [How PayPal Scaled To Billions Of Transactions Daily Using Just 8VMs](http://highscalability.com/blog/2016/8/15/how-paypal-scaled-to-billions-of-transactions-daily-using-ju.html) + - [ ] [How to Remove Duplicates in Large Datasets](https://blog.clevertap.com/how-to-remove-duplicates-in-large-datasets/) + - [ ] [A look inside Etsy's scale and engineering culture with Jon Cowie (video)](https://www.youtube.com/watch?v=3vV4YiqKm1o) + - [ ] [What Led Amazon to its Own Microservices Architecture](http://thenewstack.io/led-amazon-microservices-architecture/) + - [ ] [To Compress Or Not To Compress, That Was Uber's Question](https://eng.uber.com/trip-data-squeeze/) + - [ ] [Asyncio Tarantool Queue, Get In The Queue](http://highscalability.com/blog/2016/3/3/asyncio-tarantool-queue-get-in-the-queue.html) + - [ ] [When Should Approximate Query Processing Be Used?](http://highscalability.com/blog/2016/2/25/when-should-approximate-query-processing-be-used.html) + - [ ] [Google's Transition From Single Datacenter, To Failover, To A Native Multihomed Architecture]( http://highscalability.com/blog/2016/2/23/googles-transition-from-single-datacenter-to-failover-to-a-n.html) + - [ ] [Spanner](http://highscalability.com/blog/2012/9/24/google-spanners-most-surprising-revelation-nosql-is-out-and.html) + - [ ] [Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System](http://highscalability.com/blog/2016/2/15/egnyte-architecture-lessons-learned-in-building-and-scaling.html) + - [ ] [Machine Learning Driven Programming: A New Programming For A New World](http://highscalability.com/blog/2016/7/6/machine-learning-driven-programming-a-new-programming-for-a.html) + - [ ] [The Image Optimization Technology That Serves Millions Of Requests Per Day](http://highscalability.com/blog/2016/6/15/the-image-optimization-technology-that-serves-millions-of-re.html) + - [ ] [A Patreon Architecture Short](http://highscalability.com/blog/2016/2/1/a-patreon-architecture-short.html) + - [ ] [Tinder: How Does One Of The Largest Recommendation Engines Decide Who You'll See Next?](http://highscalability.com/blog/2016/1/27/tinder-how-does-one-of-the-largest-recommendation-engines-de.html) + - [ ] [Design Of A Modern Cache](http://highscalability.com/blog/2016/1/25/design-of-a-modern-cache.html) + - [ ] [Live Video Streaming At Facebook Scale](http://highscalability.com/blog/2016/1/13/live-video-streaming-at-facebook-scale.html) + - [ ] [A Beginner's Guide To Scaling To 11 Million+ Users On Amazon's AWS](http://highscalability.com/blog/2016/1/11/a-beginners-guide-to-scaling-to-11-million-users-on-amazons.html) + - [ ] [How Does The Use Of Docker Effect Latency?](http://highscalability.com/blog/2015/12/16/how-does-the-use-of-docker-effect-latency.html) + - [ ] [Does AMP Counter An Existential Threat To Google?](http://highscalability.com/blog/2015/12/14/does-amp-counter-an-existential-threat-to-google.html) + - [ ] [A 360 Degree View Of The Entire Netflix Stack](http://highscalability.com/blog/2015/11/9/a-360-degree-view-of-the-entire-netflix-stack.html) + - [ ] [Latency Is Everywhere And It Costs You Sales - How To Crush It](http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it) + - [ ] [Serverless (very long, just need the gist)](http://martinfowler.com/articles/serverless.html) + - [ ] [What Powers Instagram: Hundreds of Instances, Dozens of Technologies](http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances) + - [ ] [Cinchcast Architecture - Producing 1,500 Hours Of Audio Every Day](http://highscalability.com/blog/2012/7/16/cinchcast-architecture-producing-1500-hours-of-audio-every-d.html) + - [ ] [Justin.Tv's Live Video Broadcasting Architecture](http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html) + - [ ] [Playfish's Social Gaming Architecture - 50 Million Monthly Users And Growing](http://highscalability.com/blog/2010/9/21/playfishs-social-gaming-architecture-50-million-monthly-user.html) + - [ ] [TripAdvisor Architecture - 40M Visitors, 200M Dynamic Page Views, 30TB Data](http://highscalability.com/blog/2011/6/27/tripadvisor-architecture-40m-visitors-200m-dynamic-page-view.html) + - [ ] [PlentyOfFish Architecture](http://highscalability.com/plentyoffish-architecture) + - [ ] [Salesforce Architecture - How They Handle 1.3 Billion Transactions A Day](http://highscalability.com/blog/2013/9/23/salesforce-architecture-how-they-handle-13-billion-transacti.html) + - [ ] [ESPN's Architecture At Scale - Operating At 100,000 Duh Nuh Nuhs Per Second](http://highscalability.com/blog/2013/11/4/espns-architecture-at-scale-operating-at-100000-duh-nuh-nuhs.html) + - [ ] See "Messaging, Serialization, and Queueing Systems" way below for info on some of the technologies that can glue services together + - [ ] Twitter: + - [O'Reilly MySQL CE 2011: Jeremy Cole, "Big and Small Data at @Twitter" (video)](https://www.youtube.com/watch?v=5cKTP36HVgI) + - [Timelines at Scale](https://www.infoq.com/presentations/Twitter-Timeline-Scalability) + - For even more, see "Mining Massive Datasets" video series in the Video Series section. +- [ ] Practicing the system design process: Here are some ideas to try working through on paper, each with some documentation on how it was handled in the real world: + - review: [System Design from HiredInTech](http://www.hiredintech.com/system-design/) + - [cheat sheet](https://github.com/jwasham/google-interview-university/blob/master/extras/cheat%20sheets/system-design.pdf) + - flow: + 1. Understand the problem and scope: + - define the use cases, with interviewer's help + - suggest additional features + - remove items that interviewer deems out of scope + - assume high availability is required, add as a use case + 2. Think about constraints: + - ask how many requests per month + - ask how many requests per second (they may volunteer it or make you do the math) + - estimate reads vs. writes percentage + - keep 80/20 rule in mind when estimating + - how much data written per second + - total storage required over 5 years + - how much data read per second + 3. Abstract design: + - layers (service, data, caching) + - infrastructure: load balancing, messaging + - rough overview of any key algorithm that drives the service + - consider bottlenecks and determine solutions + - Exercises: + - [Design a CDN network: old article](http://repository.cmu.edu/cgi/viewcontent.cgi?article=2112&context=compsci) + - [Design a random unique ID generation system](https://blog.twitter.com/2010/announcing-snowflake) + - [Design an online multiplayer card game](http://www.indieflashblog.com/how-to-create-an-asynchronous-multiplayer-game.html) + - [Design a key-value database](http://www.slideshare.net/dvirsky/introduction-to-redis) + - [Design a function to return the top k requests during past time interval]( https://icmi.cs.ucsb.edu/research/tech_reports/reports/2005-23.pdf) + - [Design a picture sharing system](http://highscalability.com/blog/2011/12/6/instagram-architecture-14-million-users-terabytes-of-photos.html) + - [Design a recommendation system](http://ijcai13.org/files/tutorial_slides/td3.pdf) + - [Design a URL-shortener system: copied from above](http://www.hiredintech.com/system-design/the-system-design-process/) + - [Design a cache system](https://www.adayinthelifeof.nl/2011/02/06/memcache-internals/) + +--- + +## Final Review + + This section will have shorter videos that can you watch pretty quickly to review most of the important concepts. + It's nice if you want a refresher often. + +- [ ] Series of 2-3 minutes short subject videos (23 videos) + - [Videos](https://www.youtube.com/watch?v=r4r1DZcx1cM&list=PLmVb1OknmNJuC5POdcDv5oCS7_OUkDgpj&index=22) +- [ ] Series of 2-5 minutes short subject videos - Michael Sambol (18 videos): + - [Videos](https://www.youtube.com/channel/UCzDJwLWoYCUQowF_nG3m5OQ) +- [ ] [Sedgewick Videos - Algorithms I](https://www.youtube.com/user/algorithmscourses/playlists?shelf_id=2&view=50&sort=dd) + - [ ] [01. Union-Find](https://www.youtube.com/watch?v=8mYfZeHtdNc&list=PLe-ggMe31CTexoNYnMhbHaWhQ0dvcy43t) + - [ ] [02. Analysis of Algorithms](https://www.youtube.com/watch?v=ZN-nFW0mEpg&list=PLe-ggMe31CTf0_bkOhh7sa5uqeppp3Sr0) + - [ ] [03. Stacks and Queues](https://www.youtube.com/watch?v=TIC1gappbP8&list=PLe-ggMe31CTe-9jhnj3P_3mmrCh0A7iHh) + - [ ] [04. Elementary Sorts](https://www.youtube.com/watch?v=CD2AL6VO0ak&list=PLe-ggMe31CTe_5WhGV0F--7CK8MoRUqBd) + - [ ] [05. Mergesort](https://www.youtube.com/watch?v=4nKwesx_c8E&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [06. Quicksort](https://www.youtube.com/watch?v=5M5A7qPWk84&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [07. Priority Queues](https://www.youtube.com/watch?v=G9TMe0KC0w0&list=PLe-ggMe31CTducy9LDiGVkdSv0NfiRwn5) + - [ ] [08. Elementary Symbol Tables](https://www.youtube.com/watch?v=up_nlilw3ac&list=PLe-ggMe31CTc3a8nKRDxFZZrWrBvkc9SG) + - [ ] [09. Balanced Search Trees](https://www.youtube.com/watch?v=qC1BLLPK_5w&list=PLe-ggMe31CTf7jHH_mFT50kayjCEA6Rhu) + - [ ] [10. Geometric Applications of BST](https://www.youtube.com/watch?v=Wl30aGAp6TY&list=PLe-ggMe31CTdBsRIw0hXln0hilRs-DqAx) + - [ ] [11. Hash Tables](https://www.youtube.com/watch?v=QA8fJGO-i9o&list=PLe-ggMe31CTcKxIRGqqThMts2eHtSrf11) +- [ ] [Sedgewick Videos - Algorithms II](https://www.youtube.com/user/algorithmscourses/playlists?flow=list&shelf_id=3&view=50) + - [ ] [01. Undirected Graphs](https://www.youtube.com/watch?v=GmVhD-mmMBg&list=PLe-ggMe31CTc0zDzANxl4I2MhMoRVlbRM) + - [ ] [02. Directed Graphs](https://www.youtube.com/watch?v=_z-JsVaUS40&list=PLe-ggMe31CTcEwaU8a1P1Gd95A77HV85K) + - [ ] [03. Minimum Spanning Trees](https://www.youtube.com/watch?v=t8fNk9tfVYY&list=PLe-ggMe31CTceUZxDesGfHGLE7kcSafqj) + - [ ] [04. Shortest Paths](https://www.youtube.com/watch?v=HoGSiB7tSeI&list=PLe-ggMe31CTePpG3jbeOTsnGUGZDKxgZD) + - [ ] [05. Maximum Flow](https://www.youtube.com/watch?v=rYIKlFstBqE&list=PLe-ggMe31CTduQ68XQ-sVj32wYJIspTma) + - [ ] [06. Radix Sorts](https://www.youtube.com/watch?v=HKPrVm5FWvg&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [07. Tries](https://www.youtube.com/watch?v=00YaFPcC65g&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [08. Substring Search](https://www.youtube.com/watch?v=QzI0p6zDjK4&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) + - [ ] [09. Regular Expressions](https://www.youtube.com/watch?v=TQWNQsJSPnk&list=PLe-ggMe31CTetTlJWouM42fyttyKPgSDh) + - [ ] [10. Data Compression](https://www.youtube.com/watch?v=at9tjpxcBh8&list=PLe-ggMe31CTciifRRo6yY0Yt0mzgIXXVZ) + - [ ] [11. Reductions](https://www.youtube.com/watch?v=Ow5x-ooMGv8&list=PLe-ggMe31CTe_yliW5vc3yO-dj1LSSDyF) + - [ ] [12. Linear Programming](https://www.youtube.com/watch?v=rWhcLyiLZLA&list=PLe-ggMe31CTdy6dKzMgkWFuTTN1H8B-E1) + - [ ] [13. Intractability](https://www.youtube.com/watch?v=6qcaaDp4cdQ&list=PLe-ggMe31CTcZCjluBHw53e_ek2k9Kn-S) + +--- + +## Coding Question Practice + +Now that you know all the computer science topics above, it's time to practice answering coding problems. + +**Coding question practice is not about memorizing answers to programming problems.** + +Why you need to practice doing programming problems: +- problem recognition, and where the right data structures and algorithms fit in +- gathering requirements for the problem +- talking your way through the problem like you will in the interview +- coding on a whiteboard or paper, not a computer +- coming up with time and space complexity for your solutions +- testing your solutions + +There is a great intro for methodical, communicative problem solving in an interview. You'll get this from the programming +interview books, too, but I found this outstanding: +[Algorithm design canvas](http://www.hiredintech.com/algorithm-design/) + +[My Process for Coding Interview (Book) Exercises](https://googleyasheck.com/my-process-for-coding-interview-exercises/) + +No whiteboard at home? That makes sense. I'm a weirdo and have a big whiteboard. Instead of a whiteboard, pick up a +large drawing pad from an art store. You can sit on the couch and practice. This is my "sofa whiteboard". +I added the pen in the photo for scale. If you use a pen, you'll wish you could erase. Gets messy quick. + +![my sofa whiteboard](https://dng5l3qzreal6.cloudfront.net/2016/Oct/art_board_sm_2-1476233630368.jpg) + +Supplemental: + +- [Mathematics for Topcoders](https://www.topcoder.com/community/data-science/data-science-tutorials/mathematics-for-topcoders/) +- [Dynamic Programming – From Novice to Advanced](https://www.topcoder.com/community/data-science/data-science-tutorials/dynamic-programming-from-novice-to-advanced/) +- [MIT Interview Materials](https://web.archive.org/web/20160906124824/http://courses.csail.mit.edu/iap/interview/materials.php) +- [Exercises for getting better at a given language](http://exercism.io/languages) + +**Read and Do Programming Problems (in this order):** + +- [ ] [Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition](http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html) + - answers in C, C++ and Java +- [ ] [Cracking the Coding Interview, 6th Edition](http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/) + - answers in Java + +See [Book List above](#book-list) + +## Coding exercises/challenges + +Once you've learned your brains out, put those brains to work. +Take coding challenges every day, as many as you can. + +- [ ] [How to Find a Solution](https://www.topcoder.com/community/data-science/data-science-tutorials/how-to-find-a-solution/) +- [ ] [How to Dissect a Topcoder Problem Statement](https://www.topcoder.com/community/data-science/data-science-tutorials/how-to-dissect-a-topcoder-problem-statement/) + +Challenge sites: +- [LeetCode](https://leetcode.com/) +- [TopCoder](https://www.topcoder.com/) +- [Project Euler (math-focused)](https://projecteuler.net/index.php?section=problems) +- [Codewars](http://www.codewars.com) +- [HackerRank](https://www.hackerrank.com/) +- [Codility](https://codility.com/programmers/) +- [InterviewCake](https://www.interviewcake.com/) +- [Geeks for Geeks](http://www.geeksforgeeks.org/) +- [InterviewBit](https://www.interviewbit.com/invite/icjf) + +Maybe: +- [Mock interviewers from big companies](http://www.gainlo.co/) + +## Once you're closer to the interview + +- [ ] Cracking The Coding Interview Set 2 (videos): + - [Cracking The Code Interview](https://www.youtube.com/watch?v=4NIb9l3imAo) + - [Cracking the Coding Interview - Fullstack Speaker Series](https://www.youtube.com/watch?v=Eg5-tdAwclo) + - [Ask Me Anything: Gayle Laakmann McDowell (author of Cracking the Coding Interview)](https://www.youtube.com/watch?v=1fqxMuPmGak) + +## Your Resume + +- [Ten Tips for a (Slightly) Less Awful Resume](http://steve-yegge.blogspot.co.uk/2007_09_01_archive.html) +- See Resume prep items in Cracking The Coding Interview and back of Programming Interviews Exposed + + +## Be thinking of for when the interview comes + +Think of about 20 interview questions you'll get, along with the lines of the items below. Have 2-3 answers for each. +Have a story, not just data, about something you accomplished. + +- Why do you want this job? +- What's a tough problem you've solved? +- Biggest challenges faced? +- Best/worst designs seen? +- Ideas for improving an existing Google product. +- How do you work best, as an individual and as part of a team? +- Which of your skills or experiences would be assets in the role and why? +- What did you most enjoy at [job x / project y]? +- What was the biggest challenge you faced at [job x / project y]? +- What was the hardest bug you faced at [job x / project y]? +- What did you learn at [job x / project y]? +- What would you have done better at [job x / project y]? + +## Have questions for the interviewer + + Some of mine (I already may know answer to but want their opinion or team perspective): + +- How large is your team? +- What does your dev cycle look like? Do you do waterfall/sprints/agile? +- Are rushes to deadlines common? Or is there flexibility? +- How are decisions made in your team? +- How many meetings do you have per week? +- Do you feel your work environment helps you concentrate? +- What are you working on? +- What do you like about it? +- What is the work life like? + +## Once You've Got The Job + +Congratulations! + +- [10 things I wish I knew on my first day at Google](https://medium.com/@moonstorming/10-things-i-wish-i-knew-on-my-first-day-at-google-107581d87286#.livxn7clw) + +Keep learning. + +You're never really done. + +--- + + ***************************************************************************************************** + ***************************************************************************************************** + + Everything below this point is optional. These are my recommendations, not Google's. + By studying these, you'll get greater exposure to more CS concepts, and will be better prepared for + any software engineering job. You'll be a much more well-rounded software engineer. + + ***************************************************************************************************** + ***************************************************************************************************** + +--- + +## Additional Books + +- [ ] [The Unix Programming Environment](http://product.half.ebay.com/The-UNIX-Programming-Environment-by-Brian-W-Kernighan-and-Rob-Pike-1983-Other/54385&tg=info) + - an oldie but a goodie +- [ ] [The Linux Command Line: A Complete Introduction](https://www.amazon.com/dp/1593273894/) + - a modern option +- [ ] [TCP/IP Illustrated Series](https://en.wikipedia.org/wiki/TCP/IP_Illustrated) +- [ ] [Head First Design Patterns](https://www.amazon.com/gp/product/0596007124/) + - a gentle introduction to design patterns +- [ ] [Design Patterns: Elements of Reusable Object-Oriente​d Software](https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612) + - aka the "Gang Of Four" book, or GOF + - the canonical design patterns book +- [ ] [Site Reliability Engineering](https://landing.google.com/sre/book.html) + - [Site Reliability Engineering: How Google Runs Production Systems](https://landing.google.com/sre/) +- [ ] [UNIX and Linux System Administration Handbook, 4th Edition](https://www.amazon.com/UNIX-Linux-System-Administration-Handbook/dp/0131480057/) + +## Additional Learning + +- ### Dynamic Programming + - This subject can be pretty difficult, as each DP soluble problem must be defined as a recursion relation, and coming up with it can be tricky. + - I suggest looking at many examples of DP problems until you have a solid understanding of the pattern involved. + - [ ] Videos: + - the Skiena videos can be hard to follow since he sometimes uses the whiteboard, which is too small to see + - [ ] [Skiena: CSE373 2012 - Lecture 19 - Introduction to Dynamic Programming (video)](https://youtu.be/Qc2ieXRgR0k?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1718) + - [ ] [Skiena: CSE373 2012 - Lecture 20 - Edit Distance (video)](https://youtu.be/IsmMhMdyeGY?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=2749) + - [ ] [Skiena: CSE373 2012 - Lecture 21 - Dynamic Programming Examples (video)](https://youtu.be/o0V9eYF4UI8?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=406) + - [ ] [Skiena: CSE373 2012 - Lecture 22 - Applications of Dynamic Programming (video)](https://www.youtube.com/watch?v=dRbMC1Ltl3A&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=22) + - [ ] [Simonson: Dynamic Programming 0 (starts at 59:18) (video)](https://youtu.be/J5aJEcOr6Eo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3558) + - [ ] [Simonson: Dynamic Programming I - Lecture 11 (video)](https://www.youtube.com/watch?v=0EzHjQ_SOeU&index=11&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [Simonson: Dynamic programming II - Lecture 12 (video)](https://www.youtube.com/watch?v=v1qiRwuJU7g&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=12) + - [ ] List of individual DP problems (each is short): + [Dynamic Programming (video)](https://www.youtube.com/playlist?list=PLrmLmBdmIlpsHaNTPP_jHHDx_os9ItYXr) + - [ ] Yale Lecture notes: + - [ ] [Dynamic Programming](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#dynamicProgramming) + - [ ] Coursera: + - [ ] [The RNA secondary structure problem (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/80RrW/the-rna-secondary-structure-problem) + - [ ] [A dynamic programming algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/PSonq/a-dynamic-programming-algorithm) + - [ ] [Illustrating the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/oUEK2/illustrating-the-dp-algorithm) + - [ ] [Running time of the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/nfK2r/running-time-of-the-dp-algorithm) + - [ ] [DP vs. recursive implementation (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/M999a/dp-vs-recursive-implementation) + - [ ] [Global pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/UZ7o6/global-pairwise-sequence-alignment) + - [ ] [Local pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/WnNau/local-pairwise-sequence-alignment) + +- ### Compilers + - [ ] [How a Compiler Works in ~1 minute (video)](https://www.youtube.com/watch?v=IhC7sdYe-Jg) + - [ ] [Harvard CS50 - Compilers (video)](https://www.youtube.com/watch?v=CSZLNYF4Klo) + - [ ] [C++ (video)](https://www.youtube.com/watch?v=twodd1KFfGk) + - [ ] [Understanding Compiler Optimization (C++) (video)](https://www.youtube.com/watch?v=FnGCDLhaxKU) + +- ### Floating Point Numbers + - [ ] simple 8-bit: [Representation of Floating Point Numbers - 1 (video - there is an error in calculations - see video description)](https://www.youtube.com/watch?v=ji3SfClm8TU) + - [ ] 32 bit: [IEEE754 32-bit floating point binary (video)](https://www.youtube.com/watch?v=50ZYcZebIec) + +- ### Unicode + - [ ] [The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets]( http://www.joelonsoftware.com/articles/Unicode.html) + - [ ] [What Every Programmer Absolutely, Positively Needs To Know About Encodings And Character Sets To Work With Text](http://kunststube.net/encoding/) + +- ### Endianness + - [ ] [Big And Little Endian](https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Data/endian.html) + - [ ] [Big Endian Vs Little Endian (video)](https://www.youtube.com/watch?v=JrNF0KRAlyo) + - [ ] [Big And Little Endian Inside/Out (video)](https://www.youtube.com/watch?v=oBSuXP-1Tc0) + - Very technical talk for kernel devs. Don't worry if most is over your head. + - The first half is enough. + +- ### Emacs and vi(m) + - suggested by Yegge, from an old Amazon recruiting post: Familiarize yourself with a unix-based code editor + - vi(m): + - [Editing With vim 01 - Installation, Setup, and The Modes (video)](https://www.youtube.com/watch?v=5givLEMcINQ&index=1&list=PL13bz4SHGmRxlZVmWQ9DvXo1fEg4UdGkr) + - [VIM Adventures](http://vim-adventures.com/) + - set of 4 videos: + - [The vi/vim editor - Lesson 1](https://www.youtube.com/watch?v=SI8TeVMX8pk) + - [The vi/vim editor - Lesson 2](https://www.youtube.com/watch?v=F3OO7ZIOaJE) + - [The vi/vim editor - Lesson 3](https://www.youtube.com/watch?v=ZYEccA_nMaI) + - [The vi/vim editor - Lesson 4](https://www.youtube.com/watch?v=1lYD5gwgZIA) + - [Using Vi Instead of Emacs](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#Using_Vi_instead_of_Emacs) + - emacs: + - [Basics Emacs Tutorial (video)](https://www.youtube.com/watch?v=hbmV1bnQ-i0) + - set of 3 (videos): + - [Emacs Tutorial (Beginners) -Part 1- File commands, cut/copy/paste, cursor commands](https://www.youtube.com/watch?v=ujODL7MD04Q) + - [Emacs Tutorial (Beginners) -Part 2- Buffer management, search, M-x grep and rgrep modes](https://www.youtube.com/watch?v=XWpsRupJ4II) + - [Emacs Tutorial (Beginners) -Part 3- Expressions, Statements, ~/.emacs file and packages](https://www.youtube.com/watch?v=paSgzPso-yc) + - [Evil Mode: Or, How I Learned to Stop Worrying and Love Emacs (video)](https://www.youtube.com/watch?v=JWD1Fpdd4Pc) + - [Writing C Programs With Emacs](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#Writing_C_programs_with_Emacs) + - [(maybe) Org Mode In Depth: Managing Structure (video)](https://www.youtube.com/watch?v=nsGYet02bEk) + +- ### Unix command line tools + - suggested by Yegge, from an old Amazon recruiting post. I filled in the list below from good tools. + - [ ] bash + - [ ] cat + - [ ] grep + - [ ] sed + - [ ] awk + - [ ] curl or wget + - [ ] sort + - [ ] tr + - [ ] uniq + - [ ] [strace](https://en.wikipedia.org/wiki/Strace) + - [ ] [tcpdump](https://danielmiessler.com/study/tcpdump/) + +- ### Information theory (videos) + - [ ] [Khan Academy](https://www.khanacademy.org/computing/computer-science/informationtheory) + - [ ] more about Markov processes: + - [ ] [Core Markov Text Generation](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/waxgx/core-markov-text-generation) + - [ ] [Core Implementing Markov Text Generation](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/gZhiC/core-implementing-markov-text-generation) + - [ ] [Project = Markov Text Generation Walk Through](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/EUjrq/project-markov-text-generation-walk-through) + - See more in MIT 6.050J Information and Entropy series below. + +- ### Parity & Hamming Code (videos) + - [ ] [Intro](https://www.youtube.com/watch?v=q-3BctoUpHE) + - [ ] [Parity](https://www.youtube.com/watch?v=DdMcAUlxh1M) + - [ ] Hamming Code: + - [Error detection](https://www.youtube.com/watch?v=1A_NcXxdoCc) + - [Error correction](https://www.youtube.com/watch?v=JAMLuxdHH8o) + - [ ] [Error Checking](https://www.youtube.com/watch?v=wbH2VxzmoZk) + +- ### Entropy + - also see videos below + - make sure to watch information theory videos first + - [ ] [Information Theory, Claude Shannon, Entropy, Redundancy, Data Compression & Bits (video)](https://youtu.be/JnJq3Py0dyM?t=176) + +- ### Cryptography + - also see videos below + - make sure to watch information theory videos first + - [ ] [Khan Academy Series](https://www.khanacademy.org/computing/computer-science/cryptography) + - [ ] [Cryptography: Hash Functions](https://www.youtube.com/watch?v=KqqOXndnvic&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=30) + - [ ] [Cryptography: Encryption](https://www.youtube.com/watch?v=9TNI2wHmaeI&index=31&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + +- ### Compression + - make sure to watch information theory videos first + - [ ] Computerphile (videos): + - [ ] [Compression](https://www.youtube.com/watch?v=Lto-ajuqW3w) + - [ ] [Entropy in Compression](https://www.youtube.com/watch?v=M5c_RFKVkko) + - [ ] [Upside Down Trees (Huffman Trees)](https://www.youtube.com/watch?v=umTbivyJoiI) + - [ ] [EXTRA BITS/TRITS - Huffman Trees](https://www.youtube.com/watch?v=DV8efuB3h2g) + - [ ] [Elegant Compression in Text (The LZ 77 Method)](https://www.youtube.com/watch?v=goOa3DGezUA) + - [ ] [Text Compression Meets Probabilities](https://www.youtube.com/watch?v=cCDCfoHTsaU) + - [ ] [Compressor Head videos](https://www.youtube.com/playlist?list=PLOU2XLYxmsIJGErt5rrCqaSGTMyyqNt2H) + - [ ] [(optional) Google Developers Live: GZIP is not enough!](https://www.youtube.com/watch?v=whGwm0Lky2s) + +- ### Networking + - **if you have networking experience or want to be a systems engineer, expect questions** + - otherwise, this is just good to know + - [ ] [Khan Academy](https://www.khanacademy.org/computing/computer-science/internet-intro) + - [ ] [UDP and TCP: Comparison of Transport Protocols](https://www.youtube.com/watch?v=Vdc8TCESIg8) + - [ ] [TCP/IP and the OSI Model Explained!](https://www.youtube.com/watch?v=e5DEVa9eSN0) + - [ ] [Packet Transmission across the Internet. Networking & TCP/IP tutorial.](https://www.youtube.com/watch?v=nomyRJehhnM) + - [ ] [HTTP](https://www.youtube.com/watch?v=WGJrLqtX7As) + - [ ] [SSL and HTTPS](https://www.youtube.com/watch?v=S2iBR2ZlZf0) + - [ ] [SSL/TLS](https://www.youtube.com/watch?v=Rp3iZUvXWlM) + - [ ] [HTTP 2.0](https://www.youtube.com/watch?v=E9FxNzv1Tr8) + - [ ] [Video Series (21 videos)](https://www.youtube.com/playlist?list=PLEbnTDJUr_IegfoqO4iPnPYQui46QqT0j) + - [ ] [Subnetting Demystified - Part 5 CIDR Notation](https://www.youtube.com/watch?v=t5xYI0jzOf4) + +- ### Computer Security + - [MIT (23 videos)](https://www.youtube.com/playlist?list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Introduction, Threat Models](https://www.youtube.com/watch?v=GqmQg-cszw4&index=1&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Control Hijacking Attacks](https://www.youtube.com/watch?v=6bwzNg5qQ0o&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh&index=2) + - [ ] [Buffer Overflow Exploits and Defenses](https://www.youtube.com/watch?v=drQyrzRoRiA&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh&index=3) + - [ ] [Privilege Separation](https://www.youtube.com/watch?v=6SIJmoE9L9g&index=4&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Capabilities](https://www.youtube.com/watch?v=8VqTSY-11F4&index=5&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Sandboxing Native Code](https://www.youtube.com/watch?v=VEV74hwASeU&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh&index=6) + - [ ] [Web Security Model](https://www.youtube.com/watch?v=chkFBigodIw&index=7&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Securing Web Applications](https://www.youtube.com/watch?v=EBQIGy1ROLY&index=8&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Symbolic Execution](https://www.youtube.com/watch?v=yRVZPvHYHzw&index=9&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Network Security](https://www.youtube.com/watch?v=SIEVvk3NVuk&index=11&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Network Protocols](https://www.youtube.com/watch?v=QOtA76ga_fY&index=12&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Side-Channel Attacks](https://www.youtube.com/watch?v=PuVMkSEcPiI&index=15&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + +- ### Garbage collection + - [ ] [Garbage collection (Java); Augmenting data str (video)](https://www.youtube.com/watch?v=StdfeXaKGEc&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=25) + - [ ] [Compilers (video)](https://www.youtube.com/playlist?list=PLO9y7hOkmmSGTy5z6HZ-W4k2y8WXF7Bff) + - [ ] [GC in Python (video)](https://www.youtube.com/watch?v=iHVs_HkjdmI) + - [ ] [Deep Dive Java: Garbage Collection is Good!](https://www.infoq.com/presentations/garbage-collection-benefits) + - [ ] [Deep Dive Python: Garbage Collection in CPython (video)](https://www.youtube.com/watch?v=P-8Z0-MhdQs&list=PLdzf4Clw0VbOEWOS_sLhT_9zaiQDrS5AR&index=3) + +- ### Parallel Programming + - [ ] [Coursera (Scala)](https://www.coursera.org/learn/parprog1/home/week/1) + - [ ] [Efficient Python for High Performance Parallel Computing (video)](https://www.youtube.com/watch?v=uY85GkaYzBk) + +- ### Messaging, Serialization, and Queueing Systems + - [ ] [Thrift](https://thrift.apache.org/) + - [Tutorial](http://thrift-tutorial.readthedocs.io/en/latest/intro.html) + - [ ] [Protocol Buffers](https://developers.google.com/protocol-buffers/) + - [Tutorials](https://developers.google.com/protocol-buffers/docs/tutorials) + - [ ] [gRPC](http://www.grpc.io/) + - [gRPC 101 for Java Developers (video)](https://www.youtube.com/watch?v=5tmPvSe7xXQ&list=PLcTqM9n_dieN0k1nSeN36Z_ppKnvMJoly&index=1) + - [ ] [Redis](http://redis.io/) + - [Tutorial](http://try.redis.io/) + - [ ] [Amazon SQS (queue)](https://aws.amazon.com/sqs/) + - [ ] [Amazon SNS (pub-sub)](https://aws.amazon.com/sns/) + - [ ] [RabbitMQ](https://www.rabbitmq.com/) + - [Get Startet](https://www.rabbitmq.com/getstarted.html) + - [ ] [Celery](http://www.celeryproject.org/) + - [First Steps With Celery](http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html) + - [ ] [ZeroMQ](http://zeromq.org/) + - [Intro - Read The Manual](http://zeromq.org/intro:read-the-manual) + - [ ] [ActiveMQ](http://activemq.apache.org/) + - [ ] [Kafka](http://kafka.apache.org/documentation.html#introduction) + - [ ] [MessagePack](http://msgpack.org/index.html) + - [ ] [Avro](https://avro.apache.org/) + +- ### Fast Fourier Transform + - [ ] [An Interactive Guide To The Fourier Transform](https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/) + - [ ] [What is a Fourier transform? What is it used for?](http://www.askamathematician.com/2012/09/q-what-is-a-fourier-transform-what-is-it-used-for/) + - [ ] [What is the Fourier Transform? (video)](https://www.youtube.com/watch?v=Xxut2PN-V8Q) + - [ ] [Divide & Conquer: FFT (video)](https://www.youtube.com/watch?v=iTMn0Kt18tg&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=4) + - [ ] [Understanding The FFT](http://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/) + +- ### Bloom Filter + - Given a Bloom filter with m bits and k hashing functions, both insertion and membership testing are O(k) + - [Bloom Filters](https://www.youtube.com/watch?v=-SuTGoFYjZs) + - [Bloom Filters | Mining of Massive Datasets | Stanford University](https://www.youtube.com/watch?v=qBTdukbzc78) + - [Tutorial](http://billmill.org/bloomfilter-tutorial/) + - [How To Write A Bloom Filter App](http://blog.michaelschmatz.com/2016/04/11/how-to-write-a-bloom-filter-cpp/) + +- ### HyperLogLog + - [How To Count A Billion Distinct Objects Using Only 1.5KB Of Memory](http://highscalability.com/blog/2012/4/5/big-data-counting-how-to-count-a-billion-distinct-objects-us.html) + +- ### Locality-Sensitive Hashing + - used to determine the similarity of documents + - the opposite of MD5 or SHA which are used to determine if 2 documents/strings are exactly the same. + - [Simhashing (hopefully) made simple](http://ferd.ca/simhashing-hopefully-made-simple.html) + +- ### van Emde Boas Trees + - [ ] [Divide & Conquer: van Emde Boas Trees (video)](https://www.youtube.com/watch?v=hmReJCupbNU&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=6) + - [ ] [MIT Lecture Notes](https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2012/lecture-notes/MIT6_046JS12_lec15.pdf) + +- ### Augmented Data Structures + - [ ] [CS 61B Lecture 39: Augmenting Data Structures](https://youtu.be/zksIj9O8_jc?list=PL4BBB74C7D2A1049C&t=950) + +- ### Tries + - Note there are different kinds of tries. Some have prefixes, some don't, and some use string instead of bits + to track the path. + - I read through code, but will not implement. + - [ ] [Sedgewick - Tries (3 videos)](https://www.youtube.com/playlist?list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [1. R Way Tries](https://www.youtube.com/watch?v=buq2bn8x3Vo&index=3&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [2. Ternary Search Tries](https://www.youtube.com/watch?v=LelV-kkYMIg&index=2&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [3. Character Based Operations](https://www.youtube.com/watch?v=00YaFPcC65g&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ&index=1) + - [ ] [Notes on Data Structures and Programming Techniques](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#Tries) + - [ ] Short course videos: + - [ ] [Introduction To Tries (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/08Xyf/core-introduction-to-tries) + - [ ] [Performance Of Tries (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/PvlZW/core-performance-of-tries) + - [ ] [Implementing A Trie (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/DFvd3/core-implementing-a-trie) + - [ ] [The Trie: A Neglected Data Structure](https://www.toptal.com/java/the-trie-a-neglected-data-structure) + - [ ] [TopCoder - Using Tries](https://www.topcoder.com/community/data-science/data-science-tutorials/using-tries/) + - [ ] [Stanford Lecture (real world use case) (video)](https://www.youtube.com/watch?v=TJ8SkcUSdbU) + - [ ] [MIT, Advanced Data Structures, Strings (can get pretty obscure about halfway through)](https://www.youtube.com/watch?v=NinWEPPrkDQ&index=16&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf) + +- ### Balanced search trees + - Know least one type of balanced binary tree (and know how it's implemented): + - "Among balanced search trees, AVL and 2/3 trees are now passé, and red-black trees seem to be more popular. + A particularly interesting self-organizing data structure is the splay tree, which uses rotations + to move any accessed key to the root." - Skiena + - Of these, I chose to implement a splay tree. From what I've read, you won't implement a + balanced search tree in your interview. But I wanted exposure to coding one up + and let's face it, splay trees are the bee's knees. I did read a lot of red-black tree code. + - splay tree: insert, search, delete functions + If you end up implementing red/black tree try just these: + - search and insertion functions, skipping delete + - I want to learn more about B-Tree since it's used so widely with very large data sets. + - [ ] [Self-balancing binary search tree](https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree) + + - [ ] **AVL trees** + - In practice: + From what I can tell, these aren't used much in practice, but I could see where they would be: + The AVL tree is another structure supporting O(log n) search, insertion, and removal. It is more rigidly + balanced than red–black trees, leading to slower insertion and removal but faster retrieval. This makes it + attractive for data structures that may be built once and loaded without reconstruction, such as language + dictionaries (or program dictionaries, such as the opcodes of an assembler or interpreter). + - [ ] [MIT AVL Trees / AVL Sort (video)](https://www.youtube.com/watch?v=FNeL18KsWPc&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=6) + - [ ] [AVL Trees (video)](https://www.coursera.org/learn/data-structures/lecture/Qq5E0/avl-trees) + - [ ] [AVL Tree Implementation (video)](https://www.coursera.org/learn/data-structures/lecture/PKEBC/avl-tree-implementation) + - [ ] [Split And Merge](https://www.coursera.org/learn/data-structures/lecture/22BgE/split-and-merge) + + - [ ] **Splay trees** + - In practice: + Splay trees are typically used in the implementation of caches, memory allocators, routers, garbage collectors, + data compression, ropes (replacement of string used for long text strings), in Windows NT (in the virtual memory, + networking and file system code) etc. + - [ ] [CS 61B: Splay Trees (video)](https://www.youtube.com/watch?v=Najzh1rYQTo&index=23&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd) + - [ ] MIT Lecture: Splay Trees: + - Gets very mathy, but watch the last 10 minutes for sure. + - [Video](https://www.youtube.com/watch?v=QnPl_Y6EqMo) + + - [ ] **Red/black trees** + - these are a translation of a 2-3 tree (see below) + - In practice: + Red–black trees offer worst-case guarantees for insertion time, deletion time, and search time. + Not only does this make them valuable in time-sensitive applications such as real-time applications, + but it makes them valuable building blocks in other data structures which provide worst-case guarantees; + for example, many data structures used in computational geometry can be based on red–black trees, and + the Completely Fair Scheduler used in current Linux kernels uses red–black trees. In the version 8 of Java, + the Collection HashMap has been modified such that instead of using a LinkedList to store identical elements with poor + hashcodes, a Red-Black tree is used. + - [ ] [Aduni - Algorithms - Lecture 4 (link jumps to starting point) (video)](https://youtu.be/1W3x0f_RmUo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3871) + - [ ] [Aduni - Algorithms - Lecture 5 (video)](https://www.youtube.com/watch?v=hm2GHwyKF1o&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=5) + - [ ] [Black Tree](https://en.wikipedia.org/wiki/Red%E2%80%93black_tree) + - [ ] [An Introduction To Binary Search And Red Black Tree](https://www.topcoder.com/community/data-science/data-science-tutorials/an-introduction-to-binary-search-and-red-black-trees/) + + - [ ] **2-3 search trees** + - In practice: + 2-3 trees have faster inserts at the expense of slower searches (since height is more compared to AVL trees). + - You would use 2-3 tree very rarely because its implementation involves different types of nodes. Instead, people use Red Black trees. + - [ ] [23-Tree Intuition and Definition (video)](https://www.youtube.com/watch?v=C3SsdUqasD4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=2) + - [ ] [Binary View of 23-Tree](https://www.youtube.com/watch?v=iYvBtGKsqSg&index=3&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [2-3 Trees (student recitation) (video)](https://www.youtube.com/watch?v=TOb1tuEZ2X4&index=5&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + + - [ ] **2-3-4 Trees (aka 2-4 trees)** + - In practice: + For every 2-4 tree, there are corresponding red–black trees with data elements in the same order. The insertion and deletion + operations on 2-4 trees are also equivalent to color-flipping and rotations in red–black trees. This makes 2-4 trees an + important tool for understanding the logic behind red–black trees, and this is why many introductory algorithm texts introduce + 2-4 trees just before red–black trees, even though **2-4 trees are not often used in practice**. + - [ ] [CS 61B Lecture 26: Balanced Search Trees (video)](https://www.youtube.com/watch?v=zqrqYXkth6Q&index=26&list=PL4BBB74C7D2A1049C) + - [ ] [Bottom Up 234-Trees (video)](https://www.youtube.com/watch?v=DQdMYevEyE4&index=4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [Top Down 234-Trees (video)](https://www.youtube.com/watch?v=2679VQ26Fp4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=5) + + - [ ] **N-ary (K-ary, M-ary) trees** + - note: the N or K is the branching factor (max branches) + - binary trees are a 2-ary tree, with branching factor = 2 + - 2-3 trees are 3-ary + - [ ] [K-Ary Tree](https://en.wikipedia.org/wiki/K-ary_tree) + + - [ ] **B-Trees** + - fun fact: it's a mystery, but the B could stand for Boeing, Balanced, or Bayer (co-inventor) + - In Practice: + B-Trees are widely used in databases. Most modern filesystems use B-trees (or Variants). In addition to + its use in databases, the B-tree is also used in filesystems to allow quick random access to an arbitrary + block in a particular file. The basic problem is turning the file block i address into a disk block + (or perhaps to a cylinder-head-sector) address. + - [ ] [B-Tree](https://en.wikipedia.org/wiki/B-tree) + - [ ] [Introduction to B-Trees (video)](https://www.youtube.com/watch?v=I22wEC1tTGo&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=6) + - [ ] [B-Tree Definition and Insertion (video)](https://www.youtube.com/watch?v=s3bCdZGrgpA&index=7&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [B-Tree Deletion (video)](https://www.youtube.com/watch?v=svfnVhJOfMc&index=8&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [MIT 6.851 - Memory Hierarchy Models (video)](https://www.youtube.com/watch?v=V3omVLzI0WE&index=7&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf) + - covers cache-oblivious B-Trees, very interesting data structures + - the first 37 minutes are very technical, may be skipped (B is block size, cache line size) + + +- ### k-D Trees + - great for finding number of points in a rectangle or higher dimension object + - a good fit for k-nearest neighbors + - [ ] [Kd Trees (video)](https://www.youtube.com/watch?v=W94M9D_yXKk) + - [ ] [kNN K-d tree algorithm (video)](https://www.youtube.com/watch?v=Y4ZgLlDfKDg) + +- ### Skip lists + - "These are somewhat of a cult data structure" - Skiena + - [ ] [Randomization: Skip Lists (video)](https://www.youtube.com/watch?v=2g9OSRKJuzM&index=10&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [For animations and a little more detail](https://en.wikipedia.org/wiki/Skip_list) + +- ### Network Flows + - [ ] [Ford-Fulkerson in 5 minutes (video)](https://www.youtube.com/watch?v=v1VgJmkEJW0) + - [ ] [Ford-Fulkerson Algorithm (video)](https://www.youtube.com/watch?v=v1VgJmkEJW0) + - [ ] [Network Flows (video)](https://www.youtube.com/watch?v=2vhN4Ice5jI) + +- ### Disjoint Sets & Union Find + - [ ] [UCB 61B - Disjoint Sets; Sorting & selection (video)](https://www.youtube.com/watch?v=MAEGXTwmUsI&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=21) + - [ ] [Sedgewick Algorithms - Union-Find (6 videos)](https://www.youtube.com/watch?v=8mYfZeHtdNc&list=PLe-ggMe31CTexoNYnMhbHaWhQ0dvcy43t) + +- ### Math for Fast Processing + - [ ] [Integer Arithmetic, Karatsuba Multiplication (video)](https://www.youtube.com/watch?v=eCaXlAaN2uE&index=11&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [The Chinese Remainder Theorem (used in cryptography) (video)](https://www.youtube.com/watch?v=ru7mWZJlRQg) + +- ### Treap + - Combination of a binary search tree and a heap + - [ ] [Treap](https://en.wikipedia.org/wiki/Treap) + - [ ] [Data Structures: Treaps explained (video)](https://www.youtube.com/watch?v=6podLUYinH8) + - [ ] [Applications in set operations](https://www.cs.cmu.edu/~scandal/papers/treaps-spaa98.pdf) + +- ### Linear Programming (videos) + - [ ] [Linear Programming](https://www.youtube.com/watch?v=M4K6HYLHREQ) + - [ ] [Finding minimum cost](https://www.youtube.com/watch?v=2ACJ9ewUC6U) + - [ ] [Finding maximum value](https://www.youtube.com/watch?v=8AA_81xI3ik) + - [ ] [Solve Linear Equations with Python - Simplex Algorithm](https://www.youtube.com/watch?v=44pAWI7v5Zk) + +- ### Geometry, Convex hull (videos) + - [ ] [Graph Alg. IV: Intro to geometric algorithms - Lecture 9](https://youtu.be/XIAQRlNkJAw?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3164) + - [ ] [Geometric Algorithms: Graham & Jarvis - Lecture 10](https://www.youtube.com/watch?v=J5aJEcOr6Eo&index=10&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [Divide & Conquer: Convex Hull, Median Finding](https://www.youtube.com/watch?v=EzeYI7p9MjU&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=2) + +- ### Discrete math + - see videos below + +- ### Machine Learning + - [ ] Why ML? + - [ ] [How Google Is Remaking Itself As A Machine Learning First Company](https://backchannel.com/how-google-is-remaking-itself-as-a-machine-learning-first-company-ada63defcb70) + - [ ] [Large-Scale Deep Learning for Intelligent Computer Systems (video)](https://www.youtube.com/watch?v=QSaZGT4-6EY) + - [ ] [Deep Learning and Understandability versus Software Engineering and Verification by Peter Norvig](https://www.youtube.com/watch?v=X769cyzBNVw) + - [ ] [Google's Cloud Machine learning tools (video)](https://www.youtube.com/watch?v=Ja2hxBAwG_0) + - [ ] [Google Developers' Machine Learning Recipes (Scikit Learn & Tensorflow) (video)](https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal) + - [ ] [Tensorflow (video)](https://www.youtube.com/watch?v=oZikw5k_2FM) + - [ ] [Tensorflow Tutorials](https://www.tensorflow.org/versions/r0.11/tutorials/index.html) + - [ ] [Practical Guide to implementing Neural Networks in Python (using Theano)](http://www.analyticsvidhya.com/blog/2016/04/neural-networks-python-theano/) + - Courses: + - [Great starter course: Machine Learning](https://www.coursera.org/learn/machine-learning) + - [videos only](https://www.youtube.com/playlist?list=PLZ9qNFMHZ-A4rycgrgOYma6zxF4BZGGPW) + - see videos 12-18 for a review of linear algebra (14 and 15 are duplicates) + - [Neural Networks for Machine Learning](https://www.coursera.org/learn/neural-networks) + - [Google's Deep Learning Nanodegree](https://www.udacity.com/course/deep-learning--ud730) + - [Google/Kaggle Machine Learning Engineer Nanodegree](https://www.udacity.com/course/machine-learning-engineer-nanodegree-by-google--nd009) + - [Self-Driving Car Engineer Nanodegree](https://www.udacity.com/drive) + - [Metis Online Course ($99 for 2 months)](http://www.thisismetis.com/explore-data-science) + - Resources: + - Books: + - [Python Machine Learning](https://www.amazon.com/Python-Machine-Learning-Sebastian-Raschka/dp/1783555130/) + - [Data Science from Scratch: First Principles with Python](https://www.amazon.com/Data-Science-Scratch-Principles-Python/dp/149190142X) + - [Introduction to Machine Learning with Python](https://www.amazon.com/Introduction-Machine-Learning-Python-Scientists/dp/1449369413/) + - [Machine Learning for Software Engineers](https://github.com/ZuzooVn/machine-learning-for-software-engineers) + - Data School: http://www.dataschool.io/ + +- ### Go + - [ ] Videos: + - [ ] [Why Learn Go?](https://www.youtube.com/watch?v=FTl0tl9BGdc) + - [ ] [Go Programming](https://www.youtube.com/watch?v=CF9S4QZuV30) + - [ ] [A Tour of Go](https://www.youtube.com/watch?v=ytEkHepK08c) + - [ ] Books: + - [ ] [An Introduction to Programming in Go (read free online)](https://www.golang-book.com/books/intro) + - [ ] [The Go Programming Language (Donovan & Kernighan)](https://www.amazon.com/Programming-Language-Addison-Wesley-Professional-Computing/dp/0134190440) + - [ ] [Bootcamp](https://www.golang-book.com/guides/bootcamp) + +-- + +## Additional Detail on Some Subjects + + I added these to reinforce some ideas already presented above, but didn't want to include them + above because it's just too much. It's easy to overdo it on a subject. + You want to get hired in this century, right? + +- [ ] **Union-Find** + - [ ] [Overview](https://www.coursera.org/learn/data-structures/lecture/JssSY/overview) + - [ ] [Naive Implementation](https://www.coursera.org/learn/data-structures/lecture/EM5D0/naive-implementations) + - [ ] [Trees](https://www.coursera.org/learn/data-structures/lecture/Mxu0w/trees) + - [ ] [Union By Rank](https://www.coursera.org/learn/data-structures/lecture/qb4c2/union-by-rank) + - [ ] [Path Compression](https://www.coursera.org/learn/data-structures/lecture/Q9CVI/path-compression) + - [ ] [Analysis Options](https://www.coursera.org/learn/data-structures/lecture/GQQLN/analysis-optional) + +- [ ] **More Dynamic Programming** (videos) + - [ ] [6.006: Dynamic Programming I: Fibonacci, Shortest Paths](https://www.youtube.com/watch?v=OQ5jsbhAv_M&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=19) + - [ ] [6.006: Dynamic Programming II: Text Justification, Blackjack](https://www.youtube.com/watch?v=ENyox7kNKeY&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=20) + - [ ] [6.006: DP III: Parenthesization, Edit Distance, Knapsack](https://www.youtube.com/watch?v=ocZMDMZwhCY&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=21) + - [ ] [6.006: DP IV: Guitar Fingering, Tetris, Super Mario Bros.](https://www.youtube.com/watch?v=tp4_UXaVyx8&index=22&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [6.046: Dynamic Programming & Advanced DP](https://www.youtube.com/watch?v=Tw1k46ywN6E&index=14&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [6.046: Dynamic Programming: All-Pairs Shortest Paths](https://www.youtube.com/watch?v=NzgFUwOaoIw&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=15) + - [ ] [6.046: Dynamic Programming (student recitation)](https://www.youtube.com/watch?v=krZI60lKPek&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=12) + +- [ ] **Advanced Graph Processing** (videos) + - [ ] [Synchronous Distributed Algorithms: Symmetry-Breaking. Shortest-Paths Spanning Trees](https://www.youtube.com/watch?v=mUBmcbbJNf4&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=27) + - [ ] [Asynchronous Distributed Algorithms: Shortest-Paths Spanning Trees](https://www.youtube.com/watch?v=kQ-UQAzcnzA&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=28) + +- [ ] MIT **Probability** (mathy, and go slowly, which is good for mathy things) (videos): + - [ ] [MIT 6.042J - Probability Introduction](https://www.youtube.com/watch?v=SmFwFdESMHI&index=18&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Conditional Probability](https://www.youtube.com/watch?v=E6FbvM-FGZ8&index=19&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Independence](https://www.youtube.com/watch?v=l1BCv3qqW4A&index=20&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Random Variables](https://www.youtube.com/watch?v=MOfhhFaQdjw&list=PLB7540DEDD482705B&index=21) + - [ ] [MIT 6.042J - Expectation I](https://www.youtube.com/watch?v=gGlMSe7uEkA&index=22&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Expectation II](https://www.youtube.com/watch?v=oI9fMUqgfxY&index=23&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Large Deviations](https://www.youtube.com/watch?v=q4mwO2qS2z4&index=24&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Random Walks](https://www.youtube.com/watch?v=56iFMY8QW2k&list=PLB7540DEDD482705B&index=25) + +- [ ] [Simonson: Approximation Algorithms (video)](https://www.youtube.com/watch?v=oDniZCmNmNw&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=19) + +- [ ] **String Matching** + - [ ] Rabin-Karp (videos): + - [Rabin Karps Algorithm](https://www.coursera.org/learn/data-structures/lecture/c0Qkw/rabin-karps-algorithm) + - [Precomputing](https://www.coursera.org/learn/data-structures/lecture/nYrc8/optimization-precomputation) + - [Optimization: Implementation and Analysis](https://www.coursera.org/learn/data-structures/lecture/h4ZLc/optimization-implementation-and-analysis) + - [Table Doubling, Karp-Rabin](https://www.youtube.com/watch?v=BRO7mVIFt08&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=9) + - [Rolling Hashes, Amortized Analysis](https://www.youtube.com/watch?v=w6nuXg0BISo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=32) + - [ ] Knuth-Morris-Pratt (KMP): + - [TThe Knuth-Morris-Pratt (KMP) String Matching Algorithm](https://www.youtube.com/watch?v=5i7oKodCRJo) + - [ ] Boyer–Moore string search algorithm + - [Boyer-Moore String Search Algorithm](https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm) + - [Advanced String Searching Boyer-Moore-Horspool Algorithms (video)](https://www.youtube.com/watch?v=QDZpzctPf10) + - [ ] [Coursera: Algorithms on Strings](https://www.coursera.org/learn/algorithms-on-strings/home/week/1) + - starts off great, but by the time it gets past KMP it gets more complicated than it needs to be + - nice explanation of tries + - can be skipped + +- [ ] **Sorting** + + - [ ] Stanford lectures on sorting: + - [ ] [Lecture 15 | Programming Abstractions (video)](https://www.youtube.com/watch?v=ENp00xylP7c&index=15&list=PLFE6E58F856038C69) + - [ ] [Lecture 16 | Programming Abstractions (video)](https://www.youtube.com/watch?v=y4M9IVgrVKo&index=16&list=PLFE6E58F856038C69) + - [ ] Shai Simonson, [Aduni.org](http://www.aduni.org/): + - [ ] [Algorithms - Sorting - Lecture 2 (video)](https://www.youtube.com/watch?v=odNJmw5TOEE&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=2) + - [ ] [Algorithms - Sorting II - Lecture 3 (video)](https://www.youtube.com/watch?v=hj8YKFTFKEE&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=3) + - [ ] Steven Skiena lectures on sorting: + - [ ] [lecture begins at 26:46 (video)](https://youtu.be/ute-pmMkyuk?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1600) + - [ ] [lecture begins at 27:40 (video)](https://www.youtube.com/watch?v=yLvp-pB8mak&index=8&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [lecture begins at 35:00 (video)](https://www.youtube.com/watch?v=q7K9otnzlfE&index=9&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [lecture begins at 23:50 (video)](https://www.youtube.com/watch?v=TvqIGu9Iupw&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=10) + +## Video Series + +Sit back and enjoy. "Netflix and skill" :P + +- [ ] [List of individual Dynamic Programming problems (each is short)](https://www.youtube.com/playlist?list=PLrmLmBdmIlpsHaNTPP_jHHDx_os9ItYXr) + +- [ ] [x86 Architecture, Assembly, Applications (11 videos)](https://www.youtube.com/playlist?list=PL038BE01D3BAEFDB0) + +- [ ] [MIT 18.06 Linear Algebra, Spring 2005 (35 videos)](https://www.youtube.com/playlist?list=PLE7DDD91010BC51F8) + +- [ ] [Excellent - MIT Calculus Revisited: Single Variable Calculus](https://www.youtube.com/playlist?list=PL3B08AE665AB9002A) + +- [ ] [Computer Science 70, 001 - Spring 2015 - Discrete Mathematics and Probability Theory](https://www.youtube.com/playlist?list=PL-XXv-cvA_iD8wQm8U0gG_Z1uHjImKXFy) + +- [ ] [Discrete Mathematics by Shai Simonson (19 videos)](https://www.youtube.com/playlist?list=PL3o9D4Dl2FJ9q0_gtFXPh_H4POI5dK0yG) + +- [ ] [Discrete Mathematics Part 1 by Sarada Herke (5 videos)](https://www.youtube.com/playlist?list=PLGxuz-nmYlQPOc4w1Kp2MZrdqOOm4Jxeo) + +- [ ] CSE373 - Analysis of Algorithms (25 videos) + - [Skiena lectures from Algorithm Design Manual](https://www.youtube.com/watch?v=ZFjhkohHdAA&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=1) + +- [ ] [UC Berkeley 61B (Spring 2014): Data Structures (25 videos)](https://www.youtube.com/watch?v=mFPmKGIrQs4&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd) + +- [ ] [UC Berkeley 61B (Fall 2006): Data Structures (39 videos)](https://www.youtube.com/playlist?list=PL4BBB74C7D2A1049C) + +- [ ] [UC Berkeley 61C: Machine Structures (26 videos)](https://www.youtube.com/watch?v=gJJeUFyuvvg&list=PL-XXv-cvA_iCl2-D-FS5mk0jFF6cYSJs_) + +- [ ] [OOSE: Software Dev Using UML and Java (21 videos)](https://www.youtube.com/playlist?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + +- [ ] [UC Berkeley CS 152: Computer Architecture and Engineering (20 videos)](https://www.youtube.com/watch?v=UH0QYvtP7Rk&index=20&list=PLkFD6_40KJIwEiwQx1dACXwh-2Fuo32qr) + +- [ ] [MIT 6.004: Computation Structures (49 videos)](https://www.youtube.com/playlist?list=PLrRW1w6CGAcXbMtDFj205vALOGmiRc82-) + +- [ ] [Carnegie Mellon - Computer Architecture Lectures (39 videos)](https://www.youtube.com/playlist?list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq) + +- [ ] [MIT 6.006: Intro to Algorithms (47 videos)](https://www.youtube.com/watch?v=HtSuA80QTyo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&nohtml5=False) + +- [ ] [MIT 6.033: Computer System Engineering (22 videos)](https://www.youtube.com/watch?v=zm2VP0kHl1M&list=PL6535748F59DCA484) + +- [ ] [MIT 6.034 Artificial Intelligence, Fall 2010 (30 videos)](https://www.youtube.com/playlist?list=PLUl4u3cNGP63gFHB6xb-kVBiQHYe_4hSi) + +- [ ] [MIT 6.042J: Mathematics for Computer Science, Fall 2010 (25 videos)](https://www.youtube.com/watch?v=L3LMbpZIKhQ&list=PLB7540DEDD482705B) + +- [ ] [MIT 6.046: Design and Analysis of Algorithms (34 videos)](https://www.youtube.com/watch?v=2P-yW7LQr08&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + +- [ ] [MIT 6.050J: Information and Entropy, Spring 2008 (19 videos)](https://www.youtube.com/watch?v=phxsQrZQupo&list=PL_2Bwul6T-A7OldmhGODImZL8KEVE38X7) + +- [ ] [MIT 6.851: Advanced Data Structures (22 videos)](https://www.youtube.com/watch?v=T0yzrZL1py0&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf&index=1) + +- [ ] [MIT 6.854: Advanced Algorithms, Spring 2016 (24 videos)](https://www.youtube.com/playlist?list=PL6ogFv-ieghdoGKGg2Bik3Gl1glBTEu8c) + +- [ ] [Harvard COMPSCI 224: Advanced Algorithms (25 videos)](https://www.youtube.com/playlist?list=PL2SOU6wwxB0uP4rJgf5ayhHWgw7akUWSf) + +- [ ] [MIT 6.858 Computer Systems Security, Fall 2014](https://www.youtube.com/watch?v=GqmQg-cszw4&index=1&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + +- [ ] [Stanford: Programming Paradigms (27 videos)](https://www.youtube.com/view_play_list?p=9D558D49CA734A02) + +- [ ] [Introduction to Cryptography by Christof Paar](https://www.youtube.com/playlist?list=PL6N5qY2nvvJE8X75VkXglSrVhLv1tVcfy) + - [Course Website along with Slides and Problem Sets](http://www.crypto-textbook.com/) + +- [ ] [Mining Massive Datasets - Stanford University (94 videos)](https://www.youtube.com/playlist?list=PLLssT5z_DsK9JDLcT8T62VtzwyW9LNepV) + +- [ ] [Graph Theory by Sarada Herke (67 videos)](https://www.youtube.com/user/DrSaradaHerke/playlists?shelf_id=5&view=50&sort=dd) + +## Computer Science Courses + +- [Directory of Online CS Courses](https://github.com/open-source-society/computer-science) +- [Directory of CS Courses (many with online lectures)](https://github.com/prakhar1989/awesome-courses) + From 5fd8f22b541cbcf5610bc54fd259425cea33bb7c Mon Sep 17 00:00:00 2001 From: Daniel Ossorio Date: Tue, 20 Dec 2016 09:19:08 +0000 Subject: [PATCH 078/109] Added spanish translation link --- README.md | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 764cb2b..3e5af5c 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,8 @@ # Google Interview University -Translations: [中文版本](https://github.com/jwasham/google-interview-university/blob/master/README-cn.md) +Translations: +- [中文版本](https://github.com/jwasham/google-interview-university/blob/master/README-cn.md) +- [Español](README-es.md) ## What is it? From 85f99454e51690c4b84bb5c6ed6e0e019f4ec8be Mon Sep 17 00:00:00 2001 From: Elliptica Date: Tue, 20 Dec 2016 11:54:16 +0200 Subject: [PATCH 079/109] Fix typo --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 8d8bcbc..ee47cdf 100644 --- a/README.md +++ b/README.md @@ -1042,7 +1042,7 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [ ] [Complexity: P, NP, NP-completeness, Reductions (video)](https://www.youtube.com/watch?v=eHZifpgyH_4&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=22) - [ ] [Complexity: Approximation Algorithms (video)](https://www.youtube.com/watch?v=MEz1J9wY2iM&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=24) - [ ] [Complexity: Fixed-Parameter Algorithms (video)](https://www.youtube.com/watch?v=4q-jmGrmxKs&index=25&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) - - Peter Norvik discusses near-optimal solutions to traveling salesman problem: + - Peter Norvig discusses near-optimal solutions to traveling salesman problem: - [Jupyter Notebook](http://nbviewer.jupyter.org/url/norvig.com/ipython/TSP.ipynb) - Pages 1048 - 1140 in CLRS if you have it. From e2bca719419a065b1de9a8501be9fff04ddf4179 Mon Sep 17 00:00:00 2001 From: vinnya3 Date: Tue, 20 Dec 2016 05:57:30 -0500 Subject: [PATCH 080/109] docs: fix spelling error Fixed spelling error: somehat -> somewhat --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 8d8bcbc..c7f8b72 100644 --- a/README.md +++ b/README.md @@ -339,7 +339,7 @@ If you have tons of extra time: If short on time: - [ ] [Write Great Code: Volume 1: Understanding the Machine](https://www.amazon.com/Write-Great-Code-Understanding-Machine/dp/1593270038) - - The book was published in 2004, and is somehat outdated, but it's a terrific resource for understanding a computer in brief. + - The book was published in 2004, and is somewhat outdated, but it's a terrific resource for understanding a computer in brief. - The author invented HLA, so take mentions and examples in HLA with a grain of salt. Not widely used, but decent examples of what assembly looks like. - These chapters are worth the read to give you a nice foundation: - Chapter 2 - Numeric Representation From 9a951845bf930806240390b7acf80b16c59ba868 Mon Sep 17 00:00:00 2001 From: John Washam Date: Tue, 20 Dec 2016 11:17:40 -0800 Subject: [PATCH 081/109] Added "in progress" on Spanish translation. --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index feee777..019f5d1 100644 --- a/README.md +++ b/README.md @@ -1,8 +1,8 @@ # Google Interview University Translations: -- [中文版本](https://github.com/jwasham/google-interview-university/blob/master/README-cn.md) -- [Español](README-es.md) +- [中文版本](README-cn.md) +- [Español (in progress)](README-es.md) ## What is it? From a6922e4159bc54bc7da0ccbe01919605434b534e Mon Sep 17 00:00:00 2001 From: "Noel.b" Date: Wed, 21 Dec 2016 22:16:09 +0900 Subject: [PATCH 082/109] Fix typo --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 019f5d1..bd59d93 100644 --- a/README.md +++ b/README.md @@ -1647,7 +1647,7 @@ You're never really done. - [ ] [Amazon SQS (queue)](https://aws.amazon.com/sqs/) - [ ] [Amazon SNS (pub-sub)](https://aws.amazon.com/sns/) - [ ] [RabbitMQ](https://www.rabbitmq.com/) - - [Get Startet](https://www.rabbitmq.com/getstarted.html) + - [Get Started](https://www.rabbitmq.com/getstarted.html) - [ ] [Celery](http://www.celeryproject.org/) - [First Steps With Celery](http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html) - [ ] [ZeroMQ](http://zeromq.org/) From d4c274c2cd5132466bf414827e662d52860b2bdc Mon Sep 17 00:00:00 2001 From: John Washam Date: Wed, 21 Dec 2016 09:53:16 -0800 Subject: [PATCH 083/109] =?UTF-8?q?Added=20links=20to=20Hindi=20and=20Span?= =?UTF-8?q?ish=20translation=20efforts.=20I=20hope=20I=20spelled=20Hindi?= =?UTF-8?q?=20correctly:=20=E0=A4=AE=E0=A4=BE=E0=A4=A8=E0=A4=95=20?= =?UTF-8?q?=E0=A4=B9=E0=A4=BF=E0=A4=A8=E0=A5=8D=E0=A4=A6=E0=A5=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- README.md | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 019f5d1..01fd291 100644 --- a/README.md +++ b/README.md @@ -2,7 +2,8 @@ Translations: - [中文版本](README-cn.md) -- [Español (in progress)](README-es.md) +- [Español (in progress)](README-es.md) [Issue #80](https://github.com/jwasham/google-interview-university/issues/80) +- मानक हिन्दी (in progress) [Issue #81](https://github.com/jwasham/google-interview-university/issues/81) ## What is it? From 0491647bfb1bfaea318cbd7fa9df4156b9fcc998 Mon Sep 17 00:00:00 2001 From: Sourabh Mhaisekar Date: Thu, 22 Dec 2016 10:35:34 +0530 Subject: [PATCH 084/109] Create README-hn.md --- README-hn.md | 1 + 1 file changed, 1 insertion(+) create mode 100644 README-hn.md diff --git a/README-hn.md b/README-hn.md new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/README-hn.md @@ -0,0 +1 @@ + From 942b13e58a0bab176b7ae9041fcdb5b492da23d7 Mon Sep 17 00:00:00 2001 From: Sourabh Mhaisekar Date: Thu, 22 Dec 2016 11:14:15 +0530 Subject: [PATCH 085/109] update translation --- README-hn.md | 1682 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1682 insertions(+) diff --git a/README-hn.md b/README-hn.md index 8b13789..1613b73 100644 --- a/README-hn.md +++ b/README-hn.md @@ -1 +1,1683 @@ +# Google Interview University + +## यह क्या हे? + +यह मेरा वेब डेवलपर से गूगल सॉफ्टवेर इंजिनियर बनाने की अद्ययन योजना हैं. + +![Coding at the whiteboard - from HBO's Silicon Valley](https://dng5l3qzreal6.cloudfront.net/2016/Aug/coding_board_small-1470866369118.jpg) + +यह लम्बी सूचि **गूगल कोचिंग नोट्स** से छाती एव विस्तारित की गयी हैं, ताकि इन बातो को आपको पता चल सके. मैंने आपके इंटरव्यू में मदत कर सकने वाले कुछ अतिरिक्त विषय सूचि के आखिर में डाले हे. +अनेक विषय स्टीव येग्गे की "[Get that job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html)" से हैं. +--- + +## अनुक्रमणिका +- [यह क्या हे?](#what-is-it) +- [इसका क्य उपयोग करे?](#why-use-it) +- [इसका कैसे उपयोग करे?](#how-to-use-it) +- [चलो गूगली मूड में](#get-in-a-googley-mood) +- [क्या मुजे नौकरी मिली?](#did-i-get-the-job) +- [मेरे साथ चले](#follow-along-with-me) +- [कभीबी आप चालक नहीं हो ऐसा ना सोचो](#dont-feel-you-arent-smart-enough) +- [गूगल के बारे में](#about-google) +- [विडियो संसाधनों के बारे में](#about-video-resources) +- [इंटरव्यू प्रकिया और साधारण इंटरव्यू तयारी](#interview-process--general-interview-prep) +- [इंटरव्यू के लिए एक संगणक भाषा चुने](#pick-one-language-for-the-interview) +- [प्रारंभ करने से पहले](#before-you-get-started) +- [एअसमे क्या समाविष्ट नहीं हे](#what-you-wont-see-covered) +- [शर्त ज्ञान](#prerequisite-knowledge) +- [दैनिक योजना](#the-daily-plan) +- [अल्गोरिथम जटिलत / बिग-O / Asymptotic analysis](#algorithmic-complexity--big-o--asymptotic-analysis) +- [डेटा संरचनाएं](#data-structures) + - [ऐरे](#arrays) + - [लिंक्ड लिस्ट](#linked-lists) + - [स्टैक](#stack) + - [क़ु](#queue) + - [हैश टेबल](#hash-table) +- [अधिक जानकारी](#more-knowledge) + - [एन्दिंनेस](#endianness) + - [बाइनरी सर्च](#binary-search) + - [बितवाईस ऑपेरशन](#bitwise-operations) +- [ट्रीज](#trees) + - [ट्रीज पृष्टभूमि और तिपनिया](#trees---notes--background) + - [बाइनरी सर्च ट्री: BST](#binary-search-trees-bsts) + - [हीप / प्रायोरिटी क्यू / बाइनरी हीप](#heap--priority-queue--binary-heap) + - [त्रिएस](#tries) + - [बैलेंस्ड सर्च ट्री](#balanced-search-trees) + - [N-ary (K-ary, M-ary) ट्री](#n-ary-k-ary-m-ary-trees) +- [सोर्टिंग](#sorting) +- [ग्राफ](#graphs) +- [और अधिक जानकारी](#even-more-knowledge) + - [रिकर्शन](#recursion) + - [डायनामिक प्रोग्रामिंग](#dynamic-programming) + - [Combinatorics (n choose k) & Probability](#combinatorics-n-choose-k--probability) + - [NP, NP-Complete and Approximation Algorithms](#np-np-complete-and-approximation-algorithms) + - [Garbage collection](#garbage-collection) + - [Caches](#caches) + - [Processes and Threads](#processes-and-threads) + - [System Design, Scalability, Data Handling](#system-design-scalability-data-handling) + - [Papers](#papers) + - [Unicode](#unicode) + - [Emacs and vi(m)](#emacs-and-vim) + - [Unix command line tools](#unix-command-line-tools) + - [Testing](#testing) + - [Design patterns](#design-patterns) + - [Scheduling](#scheduling) + - [Implement system routines](#implement-system-routines) + - [String searching & manipulations](#string-searching--manipulations) +- [Final Review](#final-review) +- [Books](#books) +- [Coding exercises/challenges](#coding-exerciseschallenges) +- [Once you're closer to the interview](#once-youre-closer-to-the-interview) +- [Your Resume](#your-resume) +- [Be thinking of for when the interview comes](#be-thinking-of-for-when-the-interview-comes) +- [Have questions for the interviewer](#have-questions-for-the-interviewer) +- [Additional Learnings (not required)](#additional-learnings-not-required) + - [Information theory](#information-theory) + - [Parity & Hamming Code](#parity--hamming-code) + - [Entropy](#entropy) + - [Cryptography](#cryptography) + - [Compression](#compression) + - [Networking](#networking) + - [Computer Security](#computer-security) + - [Parallel Programming](#parallel-programming) + - [Messaging, Serialization, and Queueing Systems](#messaging-serialization-and-queueing-systems) + - [Fast Fourier Transform](#fast-fourier-transform) + - [Bloom Filter](#bloom-filter) + - [van Emde Boas Trees](#van-emde-boas-trees) + - [Augmented Data Structures](#augmented-data-structures) + - [Skip lists](#skip-lists) + - [Network Flows](#network-flows) + - [Disjoint Sets & Union Find](#disjoint-sets--union-find) + - [Math for Fast Processing](#math-for-fast-processing) + - [Treap](#treap) + - [Linear Programming](#linear-programming) + - [Geometry, Convex hull](#geometry-convex-hull) + - [Discrete math](#discrete-math) + - [Machine Learning](#machine-learning) + - [Go](#go) +- [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) +- [Video Series](#video-series) +- [Once You've Got The Job](#once-youve-got-the-job) + +--- + +## Why use it? + +I'm following this plan to prepare for my Google interview. I've been building the web, building +services, and launching startups since 1997. I have an economics degree, not a CS degree. I've +been very successful in my career, but I want to work at Google. I want to progress into larger systems +and get a real understanding of computer systems, algorithmic efficiency, data structure performance, +low-level languages, and how it all works. And if you don't know any of it, Google won't hire you. + +When I started this project, I didn't know a stack from a heap, didn't know Big-O anything, anything about trees, or how to +traverse a graph. If I had to code a sorting algorithm, I can tell ya it wouldn't have been very good. +Every data structure I've ever used was built into the language, and I didn't know how they worked +under the hood at all. I've never had to manage memory, unless a process I was running would give an "out of +memory" error, and then I'd have to find a workaround. I've used a few multi-dimensional arrays in my life and +thousands of associative arrays, but I've never created data structures from scratch. + +But after going through this study plan I have high confidence I'll be hired. It's a long plan. It's going to take me +months. If you are familiar with a lot of this already it will take you a lot less time. + +## How to use it + +Everything below is an outline, and you should tackle the items in order from top to bottom. + +I'm using Github's special markdown flavor, including tasks lists to check progress. + +- [x] Create a new branch so you can check items like this, just put an x in the brackets: [x] + +[More about Github-flavored markdown](https://guides.github.com/features/mastering-markdown/#GitHub-flavored-markdown) + +## Get in a Googley Mood + +Print out a "[future Googler](https://github.com/jwasham/google-interview-university/blob/master/extras/future-googler.pdf)" sign (or two) and keep your eyes on the prize. + +[![future Googler sign](https://dng5l3qzreal6.cloudfront.net/2016/Oct/Screen_Shot_2016_10_04_at_10_13_24_AM-1475601104364.png)](https://github.com/jwasham/google-interview-university/blob/master/extras/future-googler.pdf) + +## Did I Get the Job? + +I haven't applied yet. + +I still have a few days in the learning phase (finishing up this crazy list), and starting next week all +I'll be doing is programming questions all day long. That will continue for a few weeks, and then I'll +apply through a referral I've been holding onto since February (yes, February). + + Thanks for the referral, JP. + +## Follow Along with Me + +I'm on the journey, too. Follow along on my blog at [GoogleyAsHeck.com](https://googleyasheck.com/) + +- Twitter: [@googleyasheck](https://twitter.com/googleyasheck) +- Twitter: [@StartupNextDoor](https://twitter.com/StartupNextDoor) +- Google+: [+Googleyasheck](https://plus.google.com/+Googleyasheck) +- LinkedIn: [johnawasham](https://www.linkedin.com/in/johnawasham) + +![John Washam - Google Interview University](https://dng5l3qzreal6.cloudfront.net/2016/Aug/book_stack_photo_resized_18_1469302751157-1472661280368.png) + +## Don't feel you aren't smart enough +- Google engineers are smart, but many have an insecurity that they aren't smart enough, even though they work at Google. +- [The myth of the Genius Programmer](https://www.youtube.com/watch?v=0SARbwvhupQ) + +## About Google + +- [x] For students - [Google Careers: Technical Development Guide](https://www.google.com/about/careers/students/guide-to-technical-development.html) +- [ ] How Search Works: + - [ ] [The Evolution of Search (video)](https://www.youtube.com/watch?v=mTBShTwCnD4) + - [ ] [How Search Works - the story](https://www.google.com/insidesearch/howsearchworks/thestory/) + - [ ] [How Search Works](https://www.google.com/insidesearch/howsearchworks/) + - [ ] [How Search Works - Matt Cutts (video)](https://www.youtube.com/watch?v=BNHR6IQJGZs) + - [ ] [How Google makes improvements to its search algorithm (video)](https://www.youtube.com/watch?v=J5RZOU6vK4Q) +- [ ] Series: + - [ ] [How Google Search Dealt With Mobile](https://backchannel.com/how-google-search-dealt-with-mobile-33bc09852dc9) + - [ ] [Google's Secret Study To Find Out Our Needs](https://backchannel.com/googles-secret-study-to-find-out-our-needs-eba8700263bf) + - [ ] [Google Search Will Be Your Next Brain](https://backchannel.com/google-search-will-be-your-next-brain-5207c26e4523) + - [ ] [The Deep Mind Of Demis Hassabis](https://backchannel.com/the-deep-mind-of-demis-hassabis-156112890d8a) +- [ ] [Book: How Google Works](https://www.amazon.com/How-Google-Works-Eric-Schmidt/dp/1455582344) +- [ ] [Made by Google announcement - Oct 2016 (video)](https://www.youtube.com/watch?v=spDg-Q7zmcM) + +## About Video Resources + +Some videos are available only by enrolling in a Coursera, EdX, or Lynda.com class. These are called MOOCs. +It is free to do so, but sometimes the classes are not in session so you have to wait a couple of months, so you have no access. + + I'd appreciate your help converting the MOOC video links to public sources to replace the online course videos over time. I like using university lectures. + + +## Interview Process & General Interview Prep + +- [ ] Videos: + - [ ] [How to Work at Google - Candidate Coaching Session (video)](https://www.youtube.com/watch?v=oWbUtlUhwa8&feature=youtu.be) + - [ ] [Google Recruiters Share Technical Interview Tips (video)](https://www.youtube.com/watch?v=qc1owf2-220&feature=youtu.be) + - [ ] [How to Work at Google: Tech Resume Preparation (video)](https://www.youtube.com/watch?v=8npJLXkcmu8) + +- [ ] Articles: + - [ ] [Becoming a Googler in Three Steps](http://www.google.com/about/careers/lifeatgoogle/hiringprocess/) + - [ ] [Get That Job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html) + - all the things he mentions that you need to know are listed below + - [ ] _(very dated)_ [How To Get A Job At Google, Interview Questions, Hiring Process](http://dondodge.typepad.com/the_next_big_thing/2010/09/how-to-get-a-job-at-google-interview-questions-hiring-process.html) + - [ ] [Phone Screen Questions](http://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions) + +- [ ] Additional (not suggested by Google but I added): + - [ ] [ABC: Always Be Coding](https://medium.com/always-be-coding/abc-always-be-coding-d5f8051afce2#.4heg8zvm4) + - [ ] [Four Steps To Google Without A Degree](https://medium.com/always-be-coding/four-steps-to-google-without-a-degree-8f381aa6bd5e#.asalo1vfx) + - [ ] [Whiteboarding](https://medium.com/@dpup/whiteboarding-4df873dbba2e#.hf6jn45g1) + - [ ] [How Google Thinks About Hiring, Management And Culture](http://www.kpcb.com/blog/lessons-learned-how-google-thinks-about-hiring-management-and-culture) + - [ ] [Effective Whiteboarding during Programming Interviews](http://www.coderust.com/blog/2014/04/10/effective-whiteboarding-during-programming-interviews/) + - [ ] Cracking The Coding Interview Set 1: + - [ ] [Gayle L McDowell - Cracking The Coding Interview (video)](https://www.youtube.com/watch?v=rEJzOhC5ZtQ) + - [ ] [Cracking the Coding Interview with Author Gayle Laakmann McDowell (video)](https://www.youtube.com/watch?v=aClxtDcdpsQ) + - [ ] How to Get a Job at the Big 4: + - [ ] ['How to Get a Job at the Big 4 - Amazon, Facebook, Google & Microsoft' (video)](https://www.youtube.com/watch?v=YJZCUhxNCv8) + - [ ] [Failing at Google Interviews](http://alexbowe.com/failing-at-google-interviews/) + +## Pick One Language for the Interview + +I wrote this short article about it: [Important: Pick One Language for the Google Interview](https://googleyasheck.com/important-pick-one-language-for-the-google-interview/) + +You can use a language you are comfortable in to do the coding part of the interview, but for Google, these are solid choices: + +- C++ +- Java +- Python + +You could also use these, but read around first. There may be caveats: + +- JavaScript +- Ruby + +You need to be very comfortable in the language, and be knowledgeable. + +Read more about choices: +- http://www.byte-by-byte.com/choose-the-right-language-for-your-coding-interview/ +- http://blog.codingforinterviews.com/best-programming-language-jobs/ +- https://www.quora.com/What-is-the-best-language-to-program-in-for-an-in-person-Google-interview + +[See language resources here](programming-language-resources.md) + +You'll see some C, C++, and Python learning included below, because I'm learning. There are a few books involved, see the bottom. + +## Before you Get Started + +This list grew over many months, and yes, it kind of got out of hand. + +Here are some mistakes I made so you'll have a better experience. + +### 1. You Won't Remember it All + +I watched hours of videos and took copious notes, and months later there was much I didn't remember. I spent 3 days going +through my notes and making flashcards so I could review (see below). + +### 2. Use Flashcards + +To solve the problem, I made a little flashcards site where I could add flashcards of 2 types: general and code. +Each card has different formatting. + +I made a mobile-first website so I could review on my phone and tablet, whereever I am. + +Make your own for free: + +- [Flashcards site repo](https://github.com/jwasham/computer-science-flash-cards) +- [My flash cards database](https://github.com/jwasham/computer-science-flash-cards/blob/master/cards-jwasham.db): Keep in mind I went overboard and have cards covering everything from assembly language and Python trivia to machine learning and statistics. It's way too much for what's required by Google. + +**Note on flashcards:** The first time you recognize you know the answer, don't mark it as known. You have to see the +same card and answer it several times correctly before you really know it. Repetition will put that knowledge deeper in +your brain. + +### 3. Review, review, review + +I keep a set of cheatsheets on ASCII, OSI stack, Big-O notations, and more. I study them when I have some spare time. + +Take a break from programming problems for a half hour and go through your flashcards. + +### 4. Focus + +There are a lot of distractions that can take up valuable time. Focus and concentration is hard. + +## What you won't see covered + +This big list all started as a personal to-do list made from Google interview coaching notes. These are prevalent +technologies but were not mentioned in those notes: + +- SQL +- Javascript +- HTML, CSS, and other front-end technologies + +## The Daily Plan + +Some subjects take one day, and some will take multiple days. Some are just learning with nothing to implement. + +Each day I take one subject from the list below, watch videos about that subject, and write an implementation in: + C - using structs and functions that take a struct * and something else as args. + C++ - without using built-in types + C++ - using built-in types, like STL's std::list for a linked list + Python - using built-in types (to keep practicing Python) + and write tests to ensure I'm doing it right, sometimes just using simple assert() statements + You may do Java or something else, this is just my thing. + +Why code in all of these? + Practice, practice, practice, until I'm sick of it, and can do it with no problem (some have many edge cases and bookkeeping details to remember) + Work within the raw constraints (allocating/freeing memory without help of garbage collection (except Python)) + Make use of built-in types so I have experience using the built-in tools for real-world use (not going to write my own linked list implementation in production) + +I may not have time to do all of these for every subject, but I'll try. + +You can see my code here: + - [C] (https://github.com/jwasham/practice-c) + - [C++] (https://github.com/jwasham/practice-cpp) + - [Python] (https://github.com/jwasham/practice-python) + +You don't need to memorize the guts of every algorithm. + +Write code on a whiteboard, not a computer. Test with some sample inputs. Then test it out on a computer. + +## Prerequisite Knowledge + +- [ ] **How computers process a program:** + - [ ] [How does CPU execute program (video)](https://www.youtube.com/watch?v=42KTvGYQYnA) + - [ ] [Machine Code Instructions (video)](https://www.youtube.com/watch?v=Mv2XQgpbTNE) + +- [ ] **How floating point numbers are stored:** + - [ ] simple 8-bit: [Fractions in binary? (video)](http://math.stackexchange.com/questions/301435/fractions-in-binary) + - [ ] 32 bit: [Representation of Floating Point Numbers - 1 (video)](https://www.youtube.com/watch?v=ji3SfClm8TU) + - [ ] 64 bit: [IEEE754 32-bit floating point binary (video)](https://www.youtube.com/watch?v=50ZYcZebIec) + +- [ ] **Computer Arch Intro:** + (first video only - interesting but not required) [Introduction and Basics - Carnegie Mellon - Computer Architecture](https://www.youtube.com/watch?v=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=1) + +- [ ] **Compilers** + - [ ] [C++ (video)](https://www.youtube.com/watch?v=twodd1KFfGk) + - [ ] [Understanding Compiler Optimization (C++) (video)](https://www.youtube.com/watch?v=FnGCDLhaxKU) + +## Algorithmic complexity / Big-O / Asymptotic analysis +- nothing to implement +- [ ] [Harvard CS50 - Asymptotic Notation (video)](https://www.youtube.com/watch?v=iOq5kSKqeR4) +- [ ] [Big O Notations (general quick tutorial) (video)](https://www.youtube.com/watch?v=V6mKVRU1evU) +- [ ] [Big O Notation (and Omega and Theta) - best mathematical explanation (video)](https://www.youtube.com/watch?v=ei-A_wy5Yxw&index=2&list=PL1BaGV1cIH4UhkL8a9bJGG356covJ76qN) +- [ ] Skiena: + - [video](https://www.youtube.com/watch?v=gSyDMtdPNpU&index=2&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [slides](http://www3.cs.stonybrook.edu/~algorith/video-lectures/2007/lecture2.pdf) +- [ ] [A Gentle Introduction to Algorithm Complexity Analysis](http://discrete.gr/complexity/) +- [ ] [Orders of Growth (video)](https://class.coursera.org/algorithmicthink1-004/lecture/59) +- [ ] [Asymptotics (video)](https://class.coursera.org/algorithmicthink1-004/lecture/61) +- [ ] [UC Berkeley Big O (video)](https://youtu.be/VIS4YDpuP98) +- [ ] [UC Berkeley Big Omega (video)](https://youtu.be/ca3e7UVmeUc) +- [ ] [Amortized Analysis (video)](https://www.youtube.com/watch?v=B3SpQZaAZP4&index=10&list=PL1BaGV1cIH4UhkL8a9bJGG356covJ76qN) +- [ ] [Illustrating "Big O" (video)](https://class.coursera.org/algorithmicthink1-004/lecture/63) +- [ ] TopCoder (includes recurrence relations and master theorem): + - [Computational Complexity: Section 1](https://www.topcoder.com/community/data-science/data-science-tutorials/computational-complexity-section-1/) + - [Computational Complexity: Section 2](https://www.topcoder.com/community/data-science/data-science-tutorials/computational-complexity-section-2/) +- [ ] [Cheat sheet](http://bigocheatsheet.com/) + + + If some of the lectures are too mathy, you can jump down to the bottom and + watch the discrete mathematics videos to get the background knowledge. + +## Data Structures + +- ### Arrays + - Implement an automatically resizing vector. + - [ ] Description: + - [Arrays (video)](https://www.coursera.org/learn/data-structures/lecture/OsBSF/arrays) + - [Basic Arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Basic-arrays/149042/177104-4.html) + - [Multi-dim (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Multidimensional-arrays/149042/177105-4.html) + - [Dynamic Arrays (video)](https://www.coursera.org/learn/data-structures/lecture/EwbnV/dynamic-arrays) + - [Jagged Arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Jagged-arrays/149042/177106-4.html) + - [Resizing arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Resizable-arrays/149042/177108-4.html) + - [ ] Implement a vector (mutable array with automatic resizing): + - [ ] Practice coding using arrays and pointers, and pointer math to jump to an index instead of using indexing. + - [ ] new raw data array with allocated memory + - can allocate int array under the hood, just not use its features + - start with 16, or if starting number is greater, use power of 2 - 16, 32, 64, 128 + - [ ] size() - number of items + - [ ] capacity() - number of items it can hold + - [ ] is_empty() + - [ ] at(index) - returns item at given index, blows up if index out of bounds + - [ ] push(item) + - [ ] insert(index, item) - inserts item at index, shifts that index's value and trailing elements to the right + - [ ] prepend(item) - can use insert above at index 0 + - [ ] pop() - remove from end, return value + - [ ] delete(index) - delete item at index, shifting all trailing elements left + - [ ] remove(item) - looks for value and removes index holding it (even if in multiple places) + - [ ] find(item) - looks for value and returns first index with that value, -1 if not found + - [ ] resize(new_capacity) // private function + - when you reach capacity, resize to double the size + - when popping an item, if size is 1/4 of capacity, resize to half + - [ ] Time + - O(1) to add/remove at end (amortized for allocations for more space), index, or update + - O(n) to insert/remove elsewhere + - [ ] Space + - contiguous in memory, so proximity helps performance + - space needed = (array capacity, which is >= n) * size of item, but even if 2n, still O(n) + +- ### Linked Lists + - [ ] Description: + - [ ] [Singly Linked Lists (video)](https://www.coursera.org/learn/data-structures/lecture/kHhgK/singly-linked-lists) + - [ ] [CS 61B - Linked Lists (video)](https://www.youtube.com/watch?v=sJtJOtXCW_M&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=5) + - [ ] [C Code (video)](https://www.youtube.com/watch?v=QN6FPiD0Gzo) + - not the whole video, just portions about Node struct and memory allocation. + - [ ] Linked List vs Arrays: + - [Core Linked Lists Vs Arrays (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/rjBs9/core-linked-lists-vs-arrays) + - [In The Real World Linked Lists Vs Arrays (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/QUaUd/in-the-real-world-lists-vs-arrays) + - [ ] [why you should avoid linked lists (video)](https://www.youtube.com/watch?v=YQs6IC-vgmo) + - [ ] Gotcha: you need pointer to pointer knowledge: + (for when you pass a pointer to a function that may change the address where that pointer points) + This page is just to get a grasp on ptr to ptr. I don't recommend this list traversal style. Readability and maintainability suffer due to cleverness. + - [Pointers to Pointers](https://www.eskimo.com/~scs/cclass/int/sx8.html) + - [ ] implement (I did with tail pointer & without): + - [ ] size() - returns number of data elements in list + - [ ] empty() - bool returns true if empty + - [ ] value_at(index) - returns the value of the nth item (starting at 0 for first) + - [ ] push_front(value) - adds an item to the front of the list + - [ ] pop_front() - remove front item and return its value + - [ ] push_back(value) - adds an item at the end + - [ ] pop_back() - removes end item and returns its value + - [ ] front() - get value of front item + - [ ] back() - get value of end item + - [ ] insert(index, value) - insert value at index, so current item at that index is pointed to by new item at index + - [ ] erase(index) - removes node at given index + - [ ] value_n_from_end(n) - returns the value of the node at nth position from the end of the list + - [ ] reverse() - reverses the list + - [ ] remove_value(value) - removes the first item in the list with this value + - [ ] Doubly-linked List + - [Description (video)](https://www.coursera.org/learn/data-structures/lecture/jpGKD/doubly-linked-lists) + - No need to implement + +- ### Stack + - [ ] [Stacks (video)](https://www.coursera.org/learn/data-structures/lecture/UdKzQ/stacks) + - [ ] [Using Stacks Last-In First-Out (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-stacks-last-first-out/149042/177120-4.html) + - [ ] Will not implement. Implementing with array is trivial. + +- ### Queue + - [ ] [Using Queues First-In First-Out(video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-queues-first-first-out/149042/177122-4.html) + - [ ] [Queue (video)](https://www.coursera.org/learn/data-structures/lecture/EShpq/queue) + - [ ] [Circular buffer/FIFO](https://en.wikipedia.org/wiki/Circular_buffer) + - [ ] [Priority Queues (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Priority-queues-deques/149042/177123-4.html) + - [ ] Implement using linked-list, with tail pointer: + - enqueue(value) - adds value at position at tail + - dequeue() - returns value and removes least recently added element (front) + - empty() + - [ ] Implement using fixed-sized array: + - enqueue(value) - adds item at end of available storage + - dequeue() - returns value and removes least recently added element + - empty() + - full() + - [ ] Cost: + - a bad implementation using linked list where you enqueue at head and dequeue at tail would be O(n) + because you'd need the next to last element, causing a full traversal each dequeue + - enqueue: O(1) (amortized, linked list and array [probing]) + - dequeue: O(1) (linked list and array) + - empty: O(1) (linked list and array) + +- ### Hash table + - [ ] Videos: + - [ ] [Hashing with Chaining (video)](https://www.youtube.com/watch?v=0M_kIqhwbFo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=8) + - [ ] [Table Doubling, Karp-Rabin (video)](https://www.youtube.com/watch?v=BRO7mVIFt08&index=9&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [Open Addressing, Cryptographic Hashing (video)](https://www.youtube.com/watch?v=rvdJDijO2Ro&index=10&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [PyCon 2010: The Mighty Dictionary (video)](https://www.youtube.com/watch?v=C4Kc8xzcA68) + - [ ] [(Advanced) Randomization: Universal & Perfect Hashing (video)](https://www.youtube.com/watch?v=z0lJ2k0sl1g&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=11) + - [ ] [(Advanced) Perfect hashing (video)](https://www.youtube.com/watch?v=N0COwN14gt0&list=PL2B4EEwhKD-NbwZ4ezj7gyc_3yNrojKM9&index=4) + + - [ ] Online Courses: + - [ ] [Understanding Hash Functions (video](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Understanding-hash-functions/149042/177126-4.html) + - [ ] [Using Hash Tables (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-hash-tables/149042/177127-4.html) + - [ ] [Supporting Hashing (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Supporting-hashing/149042/177128-4.html) + - [ ] [Language Support Hash Tables (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Language-support-hash-tables/149042/177129-4.html) + - [ ] [Core Hash Tables (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/m7UuP/core-hash-tables) + - [ ] [Data Structures (video)](https://www.coursera.org/learn/data-structures/home/week/3) + - [ ] [Phone Book Problem (video)](https://www.coursera.org/learn/data-structures/lecture/NYZZP/phone-book-problem) + - [ ] distributed hash tables: + - [Instant Uploads And Storage Optimization In Dropbox (video)](https://www.coursera.org/learn/data-structures/lecture/DvaIb/instant-uploads-and-storage-optimization-in-dropbox) + - [Distributed Hash Tables (video)](https://www.coursera.org/learn/data-structures/lecture/tvH8H/distributed-hash-tables) + + - [ ] implement with array using linear probing + - hash(k, m) - m is size of hash table + - add(key, value) - if key already exists, update value + - exists(key) + - get(key) + - remove(key) + +## More Knowledge + +- ### Endianness + - [ ] [Big And Little Endian](https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Data/endian.html) + - [ ] [Big Endian Vs Little Endian (video)](https://www.youtube.com/watch?v=JrNF0KRAlyo) + - [ ] [Big And Little Endian Inside/Out (video)](https://www.youtube.com/watch?v=oBSuXP-1Tc0) + - Very technical talk for kernel devs. Don't worry if most is over your head. + - The first half is enough. + +- ### Binary search + - [ ] [Binary Search (video)](https://www.youtube.com/watch?v=D5SrAga1pno) + - [ ] [Binary Search (video)](https://www.khanacademy.org/computing/computer-science/algorithms/binary-search/a/binary-search) + - [ ] [detail](https://www.topcoder.com/community/data-science/data-science-tutorials/binary-search/) + - [ ] Implement: + - binary search (on sorted array of integers) + - binary search using recursion + +- ### Bitwise operations + - [ ] [Bits cheat sheet](https://github.com/jwasham/google-interview-university/blob/master/extras/cheat%20sheets/bits-cheat-cheet.pdf) - you should know many of the powers of 2 from (2^1 to 2^16 and 2^32) + - [ ] Get a really good understanding of manipulating bits with: &, |, ^, ~, >>, << + - [ ] [words](https://en.wikipedia.org/wiki/Word_(computer_architecture)) + - [ ] Good intro: + [Bit Manipulation (video)](https://www.youtube.com/watch?v=7jkIUgLC29I) + - [ ] [C Programming Tutorial 2-10: Bitwise Operators (video)](https://www.youtube.com/watch?v=d0AwjSpNXR0) + - [ ] [Bit Manipulation](https://en.wikipedia.org/wiki/Bit_manipulation) + - [ ] [Bitwise Operation](https://en.wikipedia.org/wiki/Bitwise_operation) + - [ ] [Bithacks](https://graphics.stanford.edu/~seander/bithacks.html) + - [ ] [The Bit Twiddler](http://bits.stephan-brumme.com/) + - [ ] [The Bit Twiddler Interactive](http://bits.stephan-brumme.com/interactive.html) + - [ ] 2s and 1s complement + - [Binary: Plusses & Minuses (Why We Use Two's Complement) (video)](https://www.youtube.com/watch?v=lKTsv6iVxV4) + - [1s Complement](https://en.wikipedia.org/wiki/Ones%27_complement) + - [2s Complement](https://en.wikipedia.org/wiki/Two%27s_complement) + - [ ] count set bits + - [4 ways to count bits in a byte (video)](https://youtu.be/Hzuzo9NJrlc) + - [Count Bits](https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetKernighan) + - [How To Count The Number Of Set Bits In a 32 Bit Integer](http://stackoverflow.com/questions/109023/how-to-count-the-number-of-set-bits-in-a-32-bit-integer) + - [ ] round to next power of 2: + - [Round Up To Next Power Of Two](http://bits.stephan-brumme.com/roundUpToNextPowerOfTwo.html) + - [ ] swap values: + - [Swap](http://bits.stephan-brumme.com/swap.html) + - [ ] absolute value: + - [Absolute Integer](http://bits.stephan-brumme.com/absInteger.html) + +## Trees + +- ### Trees - Notes & Background + - [ ] [Series: Core Trees (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/ovovP/core-trees) + - [ ] [Series: Trees (video)](https://www.coursera.org/learn/data-structures/lecture/95qda/trees) + - basic tree construction + - traversal + - manipulation algorithms + - BFS (breadth-first search) + - [MIT (video)](https://www.youtube.com/watch?v=s-CYnVz-uh4&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=13) + - level order (BFS, using queue) + time complexity: O(n) + space complexity: best: O(1), worst: O(n/2)=O(n) + - DFS (depth-first search) + - [MIT (video)](https://www.youtube.com/watch?v=AfSk24UTFS8&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=14) + - notes: + time complexity: O(n) + space complexity: + best: O(log n) - avg. height of tree + worst: O(n) + - inorder (DFS: left, self, right) + - postorder (DFS: left, right, self) + - preorder (DFS: self, left, right) + +- ### Binary search trees: BSTs + - [ ] [Binary Search Tree Review (video)](https://www.youtube.com/watch?v=x6At0nzX92o&index=1&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [Series (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/p82sw/core-introduction-to-binary-search-trees) + - starts with symbol table and goes through BST applications + - [ ] [Introduction (video)](https://www.coursera.org/learn/data-structures/lecture/E7cXP/introduction) + - [ ] [MIT (video)](https://www.youtube.com/watch?v=9Jry5-82I68) + - C/C++: + - [ ] [Binary search tree - Implementation in C/C++ (video)](https://www.youtube.com/watch?v=COZK7NATh4k&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=28) + - [ ] [BST implementation - memory allocation in stack and heap (video)](https://www.youtube.com/watch?v=hWokyBoo0aI&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=29) + - [ ] [Find min and max element in a binary search tree (video)](https://www.youtube.com/watch?v=Ut90klNN264&index=30&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Find height of a binary tree (video)](https://www.youtube.com/watch?v=_pnqMz5nrRs&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=31) + - [ ] [Binary tree traversal - breadth-first and depth-first strategies (video)](https://www.youtube.com/watch?v=9RHO6jU--GU&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=32) + - [ ] [Binary tree: Level Order Traversal (video)](https://www.youtube.com/watch?v=86g8jAQug04&index=33&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Binary tree traversal: Preorder, Inorder, Postorder (video)](https://www.youtube.com/watch?v=gm8DUJJhmY4&index=34&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Check if a binary tree is binary search tree or not (video)](https://www.youtube.com/watch?v=yEwSGhSsT0U&index=35&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Delete a node from Binary Search Tree (video)](https://www.youtube.com/watch?v=gcULXE7ViZw&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=36) + - [ ] [Inorder Successor in a binary search tree (video)](https://www.youtube.com/watch?v=5cPbNCrdotA&index=37&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] Implement: + - [ ] insert // insert value into tree + - [ ] get_node_count // get count of values stored + - [ ] print_values // prints the values in the tree, from min to max + - [ ] delete_tree + - [ ] is_in_tree // returns true if given value exists in the tree + - [ ] get_height // returns the height in nodes (single node's height is 1) + - [ ] get_min // returns the minimum value stored in the tree + - [ ] get_max // returns the maximum value stored in the tree + - [ ] is_binary_search_tree + - [ ] delete_value + - [ ] get_successor // returns next-highest value in tree after given value, -1 if none + +- ### Heap / Priority Queue / Binary Heap + - visualized as a tree, but is usually linear in storage (array, linked list) + - [ ] [Heap](https://en.wikipedia.org/wiki/Heap_(data_structure)) + - [ ] [Introduction (video)](https://www.coursera.org/learn/data-structures/lecture/2OpTs/introduction) + - [ ] [Naive Implementations (video)](https://www.coursera.org/learn/data-structures/lecture/z3l9N/naive-implementations) + - [ ] [Binary Trees (video)](https://www.coursera.org/learn/data-structures/lecture/GRV2q/binary-trees) + - [ ] [Tree Height Remark (video)](https://www.coursera.org/learn/data-structures/supplement/S5xxz/tree-height-remark) + - [ ] [Basic Operations (video)](https://www.coursera.org/learn/data-structures/lecture/0g1dl/basic-operations) + - [ ] [Complete Binary Trees (video)](https://www.coursera.org/learn/data-structures/lecture/gl5Ni/complete-binary-trees) + - [ ] [Pseudocode (video)](https://www.coursera.org/learn/data-structures/lecture/HxQo9/pseudocode) + - [ ] [Heap Sort - jumps to start (video)](https://youtu.be/odNJmw5TOEE?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3291) + - [ ] [Heap Sort (video)](https://www.coursera.org/learn/data-structures/lecture/hSzMO/heap-sort) + - [ ] [Building a heap (video)](https://www.coursera.org/learn/data-structures/lecture/dwrOS/building-a-heap) + - [ ] [MIT: Heaps and Heap Sort (video)](https://www.youtube.com/watch?v=B7hVxCmfPtM&index=4&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [CS 61B Lecture 24: Priority Queues (video)](https://www.youtube.com/watch?v=yIUFT6AKBGE&index=24&list=PL4BBB74C7D2A1049C) + - [ ] [Linear Time BuildHeap (max-heap)](https://www.youtube.com/watch?v=MiyLo8adrWw) + - [ ] Implement a max-heap: + - [ ] insert + - [ ] sift_up - needed for insert + - [ ] get_max - returns the max item, without removing it + - [ ] get_size() - return number of elements stored + - [ ] is_empty() - returns true if heap contains no elements + - [ ] extract_max - returns the max item, removing it + - [ ] sift_down - needed for extract_max + - [ ] remove(i) - removes item at index x + - [ ] heapify - create a heap from an array of elements, needed for heap_sort + - [ ] heap_sort() - take an unsorted array and turn it into a sorted array in-place using a max heap + - note: using a min heap instead would save operations, but double the space needed (cannot do in-place). + +- ### Tries + - Note there are different kinds of tries. Some have prefixes, some don't, and some use string instead of bits + to track the path. + - I read through code, but will not implement. + - [ ] [Notes on Data Structures and Programming Techniques](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#Tries) + - [ ] Short course videos: + - [ ] [Introduction To Tries (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/08Xyf/core-introduction-to-tries) + - [ ] [Performance Of Tries (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/PvlZW/core-performance-of-tries) + - [ ] [Implementing A Trie (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/DFvd3/core-implementing-a-trie) + - [ ] [The Trie: A Neglected Data Structure](https://www.toptal.com/java/the-trie-a-neglected-data-structure) + - [ ] [TopCoder - Using Tries](https://www.topcoder.com/community/data-science/data-science-tutorials/using-tries/) + - [ ] [Stanford Lecture (real world use case) (video)](https://www.youtube.com/watch?v=TJ8SkcUSdbU) + - [ ] [MIT, Advanced Data Structures, Strings (can get pretty obscure about halfway through)](https://www.youtube.com/watch?v=NinWEPPrkDQ&index=16&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf) + +- ### Balanced search trees + - Know least one type of balanced binary tree (and know how it's implemented): + - "Among balanced search trees, AVL and 2/3 trees are now passé, and red-black trees seem to be more popular. + A particularly interesting self-organizing data structure is the splay tree, which uses rotations + to move any accessed key to the root." - Skiena + - Of these, I chose to implement a splay tree. From what I've read, you won't implement a + balanced search tree in your interview. But I wanted exposure to coding one up + and let's face it, splay trees are the bee's knees. I did read a lot of red-black tree code. + - splay tree: insert, search, delete functions + If you end up implementing red/black tree try just these: + - search and insertion functions, skipping delete + - I want to learn more about B-Tree since it's used so widely with very large data sets. + - [ ] [Self-balancing binary search tree](https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree) + + - [ ] **AVL trees** + - In practice: + From what I can tell, these aren't used much in practice, but I could see where they would be: + The AVL tree is another structure supporting O(log n) search, insertion, and removal. It is more rigidly + balanced than red–black trees, leading to slower insertion and removal but faster retrieval. This makes it + attractive for data structures that may be built once and loaded without reconstruction, such as language + dictionaries (or program dictionaries, such as the opcodes of an assembler or interpreter). + - [ ] [MIT AVL Trees / AVL Sort (video)](https://www.youtube.com/watch?v=FNeL18KsWPc&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=6) + - [ ] [AVL Trees (video)](https://www.coursera.org/learn/data-structures/lecture/Qq5E0/avl-trees) + - [ ] [AVL Tree Implementation (video)](https://www.coursera.org/learn/data-structures/lecture/PKEBC/avl-tree-implementation) + - [ ] [Split And Merge](https://www.coursera.org/learn/data-structures/lecture/22BgE/split-and-merge) + + - [ ] **Splay trees** + - In practice: + Splay trees are typically used in the implementation of caches, memory allocators, routers, garbage collectors, + data compression, ropes (replacement of string used for long text strings), in Windows NT (in the virtual memory, + networking, and file system code) etc. + - [ ] [CS 61B: Splay Trees (video)](https://www.youtube.com/watch?v=Najzh1rYQTo&index=23&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd) + - [ ] MIT Lecture: Splay Trees: + - Gets very mathy, but watch the last 10 minutes for sure. + - [Video](https://www.youtube.com/watch?v=QnPl_Y6EqMo) + + - [ ] **2-3 search trees** + - In practice: + 2-3 trees have faster inserts at the expense of slower searches (since height is more compared to AVL trees). + - You would use 2-3 tree very rarely because its implementation involves different types of nodes. Instead, people use Red Black trees. + - [ ] [23-Tree Intuition and Definition (video)](https://www.youtube.com/watch?v=C3SsdUqasD4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=2) + - [ ] [Binary View of 23-Tree](https://www.youtube.com/watch?v=iYvBtGKsqSg&index=3&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [2-3 Trees (student recitation) (video)](https://www.youtube.com/watch?v=TOb1tuEZ2X4&index=5&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + + - [ ] **2-3-4 Trees (aka 2-4 trees)** + - In practice: + For every 2-4 tree, there are corresponding red–black trees with data elements in the same order. The insertion and deletion + operations on 2-4 trees are also equivalent to color-flipping and rotations in red–black trees. This makes 2-4 trees an + important tool for understanding the logic behind red–black trees, and this is why many introductory algorithm texts introduce + 2-4 trees just before red–black trees, even though **2-4 trees are not often used in practice**. + - [ ] [CS 61B Lecture 26: Balanced Search Trees (video)](https://www.youtube.com/watch?v=zqrqYXkth6Q&index=26&list=PL4BBB74C7D2A1049C) + - [ ] [Bottom Up 234-Trees (video)](https://www.youtube.com/watch?v=DQdMYevEyE4&index=4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [Top Down 234-Trees (video)](https://www.youtube.com/watch?v=2679VQ26Fp4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=5) + + - [ ] **B-Trees** + - fun fact: it's a mystery, but the B could stand for Boeing, Balanced, or Bayer (co-inventor) + - In Practice: + B-Trees are widely used in databases. Most modern filesystems use B-trees (or Variants). In addition to + its use in databases, the B-tree is also used in filesystems to allow quick random access to an arbitrary + block in a particular file. The basic problem is turning the file block i address into a disk block + (or perhaps to a cylinder-head-sector) address. + - [ ] [B-Tree](https://en.wikipedia.org/wiki/B-tree) + - [ ] [Introduction to B-Trees (video)](https://www.youtube.com/watch?v=I22wEC1tTGo&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=6) + - [ ] [B-Tree Definition and Insertion (video)](https://www.youtube.com/watch?v=s3bCdZGrgpA&index=7&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [B-Tree Deletion (video)](https://www.youtube.com/watch?v=svfnVhJOfMc&index=8&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [MIT 6.851 - Memory Hierarchy Models (video)](https://www.youtube.com/watch?v=V3omVLzI0WE&index=7&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf) + - covers cache-oblivious B-Trees, very interesting data structures + - the first 37 minutes are very technical, may be skipped (B is block size, cache line size) + + - [ ] **Red/black trees** + - In practice: + Red–black trees offer worst-case guarantees for insertion time, deletion time, and search time. + Not only does this make them valuable in time-sensitive applications such as real-time applications, + but it makes them valuable building blocks in other data structures which provide worst-case guarantees; + for example, many data structures used in computational geometry can be based on red–black trees, and + the Completely Fair Scheduler used in current Linux kernels uses red–black trees. In the version 8 of Java, + the Collection HashMap has been modified such that instead of using a LinkedList to store identical elements with poor + hashcodes, a Red-Black tree is used. + - [ ] [Aduni - Algorithms - Lecture 4 + (link jumps to starting point) (video)](https://youtu.be/1W3x0f_RmUo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3871) + - [ ] [Aduni - Algorithms - Lecture 5 (video)](https://www.youtube.com/watch?v=hm2GHwyKF1o&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=5) + - [ ] [Black Tree](https://en.wikipedia.org/wiki/Red%E2%80%93black_tree) + - [ ] [An Introduction To Binary Search And Red Black Tree](https://www.topcoder.com/community/data-science/data-science-tutorials/an-introduction-to-binary-search-and-red-black-trees/) + +- ### N-ary (K-ary, M-ary) trees + - note: the N or K is the branching factor (max branches) + - binary trees are a 2-ary tree, with branching factor = 2 + - 2-3 trees are 3-ary + - [ ] [K-Ary Tree](https://en.wikipedia.org/wiki/K-ary_tree) + +## Sorting + +- [ ] Notes: + - Implement sorts & know best case/worst case, average complexity of each: + - no bubble sort - it's terrible - O(n^2), except when n <= 16 + - [ ] stability in sorting algorithms ("Is Quicksort stable?") + - [Sorting Algorithm Stability](https://en.wikipedia.org/wiki/Sorting_algorithm#Stability) + - [Stability In Sorting Algorithms](http://stackoverflow.com/questions/1517793/stability-in-sorting-algorithms) + - [Stability In Sorting Algorithms](http://www.geeksforgeeks.org/stability-in-sorting-algorithms/) + - [Sorting Algorithms - Stability](http://homepages.math.uic.edu/~leon/cs-mcs401-s08/handouts/stability.pdf) + - [ ] Which algorithms can be used on linked lists? Which on arrays? Which on both? + - I wouldn't recommend sorting a linked list, but merge sort is doable. + - [Merge Sort For Linked List](http://www.geeksforgeeks.org/merge-sort-for-linked-list/) + +- For heapsort, see Heap data structure above. Heap sort is great, but not stable. + +- [ ] [Bubble Sort (video)](https://www.youtube.com/watch?v=P00xJgWzz2c&index=1&list=PL89B61F78B552C1AB) +- [ ] [Analyzing Bubble Sort (video)](https://www.youtube.com/watch?v=ni_zk257Nqo&index=7&list=PL89B61F78B552C1AB) +- [ ] [Insertion Sort, Merge Sort (video)](https://www.youtube.com/watch?v=Kg4bqzAqRBM&index=3&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) +- [ ] [Insertion Sort (video)](https://www.youtube.com/watch?v=c4BRHC7kTaQ&index=2&list=PL89B61F78B552C1AB) +- [ ] [Merge Sort (video)](https://www.youtube.com/watch?v=GCae1WNvnZM&index=3&list=PL89B61F78B552C1AB) +- [ ] [Quicksort (video)](https://www.youtube.com/watch?v=y_G9BkAm6B8&index=4&list=PL89B61F78B552C1AB) +- [ ] [Selection Sort (video)](https://www.youtube.com/watch?v=6nDMgr0-Yyo&index=8&list=PL89B61F78B552C1AB) + +- [ ] Stanford lectures on sorting: + - [ ] [Lecture 15 | Programming Abstractions (video)](https://www.youtube.com/watch?v=ENp00xylP7c&index=15&list=PLFE6E58F856038C69) + - [ ] [Lecture 16 | Programming Abstractions (video)](https://www.youtube.com/watch?v=y4M9IVgrVKo&index=16&list=PLFE6E58F856038C69) + +- [ ] Shai Simonson, [Aduni.org](http://www.aduni.org/): + - [ ] [Algorithms - Sorting - Lecture 2 (video)](https://www.youtube.com/watch?v=odNJmw5TOEE&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=2) + - [ ] [Algorithms - Sorting II - Lecture 3 (video)](https://www.youtube.com/watch?v=hj8YKFTFKEE&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=3) + +- [ ] Steven Skiena lectures on sorting: + - [ ] [lecture begins at 26:46 (video)](https://youtu.be/ute-pmMkyuk?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1600) + - [ ] [lecture begins at 27:40 (video)](https://www.youtube.com/watch?v=yLvp-pB8mak&index=8&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [lecture begins at 35:00 (video)](https://www.youtube.com/watch?v=q7K9otnzlfE&index=9&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [lecture begins at 23:50 (video)](https://www.youtube.com/watch?v=TvqIGu9Iupw&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=10) + +- [ ] UC Berkeley: + - [ ] [CS 61B Lecture 29: Sorting I (video)](https://www.youtube.com/watch?v=EiUvYS2DT6I&list=PL4BBB74C7D2A1049C&index=29) + - [ ] [CS 61B Lecture 30: Sorting II (video)](https://www.youtube.com/watch?v=2hTY3t80Qsk&list=PL4BBB74C7D2A1049C&index=30) + - [ ] [CS 61B Lecture 32: Sorting III (video)](https://www.youtube.com/watch?v=Y6LOLpxg6Dc&index=32&list=PL4BBB74C7D2A1049C) + - [ ] [CS 61B Lecture 33: Sorting V (video)](https://www.youtube.com/watch?v=qNMQ4ly43p4&index=33&list=PL4BBB74C7D2A1049C) + +- [ ] - Merge sort code: + - [ ] [Using output array](http://www.cs.yale.edu/homes/aspnes/classes/223/examples/sorting/mergesort.c) + - [ ] [In-place](https://github.com/jwasham/practice-cpp/blob/master/merge_sort/merge_sort.cc) +- [ ] - Quick sort code: + - [ ] [Implementation](http://www.cs.yale.edu/homes/aspnes/classes/223/examples/randomization/quick.c) + - [ ] [Implementation](https://github.com/jwasham/practice-c/blob/master/quick_sort/quick_sort.c) + +- [ ] Implement: + - [ ] Mergesort: O(n log n) average and worst case + - [ ] Quicksort O(n log n) average case + - Selection sort and insertion sort are both O(n^2) average and worst case + - For heapsort, see Heap data structure above. + +- [ ] For curiosity - not required: + - [ ] [Radix Sort](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#radixSort) + - [ ] [Radix Sort (video)](https://www.youtube.com/watch?v=xhr26ia4k38) + - [ ] [Radix Sort, Counting Sort (linear time given constraints) (video)](https://www.youtube.com/watch?v=Nz1KZXbghj8&index=7&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [Randomization: Matrix Multiply, Quicksort, Freivalds' algorithm (video)](https://www.youtube.com/watch?v=cNB2lADK3_s&index=8&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [Sorting in Linear Time (video)](https://www.youtube.com/watch?v=pOKy3RZbSws&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf&index=14) + +## Graphs + +Graphs can be used to represent many problems in computer science, so this section is long, like trees and sorting were. + +- Notes from Yegge: + - There are three basic ways to represent a graph in memory: + - objects and pointers + - matrix + - adjacency list + - Familiarize yourself with each representation and its pros & cons + - BFS and DFS - know their computational complexity, their tradeoffs, and how to implement them in real code + - When asked a question, look for a graph-based solution first, then move on if none. + +- [ ] Skiena Lectures - great intro: + - [ ] [CSE373 2012 - Lecture 11 - Graph Data Structures (video)](https://www.youtube.com/watch?v=OiXxhDrFruw&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=11) + - [ ] [CSE373 2012 - Lecture 12 - Breadth-First Search (video)](https://www.youtube.com/watch?v=g5vF8jscteo&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=12) + - [ ] [CSE373 2012 - Lecture 13 - Graph Algorithms (video)](https://www.youtube.com/watch?v=S23W6eTcqdY&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=13) + - [ ] [CSE373 2012 - Lecture 14 - Graph Algorithms (con't) (video)](https://www.youtube.com/watch?v=WitPBKGV0HY&index=14&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [CSE373 2012 - Lecture 15 - Graph Algorithms (con't 2) (video)](https://www.youtube.com/watch?v=ia1L30l7OIg&index=15&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [CSE373 2012 - Lecture 16 - Graph Algorithms (con't 3) (video)](https://www.youtube.com/watch?v=jgDOQq6iWy8&index=16&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + +- [ ] Graphs (review and more): + + - [ ] [6.006 Single-Source Shortest Paths Problem (video)](https://www.youtube.com/watch?v=Aa2sqUhIn-E&index=15&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [6.006 Dijkstra (video)](https://www.youtube.com/watch?v=2E7MmKv0Y24&index=16&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [6.006 Bellman-Ford (video)](https://www.youtube.com/watch?v=ozsuci5pIso&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=17) + - [ ] [6.006 Speeding Up Dijkstra (video)](https://www.youtube.com/watch?v=CHvQ3q_gJ7E&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=18) + - [ ] [Aduni: Graph Algorithms I - Topological Sorting, Minimum Spanning Trees, Prim's Algorithm - Lecture 6 (video)]( https://www.youtube.com/watch?v=i_AQT_XfvD8&index=6&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [Aduni: Graph Algorithms II - DFS, BFS, Kruskal's Algorithm, Union Find Data Structure - Lecture 7 (video)]( https://www.youtube.com/watch?v=ufj5_bppBsA&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=7) + - [ ] [Aduni: Graph Algorithms III: Shortest Path - Lecture 8 (video)](https://www.youtube.com/watch?v=DiedsPsMKXc&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=8) + - [ ] [Aduni: Graph Alg. IV: Intro to geometric algorithms - Lecture 9 (video)](https://www.youtube.com/watch?v=XIAQRlNkJAw&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=9) + - [ ] [CS 61B 2014 (starting at 58:09) (video)](https://youtu.be/dgjX4HdMI-Q?list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&t=3489) + - [ ] [CS 61B 2014: Weighted graphs (video)](https://www.youtube.com/watch?v=aJjlQCFwylA&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=19) + - [ ] [Greedy Algorithms: Minimum Spanning Tree (video)](https://www.youtube.com/watch?v=tKwnms5iRBU&index=16&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [Strongly Connected Components Kosaraju's Algorithm Graph Algorithm (video)](https://www.youtube.com/watch?v=RpgcYiky7uw) + +- Full Coursera Course: + - [ ] [Algorithms on Graphs (video)](https://www.coursera.org/learn/algorithms-on-graphs/home/welcome) + +- Yegge: If you get a chance, try to study up on fancier algorithms: + - [ ] Dijkstra's algorithm - see above - 6.006 + - [ ] A* + - [ ] [A Search Algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm) + - [ ] [A* Pathfinding Tutorial (video)](https://www.youtube.com/watch?v=KNXfSOx4eEE) + - [ ] [A* Pathfinding (E01: algorithm explanation) (video)](https://www.youtube.com/watch?v=-L-WgKMFuhE) + +- I'll implement: + - [ ] DFS with adjacency list (recursive) + - [ ] DFS with adjacency list (iterative with stack) + - [ ] DFS with adjacency matrix (recursive) + - [ ] DFS with adjacency matrix (iterative with stack) + - [ ] BFS with adjacency list + - [ ] BFS with adjacency matrix + - [ ] single-source shortest path (Dijkstra) + - [ ] minimum spanning tree + - DFS-based algorithms (see Aduni videos above): + - [ ] check for cycle (needed for topological sort, since we'll check for cycle before starting) + - [ ] topological sort + - [ ] count connected components in a graph + - [ ] list strongly connected components + - [ ] check for bipartite graph + +You'll get more graph practice in Skiena's book (see Books section below) and the interview books + +## Even More Knowledge + +- ### Recursion + - [ ] Stanford lectures on recursion & backtracking: + - [ ] [Lecture 8 | Programming Abstractions (video)](https://www.youtube.com/watch?v=gl3emqCuueQ&list=PLFE6E58F856038C69&index=8) + - [ ] [Lecture 9 | Programming Abstractions (video)](https://www.youtube.com/watch?v=uFJhEPrbycQ&list=PLFE6E58F856038C69&index=9) + - [ ] [Lecture 10 | Programming Abstractions (video)](https://www.youtube.com/watch?v=NdF1QDTRkck&index=10&list=PLFE6E58F856038C69) + - [ ] [Lecture 11 | Programming Abstractions (video)](https://www.youtube.com/watch?v=p-gpaIGRCQI&list=PLFE6E58F856038C69&index=11) + - when it is appropriate to use it + - how is tail recursion better than not? + - [ ] [What Is Tail Recursion Why Is It So Bad?](https://www.quora.com/What-is-tail-recursion-Why-is-it-so-bad) + - [ ] [Tail Recursion (video)](https://www.youtube.com/watch?v=L1jjXGfxozc) + +- ### Dynamic Programming + - This subject can be pretty difficult, as each DP soluble problem must be defined as a recursion relation, and coming up with it can be tricky. + - I suggest looking at many examples of DP problems until you have a solid understanding of the pattern involved. + - [ ] Videos: + - the Skiena videos can be hard to follow since he sometimes uses the whiteboard, which is too small to see + - [ ] [Skiena: CSE373 2012 - Lecture 19 - Introduction to Dynamic Programming (video)](https://youtu.be/Qc2ieXRgR0k?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1718) + - [ ] [Skiena: CSE373 2012 - Lecture 20 - Edit Distance (video)](https://youtu.be/IsmMhMdyeGY?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=2749) + - [ ] [Skiena: CSE373 2012 - Lecture 21 - Dynamic Programming Examples (video)](https://youtu.be/o0V9eYF4UI8?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=406) + - [ ] [Skiena: CSE373 2012 - Lecture 22 - Applications of Dynamic Programming (video)](https://www.youtube.com/watch?v=dRbMC1Ltl3A&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=22) + - [ ] [Simonson: Dynamic Programming 0 (starts at 59:18) (video)](https://youtu.be/J5aJEcOr6Eo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3558) + - [ ] [Simonson: Dynamic Programming I - Lecture 11 (video)](https://www.youtube.com/watch?v=0EzHjQ_SOeU&index=11&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [Simonson: Dynamic programming II - Lecture 12 (video)](https://www.youtube.com/watch?v=v1qiRwuJU7g&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=12) + - [ ] List of individual DP problems (each is short): + [Dynamic Programming (video)](https://www.youtube.com/playlist?list=PLrmLmBdmIlpsHaNTPP_jHHDx_os9ItYXr) + - [ ] Yale Lecture notes: + - [ ] [Dynamic Programming](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#dynamicProgramming) + - [ ] Coursera: + - [ ] [The RNA secondary structure problem (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/80RrW/the-rna-secondary-structure-problem) + - [ ] [A dynamic programming algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/PSonq/a-dynamic-programming-algorithm) + - [ ] [Illustrating the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/oUEK2/illustrating-the-dp-algorithm) + - [ ] [Running time of the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/nfK2r/running-time-of-the-dp-algorithm) + - [ ] [DP vs. recursive implementation (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/M999a/dp-vs-recursive-implementation) + - [ ] [Global pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/UZ7o6/global-pairwise-sequence-alignment) + - [ ] [Local pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/WnNau/local-pairwise-sequence-alignment) + +- ### Combinatorics (n choose k) & Probability + - [ ] [Math Skills: How to find Factorial, Permutation and Combination (Choose) (video)](https://www.youtube.com/watch?v=8RRo6Ti9d0U) + - [ ] [Make School: Probability (video)](https://www.youtube.com/watch?v=sZkAAk9Wwa4) + - [ ] [Make School: More Probability and Markov Chains (video)](https://www.youtube.com/watch?v=dNaJg-mLobQ) + - [ ] Khan Academy: + - Course layout: + - [ ] [Basic Theoretical Probability](https://www.khanacademy.org/math/probability/probability-and-combinatorics-topic) + - Just the videos - 41 (each are simple and each are short): + - [ ] [Probability Explained (video)](https://www.youtube.com/watch?v=uzkc-qNVoOk&list=PLC58778F28211FA19) + +- ### NP, NP-Complete and Approximation Algorithms + - Know about the most famous classes of NP-complete problems, such as traveling salesman and the knapsack problem, + and be able to recognize them when an interviewer asks you them in disguise. + - Know what NP-complete means. + - [ ] [Computational Complexity (video)](https://www.youtube.com/watch?v=moPtwq_cVH8&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=23) + - [ ] Simonson: + - [ ] [Greedy Algs. II & Intro to NP Completeness (video)](https://youtu.be/qcGnJ47Smlo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=2939) + - [ ] [NP Completeness II & Reductions (video)](https://www.youtube.com/watch?v=e0tGC6ZQdQE&index=16&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [NP Completeness III (Video)](https://www.youtube.com/watch?v=fCX1BGT3wjE&index=17&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [NP Completeness IV (video)](https://www.youtube.com/watch?v=NKLDp3Rch3M&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=18) + - [ ] Skiena: + - [ ] [CSE373 2012 - Lecture 23 - Introduction to NP-CompletenessNP Completeness IV (video)](https://youtu.be/KiK5TVgXbFg?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1508) + - [ ] [CSE373 2012 - Lecture 24 - NP-Completeness Proofs (video)](https://www.youtube.com/watch?v=27Al52X3hd4&index=24&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [CSE373 2012 - Lecture 25 - NP-Completeness Challenge (video)](https://www.youtube.com/watch?v=xCPH4gwIIXM&index=25&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [Complexity: P, NP, NP-completeness, Reductions (video)](https://www.youtube.com/watch?v=eHZifpgyH_4&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=22) + - [ ] [Complexity: Approximation Algorithms (video)](https://www.youtube.com/watch?v=MEz1J9wY2iM&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=24) + - [ ] [Complexity: Fixed-Parameter Algorithms (video)](https://www.youtube.com/watch?v=4q-jmGrmxKs&index=25&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - Peter Norvik discusses near-optimal solutions to traveling salesman problem: + - [Jupyter Notebook](http://nbviewer.jupyter.org/url/norvig.com/ipython/TSP.ipynb) + - Pages 1048 - 1140 in CLRS if you have it. + +- ### Garbage collection + - [ ] [Garbage collection (Java); Augmenting data str (video)](https://www.youtube.com/watch?v=StdfeXaKGEc&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=25) + - [ ] [Compilers (video)](https://www.youtube.com/playlist?list=PLO9y7hOkmmSGTy5z6HZ-W4k2y8WXF7Bff) + - [ ] [GC in Python (video)](https://www.youtube.com/watch?v=iHVs_HkjdmI) + - [ ] [Deep Dive Java: Garbage Collection is Good!](https://www.infoq.com/presentations/garbage-collection-benefits) + - [ ] [Deep Dive Python: Garbage Collection in CPython (video)](https://www.youtube.com/watch?v=P-8Z0-MhdQs&list=PLdzf4Clw0VbOEWOS_sLhT_9zaiQDrS5AR&index=3) + +- ### Caches + - [ ] LRU cache: + - [ ] [The Magic of LRU Cache (100 Days of Google Dev) (video)](https://www.youtube.com/watch?v=R5ON3iwx78M) + - [ ] [Implementing LRU (video)](https://www.youtube.com/watch?v=bq6N7Ym81iI) + - [ ] [LeetCode - 146 LRU Cache (C++) (video)](https://www.youtube.com/watch?v=8-FZRAjR7qU) + - [ ] CPU cache: + - [ ] [MIT 6.004 L15: The Memory Hierarchy (video)](https://www.youtube.com/watch?v=vjYF_fAZI5E&list=PLrRW1w6CGAcXbMtDFj205vALOGmiRc82-&index=24) + - [ ] [MIT 6.004 L16: Cache Issues (video)](https://www.youtube.com/watch?v=ajgC3-pyGlk&index=25&list=PLrRW1w6CGAcXbMtDFj205vALOGmiRc82-) + +- ### Processes and Threads + - [ ] Computer Science 162 - Operating Systems (25 videos): + - for precesses and threads see videos 1-11 + - [Operating Systems and System Programming (video)](https://www.youtube.com/playlist?list=PL-XXv-cvA_iBDyz-ba4yDskqMDY6A1w_c) + - [What Is The Difference Between A Process And A Thread?](https://www.quora.com/What-is-the-difference-between-a-process-and-a-thread) + - Covers: + - Processes, Threads, Concurrency issues + - difference between processes and threads + - processes + - threads + - locks + - mutexes + - semaphores + - monitors + - how they work + - deadlock + - livelock + - CPU activity, interrupts, context switching + - Modern concurrency constructs with multicore processors + - Process resource needs (memory: code, static storage, stack, heap, and also file descriptors, i/o) + - Thread resource needs (shares above (minus stack) with other threads in same process but each has its own pc, stack counter, registers and stack) + - Forking is really copy on write (read-only) until the new process writes to memory, then it does a full copy. + - Context switching + - How context switching is initiated by the operating system and underlying hardware + - [ ] [threads in C++ (series - 10 videos)](https://www.youtube.com/playlist?list=PL5jc9xFGsL8E12so1wlMS0r0hTQoJL74M) + - [ ] concurrency in Python (videos): + - [ ] [Short series on threads](https://www.youtube.com/playlist?list=PL1H1sBF1VAKVMONJWJkmUh6_p8g4F2oy1) + - [ ] [Python Threads](https://www.youtube.com/watch?v=Bs7vPNbB9JM) + - [ ] [Understanding the Python GIL (2010)](https://www.youtube.com/watch?v=Obt-vMVdM8s) + - [reference](http://www.dabeaz.com/GIL) + - [ ] [David Beazley - Python Concurrency From the Ground Up: LIVE! - PyCon 2015](https://www.youtube.com/watch?v=MCs5OvhV9S4) + - [ ] [Keynote David Beazley - Topics of Interest (Python Asyncio)](https://www.youtube.com/watch?v=ZzfHjytDceU) + - [ ] [Mutex in Python](https://www.youtube.com/watch?v=0zaPs8OtyKY) + + + Scalability and System Design are very large topics with many topics and resources, since there is a lot to consider + when designing a software/hardware system that can scale. Expect to spend quite a bit of time on this. + +- ### System Design, Scalability, Data Handling + - Considerations from Yegge: + - scalability + - Distill large data sets to single values + - Transform one data set to another + - Handling obscenely large amounts of data + - system design + - features sets + - interfaces + - class hierarchies + - designing a system under certain constraints + - simplicity and robustness + - tradeoffs + - performance analysis and optimization + - [ ] **START HERE**: [System Design from HiredInTech](http://www.hiredintech.com/system-design/) + - [ ] [How Do I Prepare To Answer Design Questions In A Technical Inverview?](https://www.quora.com/How-do-I-prepare-to-answer-design-questions-in-a-technical-interview?redirected_qid=1500023) + - [ ] [8 Things You Need to Know Before a System Design Interview](http://blog.gainlo.co/index.php/2015/10/22/8-things-you-need-to-know-before-system-design-interviews/) + - [ ] [Algorithm design](http://www.hiredintech.com/algorithm-design/) + - [ ] [Database Normalization - 1NF, 2NF, 3NF and 4NF (video)](https://www.youtube.com/watch?v=UrYLYV7WSHM) + - [ ] [System Design Interview](https://github.com/checkcheckzz/system-design-interview) - There are a lot of resources in this one. Look through the articles and examples. I put some of them below. + - [ ] [How to ace a systems design interview](http://www.palantir.com/2011/10/how-to-rock-a-systems-design-interview/) + - [ ] [Numbers Everyone Should Know](http://everythingisdata.wordpress.com/2009/10/17/numbers-everyone-should-know/) + - [ ] [How long does it take to make a context switch?](http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html) + - [ ] [Transactions Across Datacenters (video)](https://www.youtube.com/watch?v=srOgpXECblk) + - [ ] [A plain english introduction to CAP Theorem](http://ksat.me/a-plain-english-introduction-to-cap-theorem/) + - [ ] Paxos Consensus algorithm: + - [short video](https://www.youtube.com/watch?v=s8JqcZtvnsM) + - [extended video with use case and multi-paxos](https://www.youtube.com/watch?v=JEpsBg0AO6o) + - [paper](http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf) + - [ ] [Consistent Hashing](http://www.tom-e-white.com/2007/11/consistent-hashing.html) + - [ ] [NoSQL Patterns](http://horicky.blogspot.com/2009/11/nosql-patterns.html) + - [ ] [Optional: UML 2.0 Series (vido)](https://www.youtube.com/watch?v=OkC7HKtiZC0&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc) + - [ ] OOSE: Software Dev Using UML and Java (21 videos): + - Can skip this if you have a great grasp of OO and OO design practices. + - [OOSE: Software Dev Using UML and Java](https://www.youtube.com/playlist?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + - [ ] SOLID OOP Principles: + - [ ] [Bob Martin SOLID Principles of Object Oriented and Agile Design (video)](https://www.youtube.com/watch?v=TMuno5RZNeE) + - [ ] [SOLID Design Patterns in C# (video)](https://www.youtube.com/playlist?list=PL8m4NUhTQU48oiGCSgCP1FiJEcg_xJzyQ) + - [ ] [SOLID Principles (video)](https://www.youtube.com/playlist?list=PL4CE9F710017EA77A) + - [ ] S - [Single Responsibility Principle](http://www.oodesign.com/single-responsibility-principle.html) | [Single responsibility to each Object](http://www.javacodegeeks.com/2011/11/solid-single-responsibility-principle.html) + - [more flavor](https://docs.google.com/open?id=0ByOwmqah_nuGNHEtcU5OekdDMkk) + - [ ] O - [Open/Closed Principal](http://www.oodesign.com/open-close-principle.html) | [On production level Objects are ready for extension for not for modification](https://en.wikipedia.org/wiki/Open/closed_principle) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgN2M5MTkwM2EtNWFkZC00ZTI3LWFjZTUtNTFhZGZiYmUzODc1&hl=en) + - [ ] L - [Liskov Substitution Principal](http://www.oodesign.com/liskov-s-substitution-principle.html) | [Base Class and Derived class follow ‘IS A’ principal](http://stackoverflow.com/questions/56860/what-is-the-liskov-substitution-principle) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgNzAzZjA5ZmItNjU3NS00MzQ5LTkwYjMtMDJhNDU5ZTM0MTlh&hl=en) + - [ ] I - [Interface segregation principle](http://www.oodesign.com/interface-segregation-principle.html) | clients should not be forced to implement interfaces they don't use + - [Interface Segregation Principle in 5 minutes (video)](https://www.youtube.com/watch?v=3CtAfl7aXAQ) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgOTViYjJhYzMtMzYxMC00MzFjLWJjMzYtOGJiMDc5N2JkYmJi&hl=en) + - [ ] D -[Dependency Inversion principle](http://www.oodesign.com/dependency-inversion-principle.html) | Reduce the dependency In composition of objects. + - [Why Is The Dependency Inversion Principle And Why Is It Important](http://stackoverflow.com/questions/62539/what-is-the-dependency-inversion-principle-and-why-is-it-important) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgMjdlMWIzNGUtZTQ0NC00ZjQ5LTkwYzQtZjRhMDRlNTQ3ZGMz&hl=en) + - [ ] Scalability: + - [ ] [Great overview (video)](https://www.youtube.com/watch?v=-W9F__D3oY4) + - [ ] Short series: + - [Clones](http://www.lecloud.net/post/7295452622/scalability-for-dummies-part-1-clones) + - [Database](http://www.lecloud.net/post/7994751381/scalability-for-dummies-part-2-database) + - [Cache](http://www.lecloud.net/post/9246290032/scalability-for-dummies-part-3-cache) + - [Asynchronism](http://www.lecloud.net/post/9699762917/scalability-for-dummies-part-4-asynchronism) + - [ ] [Scalable Web Architecture and Distributed Systems](http://www.aosabook.org/en/distsys.html) + - [ ] [Fallacies of Distributed Computing Explained](https://pages.cs.wisc.edu/~zuyu/files/fallacies.pdf) + - [ ] [Pragmatic Programming Techniques](http://horicky.blogspot.com/2010/10/scalable-system-design-patterns.html) + - [extra: Google Pregel Graph Processing](http://horicky.blogspot.com/2010/07/google-pregel-graph-processing.html) + - [ ] [Jeff Dean - Building Software Systems At Google and Lessons Learned (video)](https://www.youtube.com/watch?v=modXC5IWTJI) + - [ ] [Introduction to Architecting Systems for Scale](http://lethain.com/introduction-to-architecting-systems-for-scale/) + - [ ] [Scaling mobile games to a global audience using App Engine and Cloud Datastore (video)](https://www.youtube.com/watch?v=9nWyWwY2Onc) + - [ ] [How Google Does Planet-Scale Engineering for Planet-Scale Infra (video)](https://www.youtube.com/watch?v=H4vMcD7zKM0) + - [ ] [The Importance of Algorithms](https://www.topcoder.com/community/data-science/data-science-tutorials/the-importance-of-algorithms/) + - [ ] [Sharding](http://highscalability.com/blog/2009/8/6/an-unorthodox-approach-to-database-design-the-coming-of-the.html) + - [ ] [Scale at Facebook (2009)](https://www.infoq.com/presentations/Scale-at-Facebook) + - [ ] [Scale at Facebook (2012), "Building for a Billion Users" (video)](https://www.youtube.com/watch?v=oodS71YtkGU) + - [ ] [Engineering for the Long Game - Astrid Atkinson Keynote(video)](https://www.youtube.com/watch?v=p0jGmgIrf_M&list=PLRXxvay_m8gqVlExPC5DG3TGWJTaBgqSA&index=4) + - [ ] [7 Years Of YouTube Scalability Lessons In 30 Minutes](http://highscalability.com/blog/2012/3/26/7-years-of-youtube-scalability-lessons-in-30-minutes.html) + - [video](https://www.youtube.com/watch?v=G-lGCC4KKok) + - [ ] [How PayPal Scaled To Billions Of Transactions Daily Using Just 8VMs](http://highscalability.com/blog/2016/8/15/how-paypal-scaled-to-billions-of-transactions-daily-using-ju.html) + - [ ] [How to Remove Duplicates in Large Datasets](https://blog.clevertap.com/how-to-remove-duplicates-in-large-datasets/) + - [ ] [A look inside Etsy's scale and engineering culture with Jon Cowie (video)](https://www.youtube.com/watch?v=3vV4YiqKm1o) + - [ ] [What Led Amazon to its Own Microservices Architecture](http://thenewstack.io/led-amazon-microservices-architecture/) + - [ ] [To Compress Or Not To Compress, That Was Uber's Question](https://eng.uber.com/trip-data-squeeze/) + - [ ] [Asyncio Tarantool Queue, Get In The Queue](http://highscalability.com/blog/2016/3/3/asyncio-tarantool-queue-get-in-the-queue.html) + - [ ] [When Should Approximate Query Processing Be Used?](http://highscalability.com/blog/2016/2/25/when-should-approximate-query-processing-be-used.html) + - [ ] [Google's Transition From Single Datacenter, To Failover, To A Native Multihomed Architecture]( http://highscalability.com/blog/2016/2/23/googles-transition-from-single-datacenter-to-failover-to-a-n.html) + - [ ] [Spanner](http://highscalability.com/blog/2012/9/24/google-spanners-most-surprising-revelation-nosql-is-out-and.html) + - [ ] [Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System](http://highscalability.com/blog/2016/2/15/egnyte-architecture-lessons-learned-in-building-and-scaling.html) + - [ ] [Machine Learning Driven Programming: A New Programming For A New World](http://highscalability.com/blog/2016/7/6/machine-learning-driven-programming-a-new-programming-for-a.html) + - [ ] [The Image Optimization Technology That Serves Millions Of Requests Per Day](http://highscalability.com/blog/2016/6/15/the-image-optimization-technology-that-serves-millions-of-re.html) + - [ ] [A Patreon Architecture Short](http://highscalability.com/blog/2016/2/1/a-patreon-architecture-short.html) + - [ ] [Tinder: How Does One Of The Largest Recommendation Engines Decide Who You'll See Next?](http://highscalability.com/blog/2016/1/27/tinder-how-does-one-of-the-largest-recommendation-engines-de.html) + - [ ] [Design Of A Modern Cache](http://highscalability.com/blog/2016/1/25/design-of-a-modern-cache.html) + - [ ] [Live Video Streaming At Facebook Scale](http://highscalability.com/blog/2016/1/13/live-video-streaming-at-facebook-scale.html) + - [ ] [A Beginner's Guide To Scaling To 11 Million+ Users On Amazon's AWS](http://highscalability.com/blog/2016/1/11/a-beginners-guide-to-scaling-to-11-million-users-on-amazons.html) + - [ ] [How Does The Use Of Docker Effect Latency?](http://highscalability.com/blog/2015/12/16/how-does-the-use-of-docker-effect-latency.html) + - [ ] [Does AMP Counter An Existential Threat To Google?](http://highscalability.com/blog/2015/12/14/does-amp-counter-an-existential-threat-to-google.html) + - [ ] [A 360 Degree View Of The Entire Netflix Stack](http://highscalability.com/blog/2015/11/9/a-360-degree-view-of-the-entire-netflix-stack.html) + - [ ] [Latency Is Everywhere And It Costs You Sales - How To Crush It](http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it) + - [ ] [Serverless (very long, just need the gist)](http://martinfowler.com/articles/serverless.html) + - [ ] [What Powers Instagram: Hundreds of Instances, Dozens of Technologies](http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances) + - [ ] [Cinchcast Architecture - Producing 1,500 Hours Of Audio Every Day](http://highscalability.com/blog/2012/7/16/cinchcast-architecture-producing-1500-hours-of-audio-every-d.html) + - [ ] [Justin.Tv's Live Video Broadcasting Architecture](http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html) + - [ ] [Playfish's Social Gaming Architecture - 50 Million Monthly Users And Growing](http://highscalability.com/blog/2010/9/21/playfishs-social-gaming-architecture-50-million-monthly-user.html) + - [ ] [TripAdvisor Architecture - 40M Visitors, 200M Dynamic Page Views, 30TB Data](http://highscalability.com/blog/2011/6/27/tripadvisor-architecture-40m-visitors-200m-dynamic-page-view.html) + - [ ] [PlentyOfFish Architecture](http://highscalability.com/plentyoffish-architecture) + - [ ] [Salesforce Architecture - How They Handle 1.3 Billion Transactions A Day](http://highscalability.com/blog/2013/9/23/salesforce-architecture-how-they-handle-13-billion-transacti.html) + - [ ] [ESPN's Architecture At Scale - Operating At 100,000 Duh Nuh Nuhs Per Second](http://highscalability.com/blog/2013/11/4/espns-architecture-at-scale-operating-at-100000-duh-nuh-nuhs.html) + - [ ] See "Messaging, Serialization, and Queueing Systems" way below for info on some of the technologies that can glue services together + - [ ] Twitter: + - [O'Reilly MySQL CE 2011: Jeremy Cole, "Big and Small Data at @Twitter" (video)](https://www.youtube.com/watch?v=5cKTP36HVgI) + - [Timelines at Scale](https://www.infoq.com/presentations/Twitter-Timeline-Scalability) + - For even more, see "Mining Massive Datasets" video series in the Video Series section. + - [ ] Practicing the system design process: Here are some ideas to try working through on paper, each with some documentation on how it was handled in the real world: + - review: [System Design from HiredInTech](http://www.hiredintech.com/system-design/) + - [cheat sheet](https://github.com/jwasham/google-interview-university/blob/master/extras/cheat%20sheets/system-design.pdf) + - flow: + 1. Understand the problem and scope: + - define the use cases, with interviewer's help + - suggest additional features + - remove items that interviewer deems out of scope + - assume high availability is required, add as a use case + 2. Think about constraints: + - ask how many requests per month + - ask how many requests per second (they may volunteer it or make you do the math) + - estimate reads vs. writes percentage + - keep 80/20 rule in mind when estimating + - how much data written per second + - total storage required over 5 years + - how much data read per second + 3. Abstract design: + - layers (service, data, caching) + - infrastructure: load balancing, messaging + - rough overview of any key algorithm that drives the service + - consider bottlenecks and determine solutions + - Exercises: + - [Design a CDN network: old article](http://repository.cmu.edu/cgi/viewcontent.cgi?article=2112&context=compsci) + - [Design a random unique ID generation system](https://blog.twitter.com/2010/announcing-snowflake) + - [Design an online multiplayer card game](http://www.indieflashblog.com/how-to-create-an-asynchronous-multiplayer-game.html) + - [Design a key-value database](http://www.slideshare.net/dvirsky/introduction-to-redis) + - [Design a function to return the top k requests during past time interval]( https://icmi.cs.ucsb.edu/research/tech_reports/reports/2005-23.pdf) + - [Design a picture sharing system](http://highscalability.com/blog/2011/12/6/instagram-architecture-14-million-users-terabytes-of-photos.html) + - [Design a recommendation system](http://ijcai13.org/files/tutorial_slides/td3.pdf) + - [Design a URL-shortener system: copied from above](http://www.hiredintech.com/system-design/the-system-design-process/) + - [Design a cache system](https://www.adayinthelifeof.nl/2011/02/06/memcache-internals/) + +- ### Papers + - These are Google papers and well-known papers. + - Reading all from end to end with full comprehension will likely take more time than you have. I recommend being selective on papers and their sections. + - [ ] [1978: Communicating Sequential Processes](http://spinroot.com/courses/summer/Papers/hoare_1978.pdf) + - [implemented in Go](https://godoc.org/github.com/thomas11/csp) + - [Love classic papers?](https://www.cs.cmu.edu/~crary/819-f09/) + - [ ] [2003: The Google File System](http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf) + - replaced by Colossus in 2012 + - [ ] [2004: MapReduce: Simplified Data Processing on Large Clusters]( http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf) + - mostly replaced by Cloud Dataflow? + - [ ] [2007: What Every Programmer Should Know About Memory (very long, and the author encourages skipping of some sections)](https://www.akkadia.org/drepper/cpumemory.pdf) + - [ ] [2012: Google's Colossus](https://www.wired.com/2012/07/google-colossus/) + - paper not available + - [ ] 2012: AddressSanitizer: A Fast Address Sanity Checker: + - [paper](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37752.pdf) + - [video](https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany) + - [ ] 2013: Spanner: Google’s Globally-Distributed Database: + - [paper](http://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf) + - [video](https://www.usenix.org/node/170855) + - [ ] [2014: Machine Learning: The High-Interest Credit Card of Technical Debt](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43146.pdf) + - [ ] [2015: Continuous Pipelines at Google](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43790.pdf) + - [ ] [2015: High-Availability at Massive Scale: Building Google’s Data Infrastructure for Ads](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44686.pdf) + - [ ] [2015: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems](http://download.tensorflow.org/paper/whitepaper2015.pdf ) + - [ ] [2015: How Developers Search for Code: A Case Study](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43835.pdf) + - [ ] [2016: Borg, Omega, and Kubernetes](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44843.pdf) + +- ### Unicode + - [ ] [The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets]( http://www.joelonsoftware.com/articles/Unicode.html) + - [ ] [What Every Programmer Absolutely, Positively Needs To Know About Encodings And Character Sets To Work With Text](http://kunststube.net/encoding/) + +- ### Emacs and vi(m) + - suggested by Yegge, from an old Amazon recruiting post: Familiarize yourself with a unix-based code editor + - vi(m): + - [video](https://www.youtube.com/watch?v=5givLEMcINQ&index=1&list=PL13bz4SHGmRxlZVmWQ9DvXo1fEg4UdGkr) + - set of 4 (vidoes): + - [The vi/vim editor - Lesson 1](https://www.youtube.com/watch?v=SI8TeVMX8pk) + - [The vi/vim editor - Lesson 2](https://www.youtube.com/watch?v=F3OO7ZIOaJE) + - [The vi/vim editor - Lesson 3](https://www.youtube.com/watch?v=ZYEccA_nMaI) + - [The vi/vim editor - Lesson 4](https://www.youtube.com/watch?v=1lYD5gwgZIA) + - [Using Vi Instead of Emacs](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#Using_Vi_instead_of_Emacs) + - emacs: + - [Basics Emacs Tutorial](https://www.youtube.com/watch?v=hbmV1bnQ-i0) + - set of 3 (videos): + - [Emacs Tutorial (Beginners) -Part 1- File commands, cut/copy/paste, cursor commands](https://www.youtube.com/watch?v=ujODL7MD04Q) + - [Emacs Tutorial (Beginners) -Part 2- Buffer management, search, M-x grep and rgrep modes](https://www.youtube.com/watch?v=XWpsRupJ4II) + - [Emacs Tutorial (Beginners) -Part 3- Expressions, Statements, ~/.emacs file and packages](https://www.youtube.com/watch?v=paSgzPso-yc) + - [Evil Mode: Or, How I Learned to Stop Worrying and Love Emacs (video)](https://www.youtube.com/watch?v=JWD1Fpdd4Pc) + - [Writing C Programs With Emacs](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#Writing_C_programs_with_Emacs) + - [(maybe) Org Mode In Depth: Managing Structure (video)](https://www.youtube.com/watch?v=nsGYet02bEk) + +- ### Unix command line tools + - suggested by Yegge, from an old Amazon recruiting post. I filled in the list below from good tools. + - [ ] bash + - [ ] cat + - [ ] grep + - [ ] sed + - [ ] awk + - [ ] curl or wget + - [ ] sort + - [ ] tr + - [ ] uniq + - [ ] [strace](https://en.wikipedia.org/wiki/Strace) + - [ ] [tcpdump](https://danielmiessler.com/study/tcpdump/) + +- ### Testing + - To cover: + - how unit testing works + - what are mock objects + - what is integration testing + - what is dependency injection + - [ ] [Agile Software Testing with James Bach (video)](https://www.youtube.com/watch?v=SAhJf36_u5U) + - [ ] [Open Lecture by James Bach on Software Testing (video)](https://www.youtube.com/watch?v=ILkT_HV9DVU) + - [ ] [Steve Freeman - Test-Driven Development (that’s not what we meant) (video)](https://vimeo.com/83960706) + - [slides](http://gotocon.com/dl/goto-berlin-2013/slides/SteveFreeman_TestDrivenDevelopmentThatsNotWhatWeMeant.pdf) + - [ ] [TDD is dead. Long live testing.](http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html) + - [ ] [Is TDD dead? (video)](https://www.youtube.com/watch?v=z9quxZsLcfo) + - [ ] V[ideo series (152 videos) - not all are needed (video)](https://www.youtube.com/watch?v=nzJapzxH_rE&list=PLAwxTw4SYaPkWVHeC_8aSIbSxE_NXI76g) + - [ ] [Test-Driven Web Development with Python](http://www.obeythetestinggoat.com/pages/book.html#toc) + - [ ] Dependency injection: + - [ ] [video](https://www.youtube.com/watch?v=IKD2-MAkXyQ) + - [ ] [Tao Of Testing](http://jasonpolites.github.io/tao-of-testing/ch3-1.1.html) + - [ ] [How to write tests](http://jasonpolites.github.io/tao-of-testing/ch4-1.1.html) + +- ### Design patterns + - [ ] [Quick UML review (video)](https://www.youtube.com/watch?v=3cmzqZzwNDM&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc&index=3) + - [ ] Learn these patterns: + - [ ] strategy + - [ ] singleton + - [ ] adapter + - [ ] prototype + - [ ] decorator + - [ ] visitor + - [ ] factory, abstract factory + - [ ] facade + - [ ] observer + - [ ] proxy + - [ ] delegate + - [ ] command + - [ ] state + - [ ] memento + - [ ] iterator + - [ ] composite + - [ ] flyweight + - [ ] [Chapter 6 (Part 1) - Patterns (video)](https://youtu.be/LAP2A80Ajrg?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO&t=3344) + - [ ] [Chapter 6 (Part 2) - Abstraction-Occurrence, General Hierarchy, Player-Role, Singleton, Observer, Delegation (video)](https://www.youtube.com/watch?v=U8-PGsjvZc4&index=12&list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + - [ ] [Chapter 6 (Part 3) - Adapter, Facade, Immutable, Read-Only Interface, Proxy (video)](https://www.youtube.com/watch?v=7sduBHuex4c&index=13&list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + - [ ] [Series of videos (27 videos)](https://www.youtube.com/playlist?list=PLF206E906175C7E07) + - [ ] [Head First Design Patterns](https://www.amazon.com/Head-First-Design-Patterns-Freeman/dp/0596007124) + - I know the canonical book is "Design Patterns: Elements of Reusable Object-Oriented Software", but Head First is great for beginners to OO. + - [ ] [Handy reference: 101 Design Patterns & Tips for Developers](https://sourcemaking.com/design-patterns-and-tips) + +- ### Scheduling + - in an OS, how it works + - can be gleaned from Operating System videos + +- ### Implement system routines + - understand what lies beneath the programming APIs you use + - can you implement them? + +- ### String searching & manipulations + - [ ] [Search pattern in text (video)](https://www.coursera.org/learn/data-structures/lecture/tAfHI/search-pattern-in-text) + - [ ] Rabin-Karp (videos): + - [Rabin Karps Algorithm](https://www.coursera.org/learn/data-structures/lecture/c0Qkw/rabin-karps-algorithm) + - [Table Doubling, Karp-Rabin](https://www.youtube.com/watch?v=BRO7mVIFt08&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=9) + - [ ] [Precomputing](https://www.coursera.org/learn/data-structures/lecture/nYrc8/optimization-precomputation) + - [ ] [Optimization: Implementation and Analysis](https://www.coursera.org/learn/data-structures/lecture/h4ZLc/optimization-implementation-and-analysis) + - [ ] Knuth-Morris-Pratt (KMP): + - [Pratt Algorithm](https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm) + - [Tutorial: The Knuth-Morris-Pratt (KMP) String Matching Algorithm](https://www.youtube.com/watch?v=2ogqPWJSftE) + - [ ] Boyer–Moore string search algorithm + - [Boyer-Moore String Search Algorithm](https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm) + - [Advanced String Searching Boyer-Moore-Horspool Algorithms (video)](https://www.youtube.com/watch?v=QDZpzctPf10) + - [ ] [Coursera: Algorithms on Strings](https://www.coursera.org/learn/algorithms-on-strings/home/week/1) + +--- + +## Final Review + + This section will have shorter videos that can you watch pretty quickly to review most of the important concepts. + It's nice if you want a refresher often. + (More items will be added here) + +#### General: + +- [ ] Series of 2-3 minutes short subject videos (23 videos) + - [Videos](https://www.youtube.com/watch?v=r4r1DZcx1cM&list=PLmVb1OknmNJuC5POdcDv5oCS7_OUkDgpj&index=22) +- [ ] Series of 2-5 minutes short subject videos - Michael Sambol (18 videos): + - [Videos](https://www.youtube.com/channel/UCzDJwLWoYCUQowF_nG3m5OQ) + +#### Sorts: + +- [ ] Merge Sort: https://www.youtube.com/watch?v=GCae1WNvnZM + + +## Books + +### Mentioned in Google Coaching + +**Read and do exercises:** + +- [ ] The Algorithm Design Manual (Skiena) + - Book (can rent on kindle): + - [Algorithm Design Manual](http://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202) + - Half.com is a great resource for textbooks at good prices. + - Answers: + - [Solutions](http://www.algorithm.cs.sunysb.edu/algowiki/index.php/The_Algorithms_Design_Manual_(Second_Edition)) + - [Solutions](http://blog.panictank.net/category/algorithmndesignmanualsolutions/page/2/) + - [Errata](http://www3.cs.stonybrook.edu/~skiena/algorist/book/errata) + + Once you've understood everything in the daily plan, and read and done exercises from the the books above, + read and do exercises from the books below. Then move to coding challenges (further down below) + +**Read first:** +- [ ] [Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition](http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html) + +**Read second (recommended by many, but not in Google coaching docs):** +- [ ] [Cracking the Coding Interview, 6th Edition](http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/) + - If you see people reference "The Google Resume", it was a book replaced by "Cracking the Coding Interview". + +### Additional books + + These were not suggested by Google but I added because I needed the background knowledge + +- [ ] C Programming Language, Vol 2 + - [answers to questions](https://github.com/lekkas/c-algorithms) + +- [ ] C++ Primer Plus, 6th Edition + +- [ ] [The Unix Programming Environment](http://product.half.ebay.com/The-UNIX-Programming-Environment-by-Brian-W-Kernighan-and-Rob-Pike-1983-Other/54385&tg=info) + +- [ ] [Programming Pearls](http://www.amazon.com/Programming-Pearls-2nd-Jon-Bentley/dp/0201657880) + +- [ ] [Algorithms and Programming: Problems and Solutions](http://www.amazon.com/Algorithms-Programming-Solutions-Alexander-Shen/dp/0817638474) + +### If you have time + +- [ ] [Introduction to Algorithms](https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844) + - Half.com is a great resource for textbooks at good prices. + +- [ ] [Elements of Programming Interviews](https://www.amazon.com/Elements-Programming-Interviews-Insiders-Guide/dp/1479274836) + - all code is in C++, if you're looking to use C++ in your interview + - good book on problem solving in general. + +## Coding exercises/challenges + +Once you've learned your brains out, put those brains to work. +Take coding challenges every day, as many as you can. + +- [ ] [Great intro (copied from System Design section): Algorithm design:](http://www.hiredintech.com/algorithm-design/) +- [ ] [How to Find a Solution](https://www.topcoder.com/community/data-science/data-science-tutorials/how-to-find-a-solution/) +- [ ] [How to Dissect a Topcoder Problem Statement](https://www.topcoder.com/community/data-science/data-science-tutorials/how-to-dissect-a-topcoder-problem-statement/) +- [ ] [Mathematics for Topcoders](https://www.topcoder.com/community/data-science/data-science-tutorials/mathematics-for-topcoders/) +- [ ] [Dynamic Programming – From Novice to Advanced](https://www.topcoder.com/community/data-science/data-science-tutorials/dynamic-programming-from-novice-to-advanced/) + +- [MIT Interview Materials](https://courses.csail.mit.edu/iap/interview/materials.php) + + - [LeetCode](https://leetcode.com/) + - [TopCoder](https://www.topcoder.com/) + - [Project Euler (math-focused)](https://projecteuler.net/index.php?section=problems) + - [Codewars](http://www.codewars.com) + - [HackerRank](https://www.hackerrank.com/) + - [Codility](https://codility.com/programmers/) + - [InterviewCake](https://www.interviewcake.com/) + - [InterviewBit](https://www.interviewbit.com/invite/icjf) + + - [Exercises for getting better at a given language](http://exercism.io/languages) + +## Once you're closer to the interview + +- [ ] Cracking The Coding Interview Set 2 (videos): + - [Cracking The Code Interview](https://www.youtube.com/watch?v=4NIb9l3imAo) + - [Cracking the Coding Interview - Fullstack Speaker Series](https://www.youtube.com/watch?v=Eg5-tdAwclo) + - [Ask Me Anything: Gayle Laakmann McDowell (author of Cracking the Coding Interview)](https://www.youtube.com/watch?v=1fqxMuPmGak) + +## Your Resume + +- [Ten Tips for a (Slightly) Less Awful Resume](http://steve-yegge.blogspot.co.uk/2007_09_01_archive.html) +- Great stuff at the back of Cracking The Coding Interview + + +## Be thinking of for when the interview comes + + Think of about 20 interview questions you'll get, along the lines of the items below. + Have 2-3 answers for each + Have a story, not just data, about something you accomplished + +- Why do you want this job? +- What's a tough problem you've solved? +- Biggest challenges faced? +- Best/worst designs seen? +- Ideas for improving an existing Google product. +- How do you work best, as an individual and as part of a team? +- Which of your skills or experiences would be assets in the role and why? +- What did you most enjoy at [job x / project y]? +- What was the biggest challenge you faced at [job x / project y]? +- What was the hardest bug you faced at [job x / project y]? +- What did you learn at [job x / project y]? +- What would you have done better at [job x / project y]? + +## Have questions for the interviewer + + Some of mine (I already may know answer to but want their opinion or team perspective): + +- How large is your team? +- What is your dev cycle look like? Do you do waterfall/sprints/agile? +- Are rushes to deadlines common? Or is there flexibility? +- How are decisions made in your team? +- How many meetings do you have per week? +- Do you feel your work environment helps you concentrate? +- What are you working on? +- What do you like about it? +- What is the work life like? + +--- + +--- + +## Additional Learnings (not required) + + Everything below is my recommendation, not Google's, and you may not have enough time to + learn, watch or read them all. That's ok. I may not either. + +- ### Information theory (videos) + - [ ] [Khan Academy](https://www.khanacademy.org/computing/computer-science/informationtheory) + - [ ] more about Markov processes: + - [ ] [Core Markov Text Generation](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/waxgx/core-markov-text-generation) + - [ ] [Core Implementing Markov Text Generation](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/gZhiC/core-implementing-markov-text-generation) + - [ ] [Project = Markov Text Generation Walk Through](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/EUjrq/project-markov-text-generation-walk-through) + - See more in MIT 6.050J Information and Entropy series below. + +- ### Parity & Hamming Code (videos) + - [ ] [Intro](https://www.youtube.com/watch?v=q-3BctoUpHE) + - [ ] [Parity](https://www.youtube.com/watch?v=DdMcAUlxh1M) + - [ ] Hamming Code: + - [Error detection](https://www.youtube.com/watch?v=1A_NcXxdoCc) + - [Error correction](https://www.youtube.com/watch?v=JAMLuxdHH8o) + - [ ] [Error Checking](https://www.youtube.com/watch?v=wbH2VxzmoZk) + +- ### Entropy + - also see videos below + - make sure to watch information theory videos first + - [ ] [Information Theory, Claude Shannon, Entropy, Redundancy, Data Compression & Bits (video)](https://youtu.be/JnJq3Py0dyM?t=176) + +- ### Cryptography + - also see videos below + - make sure to watch information theory videos first + - [ ] [Khan Academy Series](https://www.khanacademy.org/computing/computer-science/cryptography) + - [ ] [Cryptography: Hash Functions](https://www.youtube.com/watch?v=KqqOXndnvic&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=30) + - [ ] [Cryptography: Encryption](https://www.youtube.com/watch?v=9TNI2wHmaeI&index=31&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + +- ### Compression + - make sure to watch information theory videos first + - [ ] Computerphile (videos): + - [ ] [Compression](https://www.youtube.com/watch?v=Lto-ajuqW3w) + - [ ] [Entropy in Compression](https://www.youtube.com/watch?v=M5c_RFKVkko) + - [ ] [Upside Down Trees (Huffman Trees)](https://www.youtube.com/watch?v=umTbivyJoiI) + - [ ] [EXTRA BITS/TRITS - Huffman Trees](https://www.youtube.com/watch?v=DV8efuB3h2g) + - [ ] [Elegant Compression in Text (The LZ 77 Method)](https://www.youtube.com/watch?v=goOa3DGezUA) + - [ ] [Text Compression Meets Probabilities](https://www.youtube.com/watch?v=cCDCfoHTsaU) + - [ ] [Compressor Head videos](https://www.youtube.com/playlist?list=PLOU2XLYxmsIJGErt5rrCqaSGTMyyqNt2H) + - [ ] [(optional) Google Developers Live: GZIP is not enough!](https://www.youtube.com/watch?v=whGwm0Lky2s) + +- ### Networking (videos) + - [ ] [Khan Academy](https://www.khanacademy.org/computing/computer-science/internet-intro) + - [ ] [UDP and TCP: Comparison of Transport Protocols](https://www.youtube.com/watch?v=Vdc8TCESIg8) + - [ ] [TCP/IP and the OSI Model Explained!](https://www.youtube.com/watch?v=e5DEVa9eSN0) + - [ ] [Packet Transmission across the Internet. Networking & TCP/IP tutorial.](https://www.youtube.com/watch?v=nomyRJehhnM) + - [ ] [HTTP](https://www.youtube.com/watch?v=WGJrLqtX7As) + - [ ] [SSL and HTTPS](https://www.youtube.com/watch?v=S2iBR2ZlZf0) + - [ ] [SSL/TLS](https://www.youtube.com/watch?v=Rp3iZUvXWlM) + - [ ] [HTTP 2.0](https://www.youtube.com/watch?v=E9FxNzv1Tr8) + - [ ] [Video Series (21 videos)](https://www.youtube.com/playlist?list=PLEbnTDJUr_IegfoqO4iPnPYQui46QqT0j) + - [ ] [Subnetting Demystified - Part 5 CIDR Notation](https://www.youtube.com/watch?v=t5xYI0jzOf4) + +- ### Computer Security + - [MIT (23 videos)](https://www.youtube.com/playlist?list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Introduction, Threat Models](https://www.youtube.com/watch?v=GqmQg-cszw4&index=1&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Control Hijacking Attacks](https://www.youtube.com/watch?v=6bwzNg5qQ0o&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh&index=2) + - [ ] [Buffer Overflow Exploits and Defenses](https://www.youtube.com/watch?v=drQyrzRoRiA&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh&index=3) + - [ ] [Privilege Separation](https://www.youtube.com/watch?v=6SIJmoE9L9g&index=4&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Capabilities](https://www.youtube.com/watch?v=8VqTSY-11F4&index=5&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Sandboxing Native Code](https://www.youtube.com/watch?v=VEV74hwASeU&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh&index=6) + - [ ] [Web Security Model](https://www.youtube.com/watch?v=chkFBigodIw&index=7&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Securing Web Applications](https://www.youtube.com/watch?v=EBQIGy1ROLY&index=8&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Symbolic Execution](https://www.youtube.com/watch?v=yRVZPvHYHzw&index=9&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Network Security](https://www.youtube.com/watch?v=SIEVvk3NVuk&index=11&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Network Protocols](https://www.youtube.com/watch?v=QOtA76ga_fY&index=12&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Side-Channel Attacks](https://www.youtube.com/watch?v=PuVMkSEcPiI&index=15&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + +- ### Parallel Programming + - [ ] [Coursera (Scala)](https://www.coursera.org/learn/parprog1/home/week/1) + - [ ] [Efficient Python for High Performance Parallel Computing (video)](https://www.youtube.com/watch?v=uY85GkaYzBk) + +- ### Messaging, Serialization, and Queueing Systems + - [ ] [Thrift](https://thrift.apache.org/) + - [Tutorial](http://thrift-tutorial.readthedocs.io/en/latest/intro.html) + - [ ] [Protocol Buffers](https://developers.google.com/protocol-buffers/) + - [Tutorials](https://developers.google.com/protocol-buffers/docs/tutorials) + - [ ] [gRPC](http://www.grpc.io/) + - [gRPC 101 for Java Developers (video)](https://www.youtube.com/watch?v=5tmPvSe7xXQ&list=PLcTqM9n_dieN0k1nSeN36Z_ppKnvMJoly&index=1) + - [ ] [Redis](http://redis.io/) + - [Tutorial](http://try.redis.io/) + - [ ] [Amazon SQS (queue)](https://aws.amazon.com/sqs/) + - [ ] [Amazon SNS (pub-sub)](https://aws.amazon.com/sns/) + - [ ] [RabbitMQ](https://www.rabbitmq.com/) + - [Get Startet](https://www.rabbitmq.com/getstarted.html) + - [ ] [Celery](http://www.celeryproject.org/) + - [First Steps With Celery](http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html) + - [ ] [ZeroMQ](http://zeromq.org/) + - [Intro - Read The Manual](http://zeromq.org/intro:read-the-manual) + - [ ] [ActiveMQ](http://activemq.apache.org/) + - [ ] [Kafka](http://kafka.apache.org/documentation.html#introduction) + - [ ] [MessagePack](http://msgpack.org/index.html) + - [ ] [Avro](https://avro.apache.org/) + +- ### Fast Fourier Transform + - [ ] [What is a Fourier transform? What is it used for?](http://www.askamathematician.com/2012/09/q-what-is-a-fourier-transform-what-is-it-used-for/) + - [ ] [What is the Fourier Transform? (video)](https://www.youtube.com/watch?v=Xxut2PN-V8Q) + - [ ] [Divide & Conquer: FFT (video)](https://www.youtube.com/watch?v=iTMn0Kt18tg&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=4) + - [ ] [Understanding The FFT](http://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/) + +- ### Bloom Filter + - Given a Bloom filter with m bits and k hashing functions, both insertion and membership testing are O(k) + - [Bloom Filters](https://www.youtube.com/watch?v=-SuTGoFYjZs) + - [Bloom Filters | Mining of Massive Datasets | Stanford University](https://www.youtube.com/watch?v=qBTdukbzc78) + - [Tutorial](http://billmill.org/bloomfilter-tutorial/) + - [How To Write A Bloom Filter App](http://blog.michaelschmatz.com/2016/04/11/how-to-write-a-bloom-filter-cpp/) + +- ### van Emde Boas Trees + - [ ] [Divide & Conquer: van Emde Boas Trees (video)](https://www.youtube.com/watch?v=hmReJCupbNU&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=6) + - [ ] [MIT Lecture Notes](https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2012/lecture-notes/MIT6_046JS12_lec15.pdf) + +- ### Augmented Data Structures + - [ ] [CS 61B Lecture 39: Augmenting Data Structures](https://youtu.be/zksIj9O8_jc?list=PL4BBB74C7D2A1049C&t=950) + +- ### Skip lists + - "These are somewhat of a cult data structure" - Skiena + - [ ] [Randomization: Skip Lists (video)](https://www.youtube.com/watch?v=2g9OSRKJuzM&index=10&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [For animations and a little more detail](https://en.wikipedia.org/wiki/Skip_list) + +- ### Network Flows + - [ ] [Ford-Fulkerson in 5 minutes (video)](https://www.youtube.com/watch?v=v1VgJmkEJW0) + - [ ] [Ford-Fulkerson Algorithm (video)](https://www.youtube.com/watch?v=v1VgJmkEJW0) + - [ ] [Network Flows (video)](https://www.youtube.com/watch?v=2vhN4Ice5jI) + +- ### Disjoint Sets & Union Find + - [ ] [Disjoint Set](https://en.wikipedia.org/wiki/Disjoint-set_data_structure) + - [ ] [UCB 61B - Disjoint Sets; Sorting & selection (video)](https://www.youtube.com/watch?v=MAEGXTwmUsI&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=21) + - [ ] Coursera (not needed since the above video explains it great): + - [ ] [Overview](https://www.coursera.org/learn/data-structures/lecture/JssSY/overview) + - [ ] [Naive Implementation](https://www.coursera.org/learn/data-structures/lecture/EM5D0/naive-implementations) + - [ ] [Trees](https://www.coursera.org/learn/data-structures/lecture/Mxu0w/trees) + - [ ] [Union By Rank](https://www.coursera.org/learn/data-structures/lecture/qb4c2/union-by-rank) + - [ ] [Path Compression](https://www.coursera.org/learn/data-structures/lecture/Q9CVI/path-compression) + - [ ] [Analysis Options](https://www.coursera.org/learn/data-structures/lecture/GQQLN/analysis-optional) + +- ### Math for Fast Processing + - [ ] [Integer Arithmetic, Karatsuba Multiplication (video)](https://www.youtube.com/watch?v=eCaXlAaN2uE&index=11&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [The Chinese Remainder Theorem (used in cryptography) (video)](https://www.youtube.com/watch?v=ru7mWZJlRQg) + +- ### Treap + - Combination of a binary search tree and a heap + - [ ] [Treap](https://en.wikipedia.org/wiki/Treap) + - [ ] [Data Structures: Treaps explained (video)](https://www.youtube.com/watch?v=6podLUYinH8) + - [ ] [Applications in set operations](https://www.cs.cmu.edu/~scandal/papers/treaps-spaa98.pdf) + +- ### Linear Programming (videos) + - [ ] [Linear Programming](https://www.youtube.com/watch?v=M4K6HYLHREQ) + - [ ] [Finding minimum cost](https://www.youtube.com/watch?v=2ACJ9ewUC6U) + - [ ] [Finding maximum value](https://www.youtube.com/watch?v=8AA_81xI3ik) + +- ### Geometry, Convex hull (videos) + - [ ] [Graph Alg. IV: Intro to geometric algorithms - Lecture 9](https://youtu.be/XIAQRlNkJAw?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3164) + - [ ] [Geometric Algorithms: Graham & Jarvis - Lecture 10](https://www.youtube.com/watch?v=J5aJEcOr6Eo&index=10&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [Divide & Conquer: Convex Hull, Median Finding](https://www.youtube.com/watch?v=EzeYI7p9MjU&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=2) + +- ### Discrete math + - see videos below + +- ### Machine Learning + - [ ] Why ML? + - [ ] [How Google Is Remaking Itself As A Machine Learning First Company](https://backchannel.com/how-google-is-remaking-itself-as-a-machine-learning-first-company-ada63defcb70) + - [ ] [Large-Scale Deep Learning for Intelligent Computer Systems (video)](https://www.youtube.com/watch?v=QSaZGT4-6EY) + - [ ] [Deep Learning and Understandability versus Software Engineering and Verification by Peter Norvig](https://www.youtube.com/watch?v=X769cyzBNVw) + - [ ] [Google's Cloud Machine learning tools (video)](https://www.youtube.com/watch?v=Ja2hxBAwG_0) + - [ ] [Google Developers' Machine Learning Recipes (Scikit Learn & Tensorflow) (video)](https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal) + - [ ] [Tensorflow (video)](https://www.youtube.com/watch?v=oZikw5k_2FM) + - [ ] [Tensorflow Tutorials](https://www.tensorflow.org/versions/r0.11/tutorials/index.html) + - [ ] [Practical Guide to implementing Neural Networks in Python](using Theano)])http://www.analyticsvidhya.com/blog/2016/04/neural-networks-python-theano/) + - Courses: + - [ ] [Great starter course: Machine Learning](https://www.coursera.org/learn/machine-learning) + - [videos only](https://www.youtube.com/playlist?list=PLZ9qNFMHZ-A4rycgrgOYma6zxF4BZGGPW) + - see videos 12-18 for a review of linear algebra (14 and 15 are duplicates) + - [ ] [Neural Networks for Machine Learning](https://www.coursera.org/learn/neural-networks) + - [ ] [Google's Deep Learning Nanodegree](https://www.udacity.com/course/deep-learning--ud730) + - [ ] [Google/Kaggle Machine Learning Engineer Nanodegree](https://www.udacity.com/course/machine-learning-engineer-nanodegree-by-google--nd009) + - [ ] [Self-Driving Car Engineer Nanodegree](https://www.udacity.com/drive) + - [ ] [Metis Online Course ($99 for 2 months)](http://www.thisismetis.com/explore-data-science) + - Resources: + - Great book: Data Science from Scratch: First Principles with Python: https://www.amazon.com/Data-Science-Scratch-Principles-Python/dp/149190142X + - Data School: http://www.dataschool.io/ + +- ### Go + - [ ] Videos: + - [ ] [Why Learn Go?](https://www.youtube.com/watch?v=FTl0tl9BGdc) + - [ ] [Go Programming](https://www.youtube.com/watch?v=CF9S4QZuV30) + - [ ] [A Tour of Go](https://www.youtube.com/watch?v=ytEkHepK08c) + - [ ] Books: + - [ ] [An Introduction to Programming in Go (read free online)](https://www.golang-book.com/books/intro) + - [ ] [The Go Programming Language (Donovan & Kernighan)](https://www.amazon.com/Programming-Language-Addison-Wesley-Professional-Computing/dp/0134190440) + - [ ] [Bootcamp](https://www.golang-book.com/guides/bootcamp) + +-- + +## Additional Detail on Some Subjects + + I added these to reinforce some ideas already presented above, but didn't want to include them + above because it's just too much. It's easy to overdo it on a subject. + You want to get hired in this century, right? + +- [ ] **More Dynamic Programming** (videos) + - [ ] [6.006: Dynamic Programming I: Fibonacci, Shortest Paths](https://www.youtube.com/watch?v=OQ5jsbhAv_M&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=19) + - [ ] [6.006: Dynamic Programming II: Text Justification, Blackjack](https://www.youtube.com/watch?v=ENyox7kNKeY&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=20) + - [ ] [6.006: DP III: Parenthesization, Edit Distance, Knapsack](https://www.youtube.com/watch?v=ocZMDMZwhCY&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=21) + - [ ] [6.006: DP IV: Guitar Fingering, Tetris, Super Mario Bros.](https://www.youtube.com/watch?v=tp4_UXaVyx8&index=22&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [6.046: Dynamic Programming & Advanced DP](https://www.youtube.com/watch?v=Tw1k46ywN6E&index=14&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [6.046: Dynamic Programming: All-Pairs Shortest Paths](https://www.youtube.com/watch?v=NzgFUwOaoIw&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=15) + - [ ] [6.046: Dynamic Programming (student recitation)](https://www.youtube.com/watch?v=krZI60lKPek&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=12) + +- [ ] **Advanced Graph Processing** (videos) + - [ ] [Synchronous Distributed Algorithms: Symmetry-Breaking. Shortest-Paths Spanning Trees](https://www.youtube.com/watch?v=mUBmcbbJNf4&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=27) + - [ ] [Asynchronous Distributed Algorithms: Shortest-Paths Spanning Trees](https://www.youtube.com/watch?v=kQ-UQAzcnzA&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=28) + +- [ ] MIT **Probability** (mathy, and go slowly, which is good for mathy things) (videos): + - [ ] [MIT 6.042J - Probability Introduction](https://www.youtube.com/watch?v=SmFwFdESMHI&index=18&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Conditional Probability](https://www.youtube.com/watch?v=E6FbvM-FGZ8&index=19&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Independence](https://www.youtube.com/watch?v=l1BCv3qqW4A&index=20&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Random Variables](https://www.youtube.com/watch?v=MOfhhFaQdjw&list=PLB7540DEDD482705B&index=21) + - [ ] [MIT 6.042J - Expectation I](https://www.youtube.com/watch?v=gGlMSe7uEkA&index=22&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Expectation II](https://www.youtube.com/watch?v=oI9fMUqgfxY&index=23&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Large Deviations](https://www.youtube.com/watch?v=q4mwO2qS2z4&index=24&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Random Walks](https://www.youtube.com/watch?v=56iFMY8QW2k&list=PLB7540DEDD482705B&index=25) + +- [ ] [Simonson: Approximation Algorithms (video)](https://www.youtube.com/watch?v=oDniZCmNmNw&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=19) + +## Video Series + +Sit back and enjoy. "netflix and skill" :P + +- [ ] [List of individual Dynamic Programming problems (each is short)](https://www.youtube.com/playlist?list=PLrmLmBdmIlpsHaNTPP_jHHDx_os9ItYXr) + +- [ ] [x86 Architecture, Assembly, Applications (11 videos)](https://www.youtube.com/playlist?list=PL038BE01D3BAEFDB0) + +- [ ] [MIT 18.06 Linear Algebra, Spring 2005 (35 videos)](https://www.youtube.com/playlist?list=PLE7DDD91010BC51F8) + +- [ ] [Excellent - MIT Calculus Revisited: Single Variable Calculus](https://www.youtube.com/playlist?list=PL3B08AE665AB9002A) + +- [ ] [Computer Science 70, 001 - Spring 2015 - Discrete Mathematics and Probability Theory](https://www.youtube.com/playlist?list=PL-XXv-cvA_iD8wQm8U0gG_Z1uHjImKXFy) + +- [ ] [Discrete Mathematics (19 videos)](https://www.youtube.com/playlist?list=PL3o9D4Dl2FJ9q0_gtFXPh_H4POI5dK0yG) + +- [ ] CSE373 - Analysis of Algorithms (25 videos) + - [Skiena lectures from Algorithm Design Manual](https://www.youtube.com/watch?v=ZFjhkohHdAA&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=1) + +- [ ] [UC Berkeley 61B (Spring 2014): Data Structures (25 videos)](https://www.youtube.com/watch?v=mFPmKGIrQs4&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd) + +- [ ] [UC Berkeley 61B (Fall 2006): Data Structures (39 videos)]( https://www.youtube.com/playlist?list=PL4BBB74C7D2A1049C) + +- [ ] [UC Berkeley 61C: Machine Structures (26 videos)](https://www.youtube.com/watch?v=gJJeUFyuvvg&list=PL-XXv-cvA_iCl2-D-FS5mk0jFF6cYSJs_) + +- [ ] [OOSE: Software Dev Using UML and Java (21 videos)](https://www.youtube.com/playlist?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + +- [ ] [UC Berkeley CS 152: Computer Architecture and Engineering (20 videos)](https://www.youtube.com/watch?v=UH0QYvtP7Rk&index=20&list=PLkFD6_40KJIwEiwQx1dACXwh-2Fuo32qr) + +- [ ] [MIT 6.004: Computation Structures (49 videos)](https://www.youtube.com/playlist?list=PLrRW1w6CGAcXbMtDFj205vALOGmiRc82-) + +- [ ] [MIT 6.006: Intro to Algorithms (47 videos)](https://www.youtube.com/watch?v=HtSuA80QTyo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&nohtml5=False) + +- [ ] [MIT 6.033: Computer System Engineering (22 videos)](https://www.youtube.com/watch?v=zm2VP0kHl1M&list=PL6535748F59DCA484) + +- [ ] [MIT 6.034 Artificial Intelligence, Fall 2010 (30 videos)](https://www.youtube.com/playlist?list=PLUl4u3cNGP63gFHB6xb-kVBiQHYe_4hSi) + +- [ ] [MIT 6.042J: Mathematics for Computer Science, Fall 2010 (25 videos)](https://www.youtube.com/watch?v=L3LMbpZIKhQ&list=PLB7540DEDD482705B) + +- [ ] [MIT 6.046: Design and Analysis of Algorithms (34 videos)](https://www.youtube.com/watch?v=2P-yW7LQr08&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + +- [ ] [MIT 6.050J: Information and Entropy, Spring 2008 (19 videos)](https://www.youtube.com/watch?v=phxsQrZQupo&list=PL_2Bwul6T-A7OldmhGODImZL8KEVE38X7) + +- [ ] [MIT 6.851: Advanced Data Structures (22 videos)](https://www.youtube.com/watch?v=T0yzrZL1py0&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf&index=1) + +- [ ] [MIT 6.854: Advanced Algorithms, Spring 2016 (24 videos)](https://www.youtube.com/playlist?list=PL6ogFv-ieghdoGKGg2Bik3Gl1glBTEu8c) + +- [ ] [MIT 6.858 Computer Systems Security, Fall 2014](https://www.youtube.com/watch?v=GqmQg-cszw4&index=1&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + +- [ ] Stanford: Programming Paradigms (17 videos) + - [Course on C and C++](https://www.youtube.com/watch?v=jTSvthW34GU&list=PLC0B8B318B7394B6F&nohtml5=False) + +- [ ] [Introduction to Cryptography](https://www.youtube.com/watch?v=2aHkqB2-46k&feature=youtu.be) + - [more in series (not in order)](https://www.youtube.com/channel/UC1usFRN4LCMcfIV7UjHNuQg) + +- [ ] [Mining Massive Datasets - Stanford University (94 videos)](https://www.youtube.com/playlist?list=PLLssT5z_DsK9JDLcT8T62VtzwyW9LNepV) + +## Maybe + +http://www.gainlo.co/ - Mock interviewers from big companies + +--- + +--- + +## Once You've Got The Job + +Congratulations! + +- [10 things I wish I knew on my first day at Google](https://medium.com/@moonstorming/10-things-i-wish-i-knew-on-my-first-day-at-google-107581d87286#.livxn7clw) + +Keep learning. + +You're never really done. From 900d5aadc850877a9c92c2f403c684abf229ee11 Mon Sep 17 00:00:00 2001 From: John Washam Date: Wed, 21 Dec 2016 22:14:20 -0800 Subject: [PATCH 086/109] =?UTF-8?q?Changed=20to=20=E0=A4=B9=E0=A4=BF?= =?UTF-8?q?=E0=A4=A8=E0=A5=8D=E0=A4=A6=E0=A5=80.?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index fe520fe..4e2bc18 100644 --- a/README.md +++ b/README.md @@ -3,7 +3,7 @@ Translations: - [中文版本](README-cn.md) - [Español (in progress)](README-es.md) [Issue #80](https://github.com/jwasham/google-interview-university/issues/80) -- मानक हिन्दी (in progress) [Issue #81](https://github.com/jwasham/google-interview-university/issues/81) +- हिन्दी (in progress) [Issue #81](https://github.com/jwasham/google-interview-university/issues/81) ## What is it? From 803720341932137c29a1e897bc01c8e4f7fd5b6b Mon Sep 17 00:00:00 2001 From: YanaBe Date: Thu, 22 Dec 2016 12:31:28 -0800 Subject: [PATCH 087/109] Update README.md for issue #82 Hebrew translation Add the link to the issue and file in the main README file. Add the file README-he.md to repository, the translation of first pages --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 4e2bc18..054fe2c 100644 --- a/README.md +++ b/README.md @@ -4,6 +4,8 @@ Translations: - [中文版本](README-cn.md) - [Español (in progress)](README-es.md) [Issue #80](https://github.com/jwasham/google-interview-university/issues/80) - हिन्दी (in progress) [Issue #81](https://github.com/jwasham/google-interview-university/issues/81) +- [עברית (in progress)](README-he.md) [Issue #82] (https://github.com/jwasham/google-interview-university/issues/82) + ## What is it? From c4e9e63dca9fe44676facb408869e027d2560eef Mon Sep 17 00:00:00 2001 From: YanaBe Date: Thu, 22 Dec 2016 12:39:36 -0800 Subject: [PATCH 088/109] Create README-he.md Create the file Add the first translated paragraph The text direction will be changed later --- README-he.md | 2009 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2009 insertions(+) create mode 100644 README-he.md diff --git a/README-he.md b/README-he.md new file mode 100644 index 0000000..4ddeb6e --- /dev/null +++ b/README-he.md @@ -0,0 +1,2009 @@ + +## על מה מדובר כאן? +זוהי התוכנית הפעולה אותה הגיתי על מנת להפוך בהצלחה ממפתח אתרים, ללא תואר במדעי המחשב, למהנדס תוכנה בחברת גוגל. +![Coding at the whiteboard - from HBO's Silicon Valley](https://dng5l3qzreal6.cloudfront.net/2016/Aug/coding_board_small-1470866369118.jpg) + +רשימת המשימות הארוכה המצורפת להלן, הוצאה מקובץ האימון האישי אותו מפרסמת גוגל לעזור למועמדים פוטנציאליים **Google's coaching notes**. לפני שאתם מתחילים במשימה ישנם מספר דברים שעליכם לדעת. +ישנם מספר דברים בתחתית הרשימה שמעוד יועילו בהכנה לראיון עצמו לאחר שצלחתם את חומר הלימוד, +על מנת לפתור את הבעיות המוצגות בראיון ביעילות. + +חלק גדול מהתכנים לקוחים מהאתר המצויין של סטיב יגיי: המשרה הזו בגוגל? שלך! +"[Get that job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html)" + +ערכתי וקיצרתי עבורכם את מה שלדעתי נדרש עבור מהנדס תוכנה מתחיל עם מעט ניסיון מתוך המקורות הנ"ל. +עבור אלו מכם הרוצים הסבת מקצוע מפיתוח אתרים או פיתוח תוכנה בתפקידים כאלו ואחרים שאינם הנדסת תוכנה. +עבור אלו מכם בעלי הניסיון כמהנדסי תוכנה, בייחוד אם ישנן שנות ניסיון רבות כמהנדס תוכנה בתחום, המשימות הנ"ל עלולות להיות קלות מדי והציפיות מהם בראיון לגוגל יהיו הרבה יותר גבוהות. +במידה ואתם בעלי מספר שנות ניסיון כמפתחים, גוגל רואה בהנדסת תוכנה משהו שונה מתכנות נטו ולכן הדרישות הן שונות ודבוהות יותר. +עבור מהנדסי המערכת ומהנדסי האמינות שביניכם, השקיעו יותר בחומר המופיע ב"רשימת הרשות" זוהי רשימת משימות המכילה נושאי רשות עבור מהנדס תוכנה. +--- +## תוכן העניינים Table of Contents + +- [על מה מדובר כאן?](#what-is-it) +- [למה להשתמש בזה?](#why-use-it) +- [איך להשתמש בזה?](#how-to-use-it) +- [כנסו לאווירת גוגל](#get-in-a-googley-mood) +- [אז מה, בסוף התחלתי לעבוד בגוגל?](#did-i-get-the-job) +- [אחרי!!](#follow-along-with-me) +- [אל תרגישו שאתם לא חכמים מספיק, אתם כן](#dont-feel-you-arent-smart-enough) +- [הכל אודות גוגל](#about-google) +- [חומרים ומקורות בוידאו](#about-video-resources) +- [תהליך הראיון והכנה כללית לראיון](#interview-process--general-interview-prep) +- [תבחרו שפה אחת בה תתראיינו](#pick-one-language-for-the-interview) +- [רשימת ספרות ומקורות מידע](#book-list) +- [לפני שאתם מתחילים](#before-you-get-started) +- [על מה לא תקראו כאן?](#what-you-wont-see-covered) +- [דרישות קדם](#prerequisite-knowledge) +- [התוכנית היומית](#the-daily-plan) +- [סיבוכיות אלגוריתמים/ BIG O/ אנליזת אלגוריתמים](#algorithmic-complexity--big-o--asymptotic-analysis) +- [מבני נתונים](#data-structures) + - [מערכים](#arrays) + - [רשימות מקושרות](#linked-lists) + - [מחסנית](#stack) + - [תור](#queue) + - [טבלאות גיבוב נתונים](#hash-table) +- [למידע נוסף](#more-knowledge) + - [חיפוש בינארי](#binary-search) + - [פעולות על סיביות](#bitwise-operations) +- [עצים](#trees) + - [רקע על עצים](#trees---notes--background) + - [עצי חיפוש בינארי BSTs](#binary-search-trees-bsts) + - [ערימה בינארית למימוש תור עדיפויות / תור קדימויות/ ערימה בינארי](#heap--priority-queue--binary-heap) + - איזון עצי חיפוש בינארי כללי + - חיפוש לעומק, חיפוש לרוחב, אלגוריתם שיבוץ וסידור, (BFS, DFS) +- [מיון](#sorting) + - בחירה + - הכנסה + - מיון ערימה + - מיון מהיר + - מיון מיזוג +- [גרפים - תרשימים](#graphs) + - מוכווניםdirected + - לא מוכווניםundirected + - מטריצה adjacency matrix + - רשימה adjacency list + - חיפוש לעומק וחיפוש לרוחב (BFS, DFS) +- [מידע נוסף](#even-more-knowledge) + - [רקורסיה](#recursion) + - [תכנות מונחה עצמים](#object-oriented-programming) + - [תבניות עיצוב](#design-patterns) + - [קומבינטוריקה (n בוחר K) והסתברות](#combinatorics-n-choose-k--probability) + - [NP, NP-אלגוריתמי קירוב](#np-np-complete-and-approximation-algorithms) + - [זיכרון וירטואלי - קאש](#caches) + - [תהליכים ומקבצי מסרים ](#processes-and-threads) + - [מאמרים](#papers) + - [ בדיקות תוכנה](#testing) + - [שיבוץ](#scheduling) + - [יישום Implement system routines](#implement-system-routines) + - [חיפוש ופעולות על מחרוזות](#string-searching--manipulations) +- [ סילומיות (סקאלביליות),עיצוב מערכות, עיבוד נתונים ](#system-design-scalability-data-handling) (if you have 4+ years experience) +- [חזרה גנרלית](#final-review) +- [שאלות קוד לדוגמה](#coding-question-practice) +- [שאלות אתגר](#coding-exerciseschallenges) +- [מה עושים סמוך לראיון הגדול?](#once-youre-closer-to-the-interview) +- [קורות חיים](#your-resume) +- [דברים לחשוב עליהם לכשיגיע יום הראיון](#be-thinking-of-for-when-the-interview-comes) +- [שאלות למראיין](#have-questions-for-the-interviewer) +- [היום שאחרי](#once-youve-got-the-job) + +---------------- מתחת לקו זה נמצא חומר הרשות שמומלץ לרקע כללי או למהנדסי מערכת ותפקידים נוספים ---------------- + +- [קריאה נוספת](#additional-books) +- [מה עוד ניתן ללמוד?](#additional-learning) + - [תכנות דינאמי](#dynamic-programming) + - [מעבדים](#compilers) + - [מספרים בעלי נקודה צפה](#floating-point-numbers) + - [יוניקוד- קידוד אחיד](#unicode) + - [Endianness](#endianness) + - [Emacs and vi(m)](#emacs-and-vim) + - [Unix command line tools](#unix-command-line-tools) + - [Information theory](#information-theory) + - [Parity & Hamming Code](#parity--hamming-code) + - [Entropy](#entropy) + - [Cryptography](#cryptography) + - [Compression](#compression) + - [Networking](#networking) (if you have networking experience or want to be a systems engineer, expect questions) + - [Computer Security](#computer-security) + - [Garbage collection](#garbage-collection) + - [Parallel Programming](#parallel-programming) + - [Messaging, Serialization, and Queueing Systems](#messaging-serialization-and-queueing-systems) + - [Fast Fourier Transform](#fast-fourier-transform) + - [Bloom Filter](#bloom-filter) + - [HyperLogLog](#hyperloglog) + - [Locality-Sensitive Hashing](#locality-sensitive-hashing) + - [van Emde Boas Trees](#van-emde-boas-trees) + - [Augmented Data Structures](#augmented-data-structures) + - [Tries](#tries) + - [N-ary (K-ary, M-ary) trees](#n-ary-k-ary-m-ary-trees) + - [Balanced search trees](#balanced-search-trees) + - AVL trees + - Splay trees + - Red/black trees + - 2-3 search trees + - 2-3-4 Trees (aka 2-4 trees) + - N-ary (K-ary, M-ary) trees + - B-Trees + - [k-D Trees](#k-d-trees) + - [Skip lists](#skip-lists) + - [Network Flows](#network-flows) + - [Disjoint Sets & Union Find](#disjoint-sets--union-find) + - [Math for Fast Processing](#math-for-fast-processing) + - [Treap](#treap) + - [Linear Programming](#linear-programming) + - [Geometry, Convex hull](#geometry-convex-hull) + - [Discrete math](#discrete-math) + - [Machine Learning](#machine-learning) + - [Go](#go) +- [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) +- [Video Series](#video-series) +- [Computer Science Courses](#computer-science-courses) + +--- + +## למה להשתמש בזה? + +אני מתכונן לראיון בגוגל תוך כדי יישום תוכנית זו. בניתי את הרשת, בניתי שרותים ברשת, אני בונה ומשיק סטארטאפים מאז 1997. +יש לי תואר בכלכלה, לא במדעי המחשב. הייתה לי קריירה מוצלחת אבל אני חולם לעבוד בגוגל. +אני רוצה להתקדם ולעבוד עם מערכות גדולות יותר ולקבל הבנה מעמירה של מערכות מחשוב, אלגוריתמים יעילים, התנהגות בסיסי נתונים, +I'm following this plan to prepare for my Google interview. I've been building the web, building +services, and launching startups since 1997. I have an economics degree, not a CS degree. I've +been very successful in my career, but I want to work at Google. I want to progress into larger systems +and get a real understanding of computer systems, algorithmic efficiency, data structure performance, +low-level languages, and how it all works. And if you don't know any of it, Google won't hire you. +When I started this project, I didn't know a stack from a heap, didn't know Big-O anything, anything about trees, or how to +traverse a graph. If I had to code a sorting algorithm, I can tell ya it wouldn't have been very good. +Every data structure I've ever used was built into the language, and I didn't know how they worked +under the hood at all. I've never had to manage memory unless a process I was running would give an "out of +memory" error, and then I'd have to find a workaround. I've used a few multidimensional arrays in my life and +thousands of associative arrays, but I've never created data structures from scratch. + +But after going through this study plan I have high confidence I'll be hired. It's a long plan. It's going to take me +months. If you are familiar with a lot of this already it will take you a lot less time. + +## How to use it + +Everything below is an outline, and you should tackle the items in order from top to bottom. + +I'm using Github's special markdown flavor, including tasks lists to check progress. + +- [x] Create a new branch so you can check items like this, just put an x in the brackets: [x] + + + Fork a branch and follow the commands below + +`git checkout -b progress` + +`git remote add jwasham https://github.com/jwasham/google-interview-university` + +`git fetch --all` + + Mark all boxes with X after you completed your changes + +`git add . ` + +`git commit -m "Marked x" ` + +`git rebase jwasham/master ` + +`git push --force ` + +[More about Github-flavored markdown](https://guides.github.com/features/mastering-markdown/#GitHub-flavored-markdown) + +## Get in a Googley Mood + +Print out a "[future Googler](https://github.com/jwasham/google-interview-university/blob/master/extras/future-googler.pdf)" sign (or two) and keep your eyes on the prize. + +[![future Googler sign](https://dng5l3qzreal6.cloudfront.net/2016/Oct/Screen_Shot_2016_10_04_at_10_13_24_AM-1475601104364.png)](https://github.com/jwasham/google-interview-university/blob/master/extras/future-googler.pdf) + +## Did I Get the Job? + +I'm in the queue right now. Hope to interview soon. + + Thanks for the referral, JP. + +## Follow Along with Me + +My story: [Why I Studied Full-Time for 8 Months for a Google Interview](https://medium.com/@googleyasheck/why-i-studied-full-time-for-8-months-for-a-google-interview-cc662ce9bb13) + +I'm on the journey, too. Follow along: + +- **Blog**: [GoogleyAsHeck.com](https://googleyasheck.com/) +- Twitter: [@googleyasheck](https://twitter.com/googleyasheck) +- Twitter: [@StartupNextDoor](https://twitter.com/StartupNextDoor) +- Google+: [+Googleyasheck](https://plus.google.com/+Googleyasheck) +- LinkedIn: [johnawasham](https://www.linkedin.com/in/johnawasham) + +![John Washam - Google Interview University](https://dng5l3qzreal6.cloudfront.net/2016/Aug/book_stack_photo_resized_18_1469302751157-1472661280368.png) + +## Don't feel you aren't smart enough +- Google engineers are smart, but many have an insecurity that they aren't smart enough, even though they work at Google. +- [The myth of the Genius Programmer](https://www.youtube.com/watch?v=0SARbwvhupQ) +- [It's Dangerous to Go Alone: Battling the Invisible Monsters in Tech](https://www.youtube.com/watch?v=1i8ylq4j_EY) + +## About Google + +- [ ] For students - [Google Careers: Technical Development Guide](https://www.google.com/about/careers/students/guide-to-technical-development.html) +- [ ] How Search Works: + - [ ] [The Evolution of Search (video)](https://www.youtube.com/watch?v=mTBShTwCnD4) + - [ ] [How Search Works - the story](https://www.google.com/insidesearch/howsearchworks/thestory/) + - [ ] [How Search Works](https://www.google.com/insidesearch/howsearchworks/) + - [ ] [How Search Works - Matt Cutts (video)](https://www.youtube.com/watch?v=BNHR6IQJGZs) + - [ ] [How Google makes improvements to its search algorithm (video)](https://www.youtube.com/watch?v=J5RZOU6vK4Q) +- [ ] Series: + - [ ] [How Google Search Dealt With Mobile](https://backchannel.com/how-google-search-dealt-with-mobile-33bc09852dc9) + - [ ] [Google's Secret Study To Find Out Our Needs](https://backchannel.com/googles-secret-study-to-find-out-our-needs-eba8700263bf) + - [ ] [Google Search Will Be Your Next Brain](https://backchannel.com/google-search-will-be-your-next-brain-5207c26e4523) + - [ ] [The Deep Mind Of Demis Hassabis](https://backchannel.com/the-deep-mind-of-demis-hassabis-156112890d8a) +- [ ] [Book: How Google Works](https://www.amazon.com/How-Google-Works-Eric-Schmidt/dp/1455582344) +- [ ] [Made by Google announcement - Oct 2016 (video)](https://www.youtube.com/watch?v=q4y0KOeXViI) + +## About Video Resources + +Some videos are available only by enrolling in a Coursera, EdX, or Lynda.com class. These are called MOOCs. +Sometimes the classes are not in session so you have to wait a couple of months, so you have no access. Lynda.com courses are not free. + + I'd appreciate your help to add free and always-available public sources, such as YouTube videos to accompany the online course videos. + I like using university lectures. + + +## Interview Process & General Interview Prep + +- [ ] Videos: + - [ ] [How to Work at Google: Prepare for an Engineering Interview (video)](https://www.youtube.com/watch?v=ko-KkSmp-Lk) + - [ ] [How to Work at Google: Example Coding/Engineering Interview (video)](https://www.youtube.com/watch?v=XKu_SEDAykw) + - [ ] [How to Work at Google - Candidate Coaching Session (video)](https://www.youtube.com/watch?v=oWbUtlUhwa8&feature=youtu.be) + - [ ] [Google Recruiters Share Technical Interview Tips (video)](https://www.youtube.com/watch?v=qc1owf2-220&feature=youtu.be) + - [ ] [How to Work at Google: Tech Resume Preparation (video)](https://www.youtube.com/watch?v=8npJLXkcmu8) + +- [ ] Articles: + - [ ] [Becoming a Googler in Three Steps](http://www.google.com/about/careers/lifeatgoogle/hiringprocess/) + - [ ] [Get That Job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html) + - all the things he mentions that you need to know are listed below + - [ ] _(very dated)_ [How To Get A Job At Google, Interview Questions, Hiring Process](http://dondodge.typepad.com/the_next_big_thing/2010/09/how-to-get-a-job-at-google-interview-questions-hiring-process.html) + - [ ] [Phone Screen Questions](http://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions) + +- [ ] Prep Courses: + - [ ] [Software Engineer Interview Unleashed (paid course)](https://www.udemy.com/software-engineer-interview-unleashed): + - Learn how to make yourself ready for software engineer interviews from a former Google interviewer. + +- [ ] Additional (not suggested by Google but I added): + - [ ] [ABC: Always Be Coding](https://medium.com/always-be-coding/abc-always-be-coding-d5f8051afce2#.4heg8zvm4) + - [ ] [Four Steps To Google Without A Degree](https://medium.com/always-be-coding/four-steps-to-google-without-a-degree-8f381aa6bd5e#.asalo1vfx) + - [ ] [Whiteboarding](https://medium.com/@dpup/whiteboarding-4df873dbba2e#.hf6jn45g1) + - [ ] [How Google Thinks About Hiring, Management And Culture](http://www.kpcb.com/blog/lessons-learned-how-google-thinks-about-hiring-management-and-culture) + - [ ] [Effective Whiteboarding during Programming Interviews](http://www.coderust.com/blog/2014/04/10/effective-whiteboarding-during-programming-interviews/) + - [ ] Cracking The Coding Interview Set 1: + - [ ] [Gayle L McDowell - Cracking The Coding Interview (video)](https://www.youtube.com/watch?v=rEJzOhC5ZtQ) + - [ ] [Cracking the Coding Interview with Author Gayle Laakmann McDowell (video)](https://www.youtube.com/watch?v=aClxtDcdpsQ) + - [ ] How to Get a Job at the Big 4: + - [ ] ['How to Get a Job at the Big 4 - Amazon, Facebook, Google & Microsoft' (video)](https://www.youtube.com/watch?v=YJZCUhxNCv8) + - [ ] [Failing at Google Interviews](http://alexbowe.com/failing-at-google-interviews/) + +## Pick One Language for the Interview + +I wrote this short article about it: [Important: Pick One Language for the Google Interview](https://googleyasheck.com/important-pick-one-language-for-the-google-interview/) + +You can use a language you are comfortable in to do the coding part of the interview, but for Google, these are solid choices: + +- C++ +- Java +- Python + +You could also use these, but read around first. There may be caveats: + +- JavaScript +- Ruby + +You need to be very comfortable in the language and be knowledgeable. + +Read more about choices: +- http://www.byte-by-byte.com/choose-the-right-language-for-your-coding-interview/ +- http://blog.codingforinterviews.com/best-programming-language-jobs/ +- https://www.quora.com/What-is-the-best-language-to-program-in-for-an-in-person-Google-interview + +[See language resources here](programming-language-resources.md) + +You'll see some C, C++, and Python learning included below, because I'm learning. There are a few books involved, see the bottom. + +## Book List + +This is a shorter list than what I used. This is abbreviated to save you time. + +### Interview Prep + +- [ ] [Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition](http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html) + - answers in C++ and Java + - recommended in Google candidate coaching + - this is a good warm-up for Cracking the Coding Interview + - not too difficult, most problems may be easier than what you'll see in an interview (from what I've read) +- [ ] [Cracking the Coding Interview, 6th Edition](http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/) + - answers in Java + - recommended on the [Google Careers site](https://www.google.com/about/careers/how-we-hire/interview/) + - If you see people reference "The Google Resume", it was a book replaced by "Cracking the Coding Interview". + +If you have tons of extra time: + +- [ ] [Elements of Programming Interviews](https://www.amazon.com/Elements-Programming-Interviews-Insiders-Guide/dp/1479274836) + - all code is in C++, very good if you're looking to use C++ in your interview + - a good book on problem solving in general. + +### Computer Architecture + +If short on time: + +- [ ] [Write Great Code: Volume 1: Understanding the Machine](https://www.amazon.com/Write-Great-Code-Understanding-Machine/dp/1593270038) + - The book was published in 2004, and is somewhat outdated, but it's a terrific resource for understanding a computer in brief. + - The author invented HLA, so take mentions and examples in HLA with a grain of salt. Not widely used, but decent examples of what assembly looks like. + - These chapters are worth the read to give you a nice foundation: + - Chapter 2 - Numeric Representation + - Chapter 3 - Binary Arithmetic and Bit Operations + - Chapter 4 - Floating-Point Representation + - Chapter 5 - Character Representation + - Chapter 6 - Memory Organization and Access + - Chapter 7 - Composite Data Types and Memory Objects + - Chapter 9 - CPU Architecture + - Chapter 10 - Instruction Set Architecture + - Chapter 11 - Memory Architecture and Organization + +If you have more time (I want this book): + +- [ ] [Computer Architecture, Fifth Edition: A Quantitative Approach](https://www.amazon.com/dp/012383872X/) + - For a richer, more up-to-date (2011), but longer treatment + +### Language Specific + +**You need to choose a language for the interview (see above).** Here are my recommendations by language. I don't have resources for all languages. I welcome additions. + +If you read though one of these, you should have all the data structures and algorithms knowledge you'll need to start doing coding problems. +**You can skip all the video lectures in this project**, unless you'd like a review. + +[Additional language-specific resources here.](programming-language-resources.md) + +### C++ + +I haven't read these two, but they are highly rated and written by Sedgewick. He's awesome. + +- [ ] [Algorithms in C++, Parts 1-4: Fundamentals, Data Structure, Sorting, Searching](https://www.amazon.com/Algorithms-Parts-1-4-Fundamentals-Structure/dp/0201350882/) +- [ ] [Algorithms in C++ Part 5: Graph Algorithms](https://www.amazon.com/Algorithms-Part-Graph-3rd-Pt-5/dp/0201361183/) + +If you have a better recommendation for C++, please let me know. Looking for a comprehensive resource. + +### Java + +- [ ] [Algorithms (Sedgewick and Wayne)](https://www.amazon.com/Algorithms-4th-Robert-Sedgewick/dp/032157351X/) + - videos with book content (and Sedgewick!): + - [Algorithms I](https://www.youtube.com/user/algorithmscourses/playlists?view=50&sort=dd&shelf_id=2) + - [Algorithms II](https://www.youtube.com/user/algorithmscourses/playlists?shelf_id=3&view=50&sort=dd) + +OR: + +- [ ] [Data Structures and Algorithms in Java](https://www.amazon.com/Data-Structures-Algorithms-Michael-Goodrich/dp/1118771338/) + - by Goodrich, Tamassia, Goldwasser + - used as optional text for CS intro course at UC Berkeley + - see my book report on the Python version below. This book covers the same topics. + +### Python + +- [ ] [Data Structures and Algorithms in Python](https://www.amazon.com/Structures-Algorithms-Python-Michael-Goodrich/dp/1118290275/) + - by Goodrich, Tamassia, Goldwasser + - I loved this book. It covered everything and more. + - Pythonic code + - my glowing book report: https://googleyasheck.com/book-report-data-structures-and-algorithms-in-python/ + + +### Optional Books + +**Some people recommend these, but I think it's going overboard, unless you have many years of software engineering experience and expect a much harder interview:** + +- [ ] [Algorithm Design Manual](http://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202) (Skiena) + - As a review and problem recognition + - The algorithm catalog portion is well beyond the scope of difficulty you'll get in an interview. + - This book has 2 parts: + - class textbook on data structures and algorithms + - pros: + - is a good review as any algorithms textbook would be + - nice stories from his experiences solving problems in industry and academia + - code examples in C + - cons: + - can be as dense or impenetrable as CLRS, and in some cases, CLRS may be a better alternative for some subjects + - chapters 7, 8, 9 can be painful to try to follow, as some items are not explained well or require more brain than I have + - don't get me wrong: I like Skiena, his teaching style, and mannerisms, but I may not be Stony Brook material. + - algorithm catalog: + - this is the real reason you buy this book. + - about to get to this part. Will update here once I've made my way through it. + - To quote Yegge: "More than any other book it helped me understand just how astonishingly commonplace + (and important) graph problems are – they should be part of every working programmer's toolkit. The book also + covers basic data structures and sorting algorithms, which is a nice bonus. But the gold mine is the second half + of the book, which is a sort of encyclopedia of 1-pagers on zillions of useful problems and various ways to solve + them, without too much detail. Almost every 1-pager has a simple picture, making it easy to remember. This is a + great way to learn how to identify hundreds of problem types." + - Can rent it on kindle + - Half.com is a great resource for textbooks at good prices. + - Answers: + - [Solutions](http://www.algorithm.cs.sunysb.edu/algowiki/index.php/The_Algorithms_Design_Manual_(Second_Edition)) + - [Solutions](http://blog.panictank.net/category/algorithmndesignmanualsolutions/page/2/) + - [Errata](http://www3.cs.stonybrook.edu/~skiena/algorist/book/errata) + +- [ ] [Introduction to Algorithms](https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844) + - **Important:** Reading this book will only have limited value. This book is a great review of algorithms and data structures, but won't teach you how to write good code. You have to be able to code a decent solution efficiently. + - To quote Yegge: "But if you want to come into your interviews *prepped*, then consider deferring your application until you've made your way through that book." + - Half.com is a great resource for textbooks at good prices. + - aka CLR, sometimes CLRS, because Stein was late to the game + +- [ ] [Programming Pearls](http://www.amazon.com/Programming-Pearls-2nd-Jon-Bentley/dp/0201657880) + - The first couple of chapters present clever solutions to programming problems (some very old using data tape) but + that is just an intro. This a guidebook on program design and architecture, much like Code Complete, but much shorter. + +- ~~"Algorithms and Programming: Problems and Solutions" by Shen~~ + - A fine book, but after working through problems on several pages I got frustrated with the Pascal, do while loops, 1-indexed arrays, and unclear post-condition satisfaction results. + - Would rather spend time on coding problems from another book or online coding problems. + + +## Before you Get Started + +This list grew over many months, and yes, it kind of got out of hand. + +Here are some mistakes I made so you'll have a better experience. + +### 1. You Won't Remember it All + +I watched hours of videos and took copious notes, and months later there was much I didn't remember. I spent 3 days going +through my notes and making flashcards so I could review. + +Read please so you won't make my mistakes: + +[Retaining Computer Science Knowledge](https://googleyasheck.com/retaining-computer-science-knowledge/) + +### 2. Use Flashcards + +To solve the problem, I made a little flashcards site where I could add flashcards of 2 types: general and code. +Each card has different formatting. + +I made a mobile-first website so I could review on my phone and tablet, wherever I am. + +Make your own for free: + +- [Flashcards site repo](https://github.com/jwasham/computer-science-flash-cards) +- [My flash cards database](https://github.com/jwasham/computer-science-flash-cards/blob/master/cards-jwasham.db): Keep in mind I went overboard and have cards covering everything from assembly language and Python trivia to machine learning and statistics. It's way too much for what's required by Google. + +**Note on flashcards:** The first time you recognize you know the answer, don't mark it as known. You have to see the +same card and answer it several times correctly before you really know it. Repetition will put that knowledge deeper in +your brain. + +An alternative to using my flashcard site is [Anki](http://ankisrs.net/), which has been recommended to me numerous times. It uses a repetition system to help you remember. +It's user-friendly, available on all platforms and has a cloud sync system. It costs $25 on iOS but is free on other platforms. + +My flashcard database in Anki format: https://ankiweb.net/shared/info/25173560 (thanks [@xiewenya](https://github.com/xiewenya)) + +### 3. Review, review, review + +I keep a set of cheat sheets on ASCII, OSI stack, Big-O notations, and more. I study them when I have some spare time. + +Take a break from programming problems for a half hour and go through your flashcards. + +### 4. Focus + +There are a lot of distractions that can take up valuable time. Focus and concentration are hard. + +## What you won't see covered + +This big list all started as a personal to-do list made from Google interview coaching notes. These are prevalent +technologies but were not mentioned in those notes: + +- SQL +- Javascript +- HTML, CSS, and other front-end technologies + +## The Daily Plan + +Some subjects take one day, and some will take multiple days. Some are just learning with nothing to implement. + +Each day I take one subject from the list below, watch videos about that subject, and write an implementation in: +- C - using structs and functions that take a struct * and something else as args. +- C++ - without using built-in types +- C++ - using built-in types, like STL's std::list for a linked list +- Python - using built-in types (to keep practicing Python) +- and write tests to ensure I'm doing it right, sometimes just using simple assert() statements +- You may do Java or something else, this is just my thing. + +You don't need all these. You need only [one language for the interview](#pick-one-language-for-the-interview). + +Why code in all of these? +- Practice, practice, practice, until I'm sick of it, and can do it with no problem (some have many edge cases and bookkeeping details to remember) +- Work within the raw constraints (allocating/freeing memory without help of garbage collection (except Python)) +- Make use of built-in types so I have experience using the built-in tools for real-world use (not going to write my own linked list implementation in production) + +I may not have time to do all of these for every subject, but I'll try. + +You can see my code here: + - [C] (https://github.com/jwasham/practice-c) + - [C++] (https://github.com/jwasham/practice-cpp) + - [Python] (https://github.com/jwasham/practice-python) + +You don't need to memorize the guts of every algorithm. + +Write code on a whiteboard or paper, not a computer. Test with some sample inputs. Then test it out on a computer. + +## Prerequisite Knowledge + +- [ ] **Learn C** + - C is everywhere. You'll see examples in books, lectures, videos, *everywhere* while you're studying. + - [ ] [C Programming Language, Vol 2](https://www.amazon.com/Programming-Language-Brian-W-Kernighan/dp/0131103628) + - This is a short book, but it will give you a great handle on the C language and if you practice it a little + you'll quickly get proficient. Understanding C helps you understand how programs and memory work. + - [answers to questions](https://github.com/lekkas/c-algorithms) + +- [ ] **How computers process a program:** + - [ ] [How does CPU execute program (video)](https://www.youtube.com/watch?v=42KTvGYQYnA) + - [ ] [Machine Code Instructions (video)](https://www.youtube.com/watch?v=Mv2XQgpbTNE) + +## Algorithmic complexity / Big-O / Asymptotic analysis +- nothing to implement +- [ ] [Harvard CS50 - Asymptotic Notation (video)](https://www.youtube.com/watch?v=iOq5kSKqeR4) +- [ ] [Big O Notations (general quick tutorial) (video)](https://www.youtube.com/watch?v=V6mKVRU1evU) +- [ ] [Big O Notation (and Omega and Theta) - best mathematical explanation (video)](https://www.youtube.com/watch?v=ei-A_wy5Yxw&index=2&list=PL1BaGV1cIH4UhkL8a9bJGG356covJ76qN) +- [ ] Skiena: + - [video](https://www.youtube.com/watch?v=gSyDMtdPNpU&index=2&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [slides](http://www3.cs.stonybrook.edu/~algorith/video-lectures/2007/lecture2.pdf) +- [ ] [A Gentle Introduction to Algorithm Complexity Analysis](http://discrete.gr/complexity/) +- [ ] [Orders of Growth (video)](https://class.coursera.org/algorithmicthink1-004/lecture/59) +- [ ] [Asymptotics (video)](https://class.coursera.org/algorithmicthink1-004/lecture/61) +- [ ] [UC Berkeley Big O (video)](https://youtu.be/VIS4YDpuP98) +- [ ] [UC Berkeley Big Omega (video)](https://youtu.be/ca3e7UVmeUc) +- [ ] [Amortized Analysis (video)](https://www.youtube.com/watch?v=B3SpQZaAZP4&index=10&list=PL1BaGV1cIH4UhkL8a9bJGG356covJ76qN) +- [ ] [Illustrating "Big O" (video)](https://class.coursera.org/algorithmicthink1-004/lecture/63) +- [ ] TopCoder (includes recurrence relations and master theorem): + - [Computational Complexity: Section 1](https://www.topcoder.com/community/data-science/data-science-tutorials/computational-complexity-section-1/) + - [Computational Complexity: Section 2](https://www.topcoder.com/community/data-science/data-science-tutorials/computational-complexity-section-2/) +- [ ] [Cheat sheet](http://bigocheatsheet.com/) + + + If some of the lectures are too mathy, you can jump down to the bottom and + watch the discrete mathematics videos to get the background knowledge. + +## Data Structures + +- ### Arrays + - Implement an automatically resizing vector. + - [ ] Description: + - [Arrays (video)](https://www.coursera.org/learn/data-structures/lecture/OsBSF/arrays) + - [UCBerkley CS61B - Linear and Multi-Dim Arrays (video)](https://youtu.be/Wp8oiO_CZZE?t=15m32s) + - [Basic Arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Basic-arrays/149042/177104-4.html) + - [Multi-dim (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Multidimensional-arrays/149042/177105-4.html) + - [Dynamic Arrays (video)](https://www.coursera.org/learn/data-structures/lecture/EwbnV/dynamic-arrays) + - [Jagged Arrays (video)](https://www.youtube.com/watch?v=1jtrQqYpt7g) + - [Jagged Arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Jagged-arrays/149042/177106-4.html) + - [Resizing arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Resizable-arrays/149042/177108-4.html) + - [ ] Implement a vector (mutable array with automatic resizing): + - [ ] Practice coding using arrays and pointers, and pointer math to jump to an index instead of using indexing. + - [ ] new raw data array with allocated memory + - can allocate int array under the hood, just not use its features + - start with 16, or if starting number is greater, use power of 2 - 16, 32, 64, 128 + - [ ] size() - number of items + - [ ] capacity() - number of items it can hold + - [ ] is_empty() + - [ ] at(index) - returns item at given index, blows up if index out of bounds + - [ ] push(item) + - [ ] insert(index, item) - inserts item at index, shifts that index's value and trailing elements to the right + - [ ] prepend(item) - can use insert above at index 0 + - [ ] pop() - remove from end, return value + - [ ] delete(index) - delete item at index, shifting all trailing elements left + - [ ] remove(item) - looks for value and removes index holding it (even if in multiple places) + - [ ] find(item) - looks for value and returns first index with that value, -1 if not found + - [ ] resize(new_capacity) // private function + - when you reach capacity, resize to double the size + - when popping an item, if size is 1/4 of capacity, resize to half + - [ ] Time + - O(1) to add/remove at end (amortized for allocations for more space), index, or update + - O(n) to insert/remove elsewhere + - [ ] Space + - contiguous in memory, so proximity helps performance + - space needed = (array capacity, which is >= n) * size of item, but even if 2n, still O(n) + +- ### Linked Lists + - [ ] Description: + - [ ] [Singly Linked Lists (video)](https://www.coursera.org/learn/data-structures/lecture/kHhgK/singly-linked-lists) + - [ ] [CS 61B - Linked Lists (video)](https://www.youtube.com/watch?v=sJtJOtXCW_M&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=5) + - [ ] [C Code (video)](https://www.youtube.com/watch?v=QN6FPiD0Gzo) + - not the whole video, just portions about Node struct and memory allocation. + - [ ] Linked List vs Arrays: + - [Core Linked Lists Vs Arrays (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/rjBs9/core-linked-lists-vs-arrays) + - [In The Real World Linked Lists Vs Arrays (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/QUaUd/in-the-real-world-lists-vs-arrays) + - [ ] [why you should avoid linked lists (video)](https://www.youtube.com/watch?v=YQs6IC-vgmo) + - [ ] Gotcha: you need pointer to pointer knowledge: + (for when you pass a pointer to a function that may change the address where that pointer points) + This page is just to get a grasp on ptr to ptr. I don't recommend this list traversal style. Readability and maintainability suffer due to cleverness. + - [Pointers to Pointers](https://www.eskimo.com/~scs/cclass/int/sx8.html) + - [ ] implement (I did with tail pointer & without): + - [ ] size() - returns number of data elements in list + - [ ] empty() - bool returns true if empty + - [ ] value_at(index) - returns the value of the nth item (starting at 0 for first) + - [ ] push_front(value) - adds an item to the front of the list + - [ ] pop_front() - remove front item and return its value + - [ ] push_back(value) - adds an item at the end + - [ ] pop_back() - removes end item and returns its value + - [ ] front() - get value of front item + - [ ] back() - get value of end item + - [ ] insert(index, value) - insert value at index, so current item at that index is pointed to by new item at index + - [ ] erase(index) - removes node at given index + - [ ] value_n_from_end(n) - returns the value of the node at nth position from the end of the list + - [ ] reverse() - reverses the list + - [ ] remove_value(value) - removes the first item in the list with this value + - [ ] Doubly-linked List + - [Description (video)](https://www.coursera.org/learn/data-structures/lecture/jpGKD/doubly-linked-lists) + - No need to implement + +- ### Stack + - [ ] [Stacks (video)](https://www.coursera.org/learn/data-structures/lecture/UdKzQ/stacks) + - [ ] [Using Stacks Last-In First-Out (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-stacks-last-first-out/149042/177120-4.html) + - [ ] Will not implement. Implementing with array is trivial. + +- ### Queue + - [ ] [Using Queues First-In First-Out(video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-queues-first-first-out/149042/177122-4.html) + - [ ] [Queue (video)](https://www.coursera.org/learn/data-structures/lecture/EShpq/queue) + - [ ] [Circular buffer/FIFO](https://en.wikipedia.org/wiki/Circular_buffer) + - [ ] [Priority Queues (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Priority-queues-deques/149042/177123-4.html) + - [ ] Implement using linked-list, with tail pointer: + - enqueue(value) - adds value at position at tail + - dequeue() - returns value and removes least recently added element (front) + - empty() + - [ ] Implement using fixed-sized array: + - enqueue(value) - adds item at end of available storage + - dequeue() - returns value and removes least recently added element + - empty() + - full() + - [ ] Cost: + - a bad implementation using linked list where you enqueue at head and dequeue at tail would be O(n) + because you'd need the next to last element, causing a full traversal each dequeue + - enqueue: O(1) (amortized, linked list and array [probing]) + - dequeue: O(1) (linked list and array) + - empty: O(1) (linked list and array) + +- ### Hash table + - [ ] Videos: + - [ ] [Hashing with Chaining (video)](https://www.youtube.com/watch?v=0M_kIqhwbFo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=8) + - [ ] [Table Doubling, Karp-Rabin (video)](https://www.youtube.com/watch?v=BRO7mVIFt08&index=9&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [Open Addressing, Cryptographic Hashing (video)](https://www.youtube.com/watch?v=rvdJDijO2Ro&index=10&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [PyCon 2010: The Mighty Dictionary (video)](https://www.youtube.com/watch?v=C4Kc8xzcA68) + - [ ] [(Advanced) Randomization: Universal & Perfect Hashing (video)](https://www.youtube.com/watch?v=z0lJ2k0sl1g&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=11) + - [ ] [(Advanced) Perfect hashing (video)](https://www.youtube.com/watch?v=N0COwN14gt0&list=PL2B4EEwhKD-NbwZ4ezj7gyc_3yNrojKM9&index=4) + + - [ ] Online Courses: + - [ ] [Understanding Hash Functions (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Understanding-hash-functions/149042/177126-4.html) + - [ ] [Using Hash Tables (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-hash-tables/149042/177127-4.html) + - [ ] [Supporting Hashing (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Supporting-hashing/149042/177128-4.html) + - [ ] [Language Support Hash Tables (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Language-support-hash-tables/149042/177129-4.html) + - [ ] [Core Hash Tables (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/m7UuP/core-hash-tables) + - [ ] [Data Structures (video)](https://www.coursera.org/learn/data-structures/home/week/3) + - [ ] [Phone Book Problem (video)](https://www.coursera.org/learn/data-structures/lecture/NYZZP/phone-book-problem) + - [ ] distributed hash tables: + - [Instant Uploads And Storage Optimization In Dropbox (video)](https://www.coursera.org/learn/data-structures/lecture/DvaIb/instant-uploads-and-storage-optimization-in-dropbox) + - [Distributed Hash Tables (video)](https://www.coursera.org/learn/data-structures/lecture/tvH8H/distributed-hash-tables) + + - [ ] implement with array using linear probing + - hash(k, m) - m is size of hash table + - add(key, value) - if key already exists, update value + - exists(key) + - get(key) + - remove(key) + +## More Knowledge + +- ### Binary search + - [ ] [Binary Search (video)](https://www.youtube.com/watch?v=D5SrAga1pno) + - [ ] [Binary Search (video)](https://www.khanacademy.org/computing/computer-science/algorithms/binary-search/a/binary-search) + - [ ] [detail](https://www.topcoder.com/community/data-science/data-science-tutorials/binary-search/) + - [ ] Implement: + - binary search (on sorted array of integers) + - binary search using recursion + +- ### Bitwise operations + - [ ] [Bits cheat sheet](https://github.com/jwasham/google-interview-university/blob/master/extras/cheat%20sheets/bits-cheat-cheet.pdf) - you should know many of the powers of 2 from (2^1 to 2^16 and 2^32) + - [ ] Get a really good understanding of manipulating bits with: &, |, ^, ~, >>, << + - [ ] [words](https://en.wikipedia.org/wiki/Word_(computer_architecture)) + - [ ] Good intro: + [Bit Manipulation (video)](https://www.youtube.com/watch?v=7jkIUgLC29I) + - [ ] [C Programming Tutorial 2-10: Bitwise Operators (video)](https://www.youtube.com/watch?v=d0AwjSpNXR0) + - [ ] [Bit Manipulation](https://en.wikipedia.org/wiki/Bit_manipulation) + - [ ] [Bitwise Operation](https://en.wikipedia.org/wiki/Bitwise_operation) + - [ ] [Bithacks](https://graphics.stanford.edu/~seander/bithacks.html) + - [ ] [The Bit Twiddler](http://bits.stephan-brumme.com/) + - [ ] [The Bit Twiddler Interactive](http://bits.stephan-brumme.com/interactive.html) + - [ ] 2s and 1s complement + - [Binary: Plusses & Minuses (Why We Use Two's Complement) (video)](https://www.youtube.com/watch?v=lKTsv6iVxV4) + - [1s Complement](https://en.wikipedia.org/wiki/Ones%27_complement) + - [2s Complement](https://en.wikipedia.org/wiki/Two%27s_complement) + - [ ] count set bits + - [4 ways to count bits in a byte (video)](https://youtu.be/Hzuzo9NJrlc) + - [Count Bits](https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetKernighan) + - [How To Count The Number Of Set Bits In a 32 Bit Integer](http://stackoverflow.com/questions/109023/how-to-count-the-number-of-set-bits-in-a-32-bit-integer) + - [ ] round to next power of 2: + - [Round Up To Next Power Of Two](http://bits.stephan-brumme.com/roundUpToNextPowerOfTwo.html) + - [ ] swap values: + - [Swap](http://bits.stephan-brumme.com/swap.html) + - [ ] absolute value: + - [Absolute Integer](http://bits.stephan-brumme.com/absInteger.html) + +## Trees + +- ### Trees - Notes & Background + - [ ] [Series: Core Trees (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/ovovP/core-trees) + - [ ] [Series: Trees (video)](https://www.coursera.org/learn/data-structures/lecture/95qda/trees) + - basic tree construction + - traversal + - manipulation algorithms + - BFS (breadth-first search) + - [MIT (video)](https://www.youtube.com/watch?v=s-CYnVz-uh4&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=13) + - level order (BFS, using queue) + time complexity: O(n) + space complexity: best: O(1), worst: O(n/2)=O(n) + - DFS (depth-first search) + - [MIT (video)](https://www.youtube.com/watch?v=AfSk24UTFS8&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=14) + - notes: + time complexity: O(n) + space complexity: + best: O(log n) - avg. height of tree + worst: O(n) + - inorder (DFS: left, self, right) + - postorder (DFS: left, right, self) + - preorder (DFS: self, left, right) + +- ### Binary search trees: BSTs + - [ ] [Binary Search Tree Review (video)](https://www.youtube.com/watch?v=x6At0nzX92o&index=1&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [Series (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/p82sw/core-introduction-to-binary-search-trees) + - starts with symbol table and goes through BST applications + - [ ] [Introduction (video)](https://www.coursera.org/learn/data-structures/lecture/E7cXP/introduction) + - [ ] [MIT (video)](https://www.youtube.com/watch?v=9Jry5-82I68) + - C/C++: + - [ ] [Binary search tree - Implementation in C/C++ (video)](https://www.youtube.com/watch?v=COZK7NATh4k&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=28) + - [ ] [BST implementation - memory allocation in stack and heap (video)](https://www.youtube.com/watch?v=hWokyBoo0aI&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=29) + - [ ] [Find min and max element in a binary search tree (video)](https://www.youtube.com/watch?v=Ut90klNN264&index=30&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Find height of a binary tree (video)](https://www.youtube.com/watch?v=_pnqMz5nrRs&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=31) + - [ ] [Binary tree traversal - breadth-first and depth-first strategies (video)](https://www.youtube.com/watch?v=9RHO6jU--GU&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=32) + - [ ] [Binary tree: Level Order Traversal (video)](https://www.youtube.com/watch?v=86g8jAQug04&index=33&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Binary tree traversal: Preorder, Inorder, Postorder (video)](https://www.youtube.com/watch?v=gm8DUJJhmY4&index=34&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Check if a binary tree is binary search tree or not (video)](https://www.youtube.com/watch?v=yEwSGhSsT0U&index=35&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Delete a node from Binary Search Tree (video)](https://www.youtube.com/watch?v=gcULXE7ViZw&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=36) + - [ ] [Inorder Successor in a binary search tree (video)](https://www.youtube.com/watch?v=5cPbNCrdotA&index=37&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] Implement: + - [ ] insert // insert value into tree + - [ ] get_node_count // get count of values stored + - [ ] print_values // prints the values in the tree, from min to max + - [ ] delete_tree + - [ ] is_in_tree // returns true if given value exists in the tree + - [ ] get_height // returns the height in nodes (single node's height is 1) + - [ ] get_min // returns the minimum value stored in the tree + - [ ] get_max // returns the maximum value stored in the tree + - [ ] is_binary_search_tree + - [ ] delete_value + - [ ] get_successor // returns next-highest value in tree after given value, -1 if none + +- ### Heap / Priority Queue / Binary Heap + - visualized as a tree, but is usually linear in storage (array, linked list) + - [ ] [Heap](https://en.wikipedia.org/wiki/Heap_(data_structure)) + - [ ] [Introduction (video)](https://www.coursera.org/learn/data-structures/lecture/2OpTs/introduction) + - [ ] [Naive Implementations (video)](https://www.coursera.org/learn/data-structures/lecture/z3l9N/naive-implementations) + - [ ] [Binary Trees (video)](https://www.coursera.org/learn/data-structures/lecture/GRV2q/binary-trees) + - [ ] [Tree Height Remark (video)](https://www.coursera.org/learn/data-structures/supplement/S5xxz/tree-height-remark) + - [ ] [Basic Operations (video)](https://www.coursera.org/learn/data-structures/lecture/0g1dl/basic-operations) + - [ ] [Complete Binary Trees (video)](https://www.coursera.org/learn/data-structures/lecture/gl5Ni/complete-binary-trees) + - [ ] [Pseudocode (video)](https://www.coursera.org/learn/data-structures/lecture/HxQo9/pseudocode) + - [ ] [Heap Sort - jumps to start (video)](https://youtu.be/odNJmw5TOEE?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3291) + - [ ] [Heap Sort (video)](https://www.coursera.org/learn/data-structures/lecture/hSzMO/heap-sort) + - [ ] [Building a heap (video)](https://www.coursera.org/learn/data-structures/lecture/dwrOS/building-a-heap) + - [ ] [MIT: Heaps and Heap Sort (video)](https://www.youtube.com/watch?v=B7hVxCmfPtM&index=4&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [CS 61B Lecture 24: Priority Queues (video)](https://www.youtube.com/watch?v=yIUFT6AKBGE&index=24&list=PL4BBB74C7D2A1049C) + - [ ] [Linear Time BuildHeap (max-heap)](https://www.youtube.com/watch?v=MiyLo8adrWw) + - [ ] Implement a max-heap: + - [ ] insert + - [ ] sift_up - needed for insert + - [ ] get_max - returns the max item, without removing it + - [ ] get_size() - return number of elements stored + - [ ] is_empty() - returns true if heap contains no elements + - [ ] extract_max - returns the max item, removing it + - [ ] sift_down - needed for extract_max + - [ ] remove(i) - removes item at index x + - [ ] heapify - create a heap from an array of elements, needed for heap_sort + - [ ] heap_sort() - take an unsorted array and turn it into a sorted array in-place using a max heap + - note: using a min heap instead would save operations, but double the space needed (cannot do in-place). + +## Sorting + +- [ ] Notes: + - Implement sorts & know best case/worst case, average complexity of each: + - no bubble sort - it's terrible - O(n^2), except when n <= 16 + - [ ] stability in sorting algorithms ("Is Quicksort stable?") + - [Sorting Algorithm Stability](https://en.wikipedia.org/wiki/Sorting_algorithm#Stability) + - [Stability In Sorting Algorithms](http://stackoverflow.com/questions/1517793/stability-in-sorting-algorithms) + - [Stability In Sorting Algorithms](http://www.geeksforgeeks.org/stability-in-sorting-algorithms/) + - [Sorting Algorithms - Stability](http://homepages.math.uic.edu/~leon/cs-mcs401-s08/handouts/stability.pdf) + - [ ] Which algorithms can be used on linked lists? Which on arrays? Which on both? + - I wouldn't recommend sorting a linked list, but merge sort is doable. + - [Merge Sort For Linked List](http://www.geeksforgeeks.org/merge-sort-for-linked-list/) + +- For heapsort, see Heap data structure above. Heap sort is great, but not stable. + +- [ ] [Sedgewick - Mergesort (5 videos)](https://www.youtube.com/watch?v=4nKwesx_c8E&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [1. Mergesort](https://www.youtube.com/watch?v=4nKwesx_c8E&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9&index=1) + - [ ] [2. Bottom up Mergesort](https://www.youtube.com/watch?v=HGOIGUYjeyk&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9&index=2) + - [ ] [3. Sorting Complexity](https://www.youtube.com/watch?v=WvU_mIWo0Ac&index=3&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [4. Comparators](https://www.youtube.com/watch?v=7MvC1kmBza0&index=4&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [5. Stability](https://www.youtube.com/watch?v=XD_5iINB5GI&index=5&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + +- [ ] [Sedgewick - Quicksort (4 videos)](https://www.youtube.com/playlist?list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [1. Quicksort](https://www.youtube.com/watch?v=5M5A7qPWk84&index=1&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [2. Selection](https://www.youtube.com/watch?v=CgVYfSyct_M&index=2&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [3. Duplicate Keys](https://www.youtube.com/watch?v=WBFzOYJ5ybM&index=3&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [4. System Sorts](https://www.youtube.com/watch?v=rejpZ2htBjE&index=4&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + +- [ ] UC Berkeley: + - [ ] [CS 61B Lecture 29: Sorting I (video)](https://www.youtube.com/watch?v=EiUvYS2DT6I&list=PL4BBB74C7D2A1049C&index=29) + - [ ] [CS 61B Lecture 30: Sorting II (video)](https://www.youtube.com/watch?v=2hTY3t80Qsk&list=PL4BBB74C7D2A1049C&index=30) + - [ ] [CS 61B Lecture 32: Sorting III (video)](https://www.youtube.com/watch?v=Y6LOLpxg6Dc&index=32&list=PL4BBB74C7D2A1049C) + - [ ] [CS 61B Lecture 33: Sorting V (video)](https://www.youtube.com/watch?v=qNMQ4ly43p4&index=33&list=PL4BBB74C7D2A1049C) + +- [ ] [Bubble Sort (video)](https://www.youtube.com/watch?v=P00xJgWzz2c&index=1&list=PL89B61F78B552C1AB) +- [ ] [Analyzing Bubble Sort (video)](https://www.youtube.com/watch?v=ni_zk257Nqo&index=7&list=PL89B61F78B552C1AB) +- [ ] [Insertion Sort, Merge Sort (video)](https://www.youtube.com/watch?v=Kg4bqzAqRBM&index=3&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) +- [ ] [Insertion Sort (video)](https://www.youtube.com/watch?v=c4BRHC7kTaQ&index=2&list=PL89B61F78B552C1AB) +- [ ] [Merge Sort (video)](https://www.youtube.com/watch?v=GCae1WNvnZM&index=3&list=PL89B61F78B552C1AB) +- [ ] [Quicksort (video)](https://www.youtube.com/watch?v=y_G9BkAm6B8&index=4&list=PL89B61F78B552C1AB) +- [ ] [Selection Sort (video)](https://www.youtube.com/watch?v=6nDMgr0-Yyo&index=8&list=PL89B61F78B552C1AB) + +- [ ] Merge sort code: + - [ ] [Using output array (C)](http://www.cs.yale.edu/homes/aspnes/classes/223/examples/sorting/mergesort.c) + - [ ] [Using output array (Python)](https://github.com/jwasham/practice-python/blob/master/merge_sort/merge_sort.py) + - [ ] [In-place (C++)](https://github.com/jwasham/practice-cpp/blob/master/merge_sort/merge_sort.cc) +- [ ] Quick sort code: + - [ ] [Implementation (C)](http://www.cs.yale.edu/homes/aspnes/classes/223/examples/randomization/quick.c) + - [ ] [Implementation (C)](https://github.com/jwasham/practice-c/blob/master/quick_sort/quick_sort.c) + - [ ] [Implementation (Python)](https://github.com/jwasham/practice-python/blob/master/quick_sort/quick_sort.py) + +- [ ] Implement: + - [ ] Mergesort: O(n log n) average and worst case + - [ ] Quicksort O(n log n) average case + - Selection sort and insertion sort are both O(n^2) average and worst case + - For heapsort, see Heap data structure above. + +- [ ] Not required, but I recommended them: + - [ ] [Sedgewick - Radix Sorts (6 videos)](https://www.youtube.com/playlist?list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [1. Strings in Java](https://www.youtube.com/watch?v=zRzU-FWsjNU&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=6) + - [ ] [2. Key Indexed Counting](https://www.youtube.com/watch?v=CtgKYmXs62w&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=5) + - [ ] [3. Least Significant Digit First String Radix Sort](https://www.youtube.com/watch?v=2pGVq_BwPKs&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=4) + - [ ] [4. Most Significant Digit First String Radix Sort](https://www.youtube.com/watch?v=M3cYNY90R6c&index=3&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [5. 3 Way Radix Quicksort](https://www.youtube.com/watch?v=YVl58kfE6i8&index=2&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [6. Suffix Arrays](https://www.youtube.com/watch?v=HKPrVm5FWvg&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=1) + - [ ] [Radix Sort](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#radixSort) + - [ ] [Radix Sort (video)](https://www.youtube.com/watch?v=xhr26ia4k38) + - [ ] [Radix Sort, Counting Sort (linear time given constraints) (video)](https://www.youtube.com/watch?v=Nz1KZXbghj8&index=7&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [Randomization: Matrix Multiply, Quicksort, Freivalds' algorithm (video)](https://www.youtube.com/watch?v=cNB2lADK3_s&index=8&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [Sorting in Linear Time (video)](https://www.youtube.com/watch?v=pOKy3RZbSws&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf&index=14) + +If you need more detail on this subject, see "Sorting" section in [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) + +## Graphs + +Graphs can be used to represent many problems in computer science, so this section is long, like trees and sorting were. + +- Notes from Yegge: + - There are three basic ways to represent a graph in memory: + - objects and pointers + - matrix + - adjacency list + - Familiarize yourself with each representation and its pros & cons + - BFS and DFS - know their computational complexity, their tradeoffs, and how to implement them in real code + - When asked a question, look for a graph-based solution first, then move on if none. + +- [ ] Skiena Lectures - great intro: + - [ ] [CSE373 2012 - Lecture 11 - Graph Data Structures (video)](https://www.youtube.com/watch?v=OiXxhDrFruw&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=11) + - [ ] [CSE373 2012 - Lecture 12 - Breadth-First Search (video)](https://www.youtube.com/watch?v=g5vF8jscteo&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=12) + - [ ] [CSE373 2012 - Lecture 13 - Graph Algorithms (video)](https://www.youtube.com/watch?v=S23W6eTcqdY&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=13) + - [ ] [CSE373 2012 - Lecture 14 - Graph Algorithms (con't) (video)](https://www.youtube.com/watch?v=WitPBKGV0HY&index=14&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [CSE373 2012 - Lecture 15 - Graph Algorithms (con't 2) (video)](https://www.youtube.com/watch?v=ia1L30l7OIg&index=15&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [CSE373 2012 - Lecture 16 - Graph Algorithms (con't 3) (video)](https://www.youtube.com/watch?v=jgDOQq6iWy8&index=16&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + +- [ ] Graphs (review and more): + + - [ ] [6.006 Single-Source Shortest Paths Problem (video)](https://www.youtube.com/watch?v=Aa2sqUhIn-E&index=15&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [6.006 Dijkstra (video)](https://www.youtube.com/watch?v=2E7MmKv0Y24&index=16&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [6.006 Bellman-Ford (video)](https://www.youtube.com/watch?v=ozsuci5pIso&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=17) + - [ ] [6.006 Speeding Up Dijkstra (video)](https://www.youtube.com/watch?v=CHvQ3q_gJ7E&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=18) + - [ ] [Aduni: Graph Algorithms I - Topological Sorting, Minimum Spanning Trees, Prim's Algorithm - Lecture 6 (video)]( https://www.youtube.com/watch?v=i_AQT_XfvD8&index=6&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [Aduni: Graph Algorithms II - DFS, BFS, Kruskal's Algorithm, Union Find Data Structure - Lecture 7 (video)]( https://www.youtube.com/watch?v=ufj5_bppBsA&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=7) + - [ ] [Aduni: Graph Algorithms III: Shortest Path - Lecture 8 (video)](https://www.youtube.com/watch?v=DiedsPsMKXc&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=8) + - [ ] [Aduni: Graph Alg. IV: Intro to geometric algorithms - Lecture 9 (video)](https://www.youtube.com/watch?v=XIAQRlNkJAw&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=9) + - [ ] [CS 61B 2014 (starting at 58:09) (video)](https://youtu.be/dgjX4HdMI-Q?list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&t=3489) + - [ ] [CS 61B 2014: Weighted graphs (video)](https://www.youtube.com/watch?v=aJjlQCFwylA&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=19) + - [ ] [Greedy Algorithms: Minimum Spanning Tree (video)](https://www.youtube.com/watch?v=tKwnms5iRBU&index=16&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [Strongly Connected Components Kosaraju's Algorithm Graph Algorithm (video)](https://www.youtube.com/watch?v=RpgcYiky7uw) + +- Full Coursera Course: + - [ ] [Algorithms on Graphs (video)](https://www.coursera.org/learn/algorithms-on-graphs/home/welcome) + +- Yegge: If you get a chance, try to study up on fancier algorithms: + - [ ] Dijkstra's algorithm - see above - 6.006 + - [ ] A* + - [ ] [A Search Algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm) + - [ ] [A* Pathfinding Tutorial (video)](https://www.youtube.com/watch?v=KNXfSOx4eEE) + - [ ] [A* Pathfinding (E01: algorithm explanation) (video)](https://www.youtube.com/watch?v=-L-WgKMFuhE) + +- I'll implement: + - [ ] DFS with adjacency list (recursive) + - [ ] DFS with adjacency list (iterative with stack) + - [ ] DFS with adjacency matrix (recursive) + - [ ] DFS with adjacency matrix (iterative with stack) + - [ ] BFS with adjacency list + - [ ] BFS with adjacency matrix + - [ ] single-source shortest path (Dijkstra) + - [ ] minimum spanning tree + - DFS-based algorithms (see Aduni videos above): + - [ ] check for cycle (needed for topological sort, since we'll check for cycle before starting) + - [ ] topological sort + - [ ] count connected components in a graph + - [ ] list strongly connected components + - [ ] check for bipartite graph + +You'll get more graph practice in Skiena's book (see Books section below) and the interview books + +## Even More Knowledge + +- ### Recursion + - [ ] Stanford lectures on recursion & backtracking: + - [ ] [Lecture 8 | Programming Abstractions (video)](https://www.youtube.com/watch?v=gl3emqCuueQ&list=PLFE6E58F856038C69&index=8) + - [ ] [Lecture 9 | Programming Abstractions (video)](https://www.youtube.com/watch?v=uFJhEPrbycQ&list=PLFE6E58F856038C69&index=9) + - [ ] [Lecture 10 | Programming Abstractions (video)](https://www.youtube.com/watch?v=NdF1QDTRkck&index=10&list=PLFE6E58F856038C69) + - [ ] [Lecture 11 | Programming Abstractions (video)](https://www.youtube.com/watch?v=p-gpaIGRCQI&list=PLFE6E58F856038C69&index=11) + - when it is appropriate to use it + - how is tail recursion better than not? + - [ ] [What Is Tail Recursion Why Is It So Bad?](https://www.quora.com/What-is-tail-recursion-Why-is-it-so-bad) + - [ ] [Tail Recursion (video)](https://www.youtube.com/watch?v=L1jjXGfxozc) + +- ### Object-Oriented Programming + - [ ] [Optional: UML 2.0 Series (video)](https://www.youtube.com/watch?v=OkC7HKtiZC0&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc) + - [ ] Object-Oriented Software Engineering: Software Dev Using UML and Java (21 videos): + - Can skip this if you have a great grasp of OO and OO design practices. + - [OOSE: Software Dev Using UML and Java](https://www.youtube.com/playlist?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + - [ ] SOLID OOP Principles: + - [ ] [Bob Martin SOLID Principles of Object Oriented and Agile Design (video)](https://www.youtube.com/watch?v=TMuno5RZNeE) + - [ ] [SOLID Design Patterns in C# (video)](https://www.youtube.com/playlist?list=PL8m4NUhTQU48oiGCSgCP1FiJEcg_xJzyQ) + - [ ] [SOLID Principles (video)](https://www.youtube.com/playlist?list=PL4CE9F710017EA77A) + - [ ] S - [Single Responsibility Principle](http://www.oodesign.com/single-responsibility-principle.html) | [Single responsibility to each Object](http://www.javacodegeeks.com/2011/11/solid-single-responsibility-principle.html) + - [more flavor](https://docs.google.com/open?id=0ByOwmqah_nuGNHEtcU5OekdDMkk) + - [ ] O - [Open/Closed Principal](http://www.oodesign.com/open-close-principle.html) | [On production level Objects are ready for extension for not for modification](https://en.wikipedia.org/wiki/Open/closed_principle) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgN2M5MTkwM2EtNWFkZC00ZTI3LWFjZTUtNTFhZGZiYmUzODc1&hl=en) + - [ ] L - [Liskov Substitution Principal](http://www.oodesign.com/liskov-s-substitution-principle.html) | [Base Class and Derived class follow ‘IS A’ principal](http://stackoverflow.com/questions/56860/what-is-the-liskov-substitution-principle) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgNzAzZjA5ZmItNjU3NS00MzQ5LTkwYjMtMDJhNDU5ZTM0MTlh&hl=en) + - [ ] I - [Interface segregation principle](http://www.oodesign.com/interface-segregation-principle.html) | clients should not be forced to implement interfaces they don't use + - [Interface Segregation Principle in 5 minutes (video)](https://www.youtube.com/watch?v=3CtAfl7aXAQ) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgOTViYjJhYzMtMzYxMC00MzFjLWJjMzYtOGJiMDc5N2JkYmJi&hl=en) + - [ ] D -[Dependency Inversion principle](http://www.oodesign.com/dependency-inversion-principle.html) | Reduce the dependency In composition of objects. + - [Why Is The Dependency Inversion Principle And Why Is It Important](http://stackoverflow.com/questions/62539/what-is-the-dependency-inversion-principle-and-why-is-it-important) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgMjdlMWIzNGUtZTQ0NC00ZjQ5LTkwYzQtZjRhMDRlNTQ3ZGMz&hl=en) + +- ### Design patterns + - [ ] [Quick UML review (video)](https://www.youtube.com/watch?v=3cmzqZzwNDM&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc&index=3) + - [ ] Learn these patterns: + - [ ] strategy + - [ ] singleton + - [ ] adapter + - [ ] prototype + - [ ] decorator + - [ ] visitor + - [ ] factory, abstract factory + - [ ] facade + - [ ] observer + - [ ] proxy + - [ ] delegate + - [ ] command + - [ ] state + - [ ] memento + - [ ] iterator + - [ ] composite + - [ ] flyweight + - [ ] [Chapter 6 (Part 1) - Patterns (video)](https://youtu.be/LAP2A80Ajrg?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO&t=3344) + - [ ] [Chapter 6 (Part 2) - Abstraction-Occurrence, General Hierarchy, Player-Role, Singleton, Observer, Delegation (video)](https://www.youtube.com/watch?v=U8-PGsjvZc4&index=12&list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + - [ ] [Chapter 6 (Part 3) - Adapter, Facade, Immutable, Read-Only Interface, Proxy (video)](https://www.youtube.com/watch?v=7sduBHuex4c&index=13&list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + - [ ] [Series of videos (27 videos)](https://www.youtube.com/playlist?list=PLF206E906175C7E07) + - [ ] [Head First Design Patterns](https://www.amazon.com/Head-First-Design-Patterns-Freeman/dp/0596007124) + - I know the canonical book is "Design Patterns: Elements of Reusable Object-Oriented Software", but Head First is great for beginners to OO. + - [ ] [Handy reference: 101 Design Patterns & Tips for Developers](https://sourcemaking.com/design-patterns-and-tips) + +- ### Combinatorics (n choose k) & Probability + - [ ] [Math Skills: How to find Factorial, Permutation and Combination (Choose) (video)](https://www.youtube.com/watch?v=8RRo6Ti9d0U) + - [ ] [Make School: Probability (video)](https://www.youtube.com/watch?v=sZkAAk9Wwa4) + - [ ] [Make School: More Probability and Markov Chains (video)](https://www.youtube.com/watch?v=dNaJg-mLobQ) + - [ ] Khan Academy: + - Course layout: + - [ ] [Basic Theoretical Probability](https://www.khanacademy.org/math/probability/probability-and-combinatorics-topic) + - Just the videos - 41 (each are simple and each are short): + - [ ] [Probability Explained (video)](https://www.youtube.com/watch?v=uzkc-qNVoOk&list=PLC58778F28211FA19) + +- ### NP, NP-Complete and Approximation Algorithms + - Know about the most famous classes of NP-complete problems, such as traveling salesman and the knapsack problem, + and be able to recognize them when an interviewer asks you them in disguise. + - Know what NP-complete means. + - [ ] [Computational Complexity (video)](https://www.youtube.com/watch?v=moPtwq_cVH8&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=23) + - [ ] Simonson: + - [ ] [Greedy Algs. II & Intro to NP Completeness (video)](https://youtu.be/qcGnJ47Smlo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=2939) + - [ ] [NP Completeness II & Reductions (video)](https://www.youtube.com/watch?v=e0tGC6ZQdQE&index=16&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [NP Completeness III (Video)](https://www.youtube.com/watch?v=fCX1BGT3wjE&index=17&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [NP Completeness IV (video)](https://www.youtube.com/watch?v=NKLDp3Rch3M&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=18) + - [ ] Skiena: + - [ ] [CSE373 2012 - Lecture 23 - Introduction to NP-Completeness (video)](https://youtu.be/KiK5TVgXbFg?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1508) + - [ ] [CSE373 2012 - Lecture 24 - NP-Completeness Proofs (video)](https://www.youtube.com/watch?v=27Al52X3hd4&index=24&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [CSE373 2012 - Lecture 25 - NP-Completeness Challenge (video)](https://www.youtube.com/watch?v=xCPH4gwIIXM&index=25&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [Complexity: P, NP, NP-completeness, Reductions (video)](https://www.youtube.com/watch?v=eHZifpgyH_4&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=22) + - [ ] [Complexity: Approximation Algorithms (video)](https://www.youtube.com/watch?v=MEz1J9wY2iM&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=24) + - [ ] [Complexity: Fixed-Parameter Algorithms (video)](https://www.youtube.com/watch?v=4q-jmGrmxKs&index=25&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - Peter Norvig discusses near-optimal solutions to traveling salesman problem: + - [Jupyter Notebook](http://nbviewer.jupyter.org/url/norvig.com/ipython/TSP.ipynb) + - Pages 1048 - 1140 in CLRS if you have it. + +- ### Caches + - [ ] LRU cache: + - [ ] [The Magic of LRU Cache (100 Days of Google Dev) (video)](https://www.youtube.com/watch?v=R5ON3iwx78M) + - [ ] [Implementing LRU (video)](https://www.youtube.com/watch?v=bq6N7Ym81iI) + - [ ] [LeetCode - 146 LRU Cache (C++) (video)](https://www.youtube.com/watch?v=8-FZRAjR7qU) + - [ ] CPU cache: + - [ ] [MIT 6.004 L15: The Memory Hierarchy (video)](https://www.youtube.com/watch?v=vjYF_fAZI5E&list=PLrRW1w6CGAcXbMtDFj205vALOGmiRc82-&index=24) + - [ ] [MIT 6.004 L16: Cache Issues (video)](https://www.youtube.com/watch?v=ajgC3-pyGlk&index=25&list=PLrRW1w6CGAcXbMtDFj205vALOGmiRc82-) + +- ### Processes and Threads + - [ ] Computer Science 162 - Operating Systems (25 videos): + - for processes and threads see videos 1-11 + - [Operating Systems and System Programming (video)](https://www.youtube.com/playlist?list=PL-XXv-cvA_iBDyz-ba4yDskqMDY6A1w_c) + - [What Is The Difference Between A Process And A Thread?](https://www.quora.com/What-is-the-difference-between-a-process-and-a-thread) + - Covers: + - Processes, Threads, Concurrency issues + - difference between processes and threads + - processes + - threads + - locks + - mutexes + - semaphores + - monitors + - how they work + - deadlock + - livelock + - CPU activity, interrupts, context switching + - Modern concurrency constructs with multicore processors + - Process resource needs (memory: code, static storage, stack, heap, and also file descriptors, i/o) + - Thread resource needs (shares above (minus stack) with other threads in the same process but each has its own pc, stack counter, registers, and stack) + - Forking is really copy on write (read-only) until the new process writes to memory, then it does a full copy. + - Context switching + - How context switching is initiated by the operating system and underlying hardware + - [ ] [threads in C++ (series - 10 videos)](https://www.youtube.com/playlist?list=PL5jc9xFGsL8E12so1wlMS0r0hTQoJL74M) + - [ ] concurrency in Python (videos): + - [ ] [Short series on threads](https://www.youtube.com/playlist?list=PL1H1sBF1VAKVMONJWJkmUh6_p8g4F2oy1) + - [ ] [Python Threads](https://www.youtube.com/watch?v=Bs7vPNbB9JM) + - [ ] [Understanding the Python GIL (2010)](https://www.youtube.com/watch?v=Obt-vMVdM8s) + - [reference](http://www.dabeaz.com/GIL) + - [ ] [David Beazley - Python Concurrency From the Ground Up: LIVE! - PyCon 2015](https://www.youtube.com/watch?v=MCs5OvhV9S4) + - [ ] [Keynote David Beazley - Topics of Interest (Python Asyncio)](https://www.youtube.com/watch?v=ZzfHjytDceU) + - [ ] [Mutex in Python](https://www.youtube.com/watch?v=0zaPs8OtyKY) + +- ### Papers + - These are Google papers and well-known papers. + - Reading all from end to end with full comprehension will likely take more time than you have. I recommend being selective on papers and their sections. + - [ ] [1978: Communicating Sequential Processes](http://spinroot.com/courses/summer/Papers/hoare_1978.pdf) + - [implemented in Go](https://godoc.org/github.com/thomas11/csp) + - [Love classic papers?](https://www.cs.cmu.edu/~crary/819-f09/) + - [ ] [2003: The Google File System](http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf) + - replaced by Colossus in 2012 + - [ ] [2004: MapReduce: Simplified Data Processing on Large Clusters]( http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf) + - mostly replaced by Cloud Dataflow? + - [ ] [2007: What Every Programmer Should Know About Memory (very long, and the author encourages skipping of some sections)](https://www.akkadia.org/drepper/cpumemory.pdf) + - [ ] [2012: Google's Colossus](https://www.wired.com/2012/07/google-colossus/) + - paper not available + - [ ] 2012: AddressSanitizer: A Fast Address Sanity Checker: + - [paper](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37752.pdf) + - [video](https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany) + - [ ] 2013: Spanner: Google’s Globally-Distributed Database: + - [paper](http://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf) + - [video](https://www.usenix.org/node/170855) + - [ ] [2014: Machine Learning: The High-Interest Credit Card of Technical Debt](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43146.pdf) + - [ ] [2015: Continuous Pipelines at Google](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43790.pdf) + - [ ] [2015: High-Availability at Massive Scale: Building Google’s Data Infrastructure for Ads](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44686.pdf) + - [ ] [2015: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems](http://download.tensorflow.org/paper/whitepaper2015.pdf ) + - [ ] [2015: How Developers Search for Code: A Case Study](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43835.pdf) + - [ ] [2016: Borg, Omega, and Kubernetes](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44843.pdf) + +- ### Testing + - To cover: + - how unit testing works + - what are mock objects + - what is integration testing + - what is dependency injection + - [ ] [Agile Software Testing with James Bach (video)](https://www.youtube.com/watch?v=SAhJf36_u5U) + - [ ] [Open Lecture by James Bach on Software Testing (video)](https://www.youtube.com/watch?v=ILkT_HV9DVU) + - [ ] [Steve Freeman - Test-Driven Development (that’s not what we meant) (video)](https://vimeo.com/83960706) + - [slides](http://gotocon.com/dl/goto-berlin-2013/slides/SteveFreeman_TestDrivenDevelopmentThatsNotWhatWeMeant.pdf) + - [ ] [TDD is dead. Long live testing.](http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html) + - [ ] [Is TDD dead? (video)](https://www.youtube.com/watch?v=z9quxZsLcfo) + - [ ] [Video series (152 videos) - not all are needed (video)](https://www.youtube.com/watch?v=nzJapzxH_rE&list=PLAwxTw4SYaPkWVHeC_8aSIbSxE_NXI76g) + - [ ] [Test-Driven Web Development with Python](http://www.obeythetestinggoat.com/pages/book.html#toc) + - [ ] Dependency injection: + - [ ] [video](https://www.youtube.com/watch?v=IKD2-MAkXyQ) + - [ ] [Tao Of Testing](http://jasonpolites.github.io/tao-of-testing/ch3-1.1.html) + - [ ] [How to write tests](http://jasonpolites.github.io/tao-of-testing/ch4-1.1.html) + +- ### Scheduling + - in an OS, how it works + - can be gleaned from Operating System videos + +- ### Implement system routines + - understand what lies beneath the programming APIs you use + - can you implement them? + +- ### String searching & manipulations + - [ ] [Sedgewick - Suffix Arrays (video)](https://www.youtube.com/watch?v=HKPrVm5FWvg) + - [ ] [Sedgewick - Substring Search (videos)](https://www.youtube.com/watch?v=2LvvVFCEIv8&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=5) + - [ ] [1. Introduction to Substring Search](https://www.youtube.com/watch?v=2LvvVFCEIv8&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=5) + - [ ] [2. Brute-Force Substring Search](https://www.youtube.com/watch?v=CcDXwIGEXYU&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=4) + - [ ] [3. Knuth-Morris Pratt](https://www.youtube.com/watch?v=n-7n-FDEWzc&index=3&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) + - [ ] [4. Boyer-Moore](https://www.youtube.com/watch?v=fI7Ch6pZXfM&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=2) + - [ ] [5. Rabin-Karp](https://www.youtube.com/watch?v=QzI0p6zDjK4&index=1&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) + - [ ] [Search pattern in text (video)](https://www.coursera.org/learn/data-structures/lecture/tAfHI/search-pattern-in-text) + + If you need more detail on this subject, see "String Matching" section in [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) + +--- + +## System Design, Scalability, Data Handling +- **You can expect system design questions if you have 4+ years of experience.** +- Scalability and System Design are very large topics with many topics and resources, since + there is a lot to consider when designing a software/hardware system that can scale. + Expect to spend quite a bit of time on this. +- Considerations from Yegge: + - scalability + - Distill large data sets to single values + - Transform one data set to another + - Handling obscenely large amounts of data + - system design + - features sets + - interfaces + - class hierarchies + - designing a system under certain constraints + - simplicity and robustness + - tradeoffs + - performance analysis and optimization +- [ ] **START HERE**: [System Design from HiredInTech](http://www.hiredintech.com/system-design/) +- [ ] [How Do I Prepare To Answer Design Questions In A Technical Inverview?](https://www.quora.com/How-do-I-prepare-to-answer-design-questions-in-a-technical-interview?redirected_qid=1500023) +- [ ] [8 Things You Need to Know Before a System Design Interview](http://blog.gainlo.co/index.php/2015/10/22/8-things-you-need-to-know-before-system-design-interviews/) +- [ ] [Algorithm design](http://www.hiredintech.com/algorithm-design/) +- [ ] [Database Normalization - 1NF, 2NF, 3NF and 4NF (video)](https://www.youtube.com/watch?v=UrYLYV7WSHM) +- [ ] [System Design Interview](https://github.com/checkcheckzz/system-design-interview) - There are a lot of resources in this one. Look through the articles and examples. I put some of them below. +- [ ] [How to ace a systems design interview](http://www.palantir.com/2011/10/how-to-rock-a-systems-design-interview/) +- [ ] [Numbers Everyone Should Know](http://everythingisdata.wordpress.com/2009/10/17/numbers-everyone-should-know/) +- [ ] [How long does it take to make a context switch?](http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html) +- [ ] [Transactions Across Datacenters (video)](https://www.youtube.com/watch?v=srOgpXECblk) +- [ ] [A plain English introduction to CAP Theorem](http://ksat.me/a-plain-english-introduction-to-cap-theorem/) +- [ ] Paxos Consensus algorithm: + - [short video](https://www.youtube.com/watch?v=s8JqcZtvnsM) + - [extended video with use case and multi-paxos](https://www.youtube.com/watch?v=JEpsBg0AO6o) + - [paper](http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf) +- [ ] [Consistent Hashing](http://www.tom-e-white.com/2007/11/consistent-hashing.html) +- [ ] [NoSQL Patterns](http://horicky.blogspot.com/2009/11/nosql-patterns.html) +- [ ] Scalability: + - [ ] [Great overview (video)](https://www.youtube.com/watch?v=-W9F__D3oY4) + - [ ] Short series: + - [Clones](http://www.lecloud.net/post/7295452622/scalability-for-dummies-part-1-clones) + - [Database](http://www.lecloud.net/post/7994751381/scalability-for-dummies-part-2-database) + - [Cache](http://www.lecloud.net/post/9246290032/scalability-for-dummies-part-3-cache) + - [Asynchronism](http://www.lecloud.net/post/9699762917/scalability-for-dummies-part-4-asynchronism) + - [ ] [Scalable Web Architecture and Distributed Systems](http://www.aosabook.org/en/distsys.html) + - [ ] [Fallacies of Distributed Computing Explained](https://pages.cs.wisc.edu/~zuyu/files/fallacies.pdf) + - [ ] [Pragmatic Programming Techniques](http://horicky.blogspot.com/2010/10/scalable-system-design-patterns.html) + - [extra: Google Pregel Graph Processing](http://horicky.blogspot.com/2010/07/google-pregel-graph-processing.html) + - [ ] [Jeff Dean - Building Software Systems At Google and Lessons Learned (video)](https://www.youtube.com/watch?v=modXC5IWTJI) + - [ ] [Introduction to Architecting Systems for Scale](http://lethain.com/introduction-to-architecting-systems-for-scale/) + - [ ] [Scaling mobile games to a global audience using App Engine and Cloud Datastore (video)](https://www.youtube.com/watch?v=9nWyWwY2Onc) + - [ ] [How Google Does Planet-Scale Engineering for Planet-Scale Infra (video)](https://www.youtube.com/watch?v=H4vMcD7zKM0) + - [ ] [The Importance of Algorithms](https://www.topcoder.com/community/data-science/data-science-tutorials/the-importance-of-algorithms/) + - [ ] [Sharding](http://highscalability.com/blog/2009/8/6/an-unorthodox-approach-to-database-design-the-coming-of-the.html) + - [ ] [Scale at Facebook (2009)](https://www.infoq.com/presentations/Scale-at-Facebook) + - [ ] [Scale at Facebook (2012), "Building for a Billion Users" (video)](https://www.youtube.com/watch?v=oodS71YtkGU) + - [ ] [Engineering for the Long Game - Astrid Atkinson Keynote(video)](https://www.youtube.com/watch?v=p0jGmgIrf_M&list=PLRXxvay_m8gqVlExPC5DG3TGWJTaBgqSA&index=4) + - [ ] [7 Years Of YouTube Scalability Lessons In 30 Minutes](http://highscalability.com/blog/2012/3/26/7-years-of-youtube-scalability-lessons-in-30-minutes.html) + - [video](https://www.youtube.com/watch?v=G-lGCC4KKok) + - [ ] [How PayPal Scaled To Billions Of Transactions Daily Using Just 8VMs](http://highscalability.com/blog/2016/8/15/how-paypal-scaled-to-billions-of-transactions-daily-using-ju.html) + - [ ] [How to Remove Duplicates in Large Datasets](https://blog.clevertap.com/how-to-remove-duplicates-in-large-datasets/) + - [ ] [A look inside Etsy's scale and engineering culture with Jon Cowie (video)](https://www.youtube.com/watch?v=3vV4YiqKm1o) + - [ ] [What Led Amazon to its Own Microservices Architecture](http://thenewstack.io/led-amazon-microservices-architecture/) + - [ ] [To Compress Or Not To Compress, That Was Uber's Question](https://eng.uber.com/trip-data-squeeze/) + - [ ] [Asyncio Tarantool Queue, Get In The Queue](http://highscalability.com/blog/2016/3/3/asyncio-tarantool-queue-get-in-the-queue.html) + - [ ] [When Should Approximate Query Processing Be Used?](http://highscalability.com/blog/2016/2/25/when-should-approximate-query-processing-be-used.html) + - [ ] [Google's Transition From Single Datacenter, To Failover, To A Native Multihomed Architecture]( http://highscalability.com/blog/2016/2/23/googles-transition-from-single-datacenter-to-failover-to-a-n.html) + - [ ] [Spanner](http://highscalability.com/blog/2012/9/24/google-spanners-most-surprising-revelation-nosql-is-out-and.html) + - [ ] [Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System](http://highscalability.com/blog/2016/2/15/egnyte-architecture-lessons-learned-in-building-and-scaling.html) + - [ ] [Machine Learning Driven Programming: A New Programming For A New World](http://highscalability.com/blog/2016/7/6/machine-learning-driven-programming-a-new-programming-for-a.html) + - [ ] [The Image Optimization Technology That Serves Millions Of Requests Per Day](http://highscalability.com/blog/2016/6/15/the-image-optimization-technology-that-serves-millions-of-re.html) + - [ ] [A Patreon Architecture Short](http://highscalability.com/blog/2016/2/1/a-patreon-architecture-short.html) + - [ ] [Tinder: How Does One Of The Largest Recommendation Engines Decide Who You'll See Next?](http://highscalability.com/blog/2016/1/27/tinder-how-does-one-of-the-largest-recommendation-engines-de.html) + - [ ] [Design Of A Modern Cache](http://highscalability.com/blog/2016/1/25/design-of-a-modern-cache.html) + - [ ] [Live Video Streaming At Facebook Scale](http://highscalability.com/blog/2016/1/13/live-video-streaming-at-facebook-scale.html) + - [ ] [A Beginner's Guide To Scaling To 11 Million+ Users On Amazon's AWS](http://highscalability.com/blog/2016/1/11/a-beginners-guide-to-scaling-to-11-million-users-on-amazons.html) + - [ ] [How Does The Use Of Docker Effect Latency?](http://highscalability.com/blog/2015/12/16/how-does-the-use-of-docker-effect-latency.html) + - [ ] [Does AMP Counter An Existential Threat To Google?](http://highscalability.com/blog/2015/12/14/does-amp-counter-an-existential-threat-to-google.html) + - [ ] [A 360 Degree View Of The Entire Netflix Stack](http://highscalability.com/blog/2015/11/9/a-360-degree-view-of-the-entire-netflix-stack.html) + - [ ] [Latency Is Everywhere And It Costs You Sales - How To Crush It](http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it) + - [ ] [Serverless (very long, just need the gist)](http://martinfowler.com/articles/serverless.html) + - [ ] [What Powers Instagram: Hundreds of Instances, Dozens of Technologies](http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances) + - [ ] [Cinchcast Architecture - Producing 1,500 Hours Of Audio Every Day](http://highscalability.com/blog/2012/7/16/cinchcast-architecture-producing-1500-hours-of-audio-every-d.html) + - [ ] [Justin.Tv's Live Video Broadcasting Architecture](http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html) + - [ ] [Playfish's Social Gaming Architecture - 50 Million Monthly Users And Growing](http://highscalability.com/blog/2010/9/21/playfishs-social-gaming-architecture-50-million-monthly-user.html) + - [ ] [TripAdvisor Architecture - 40M Visitors, 200M Dynamic Page Views, 30TB Data](http://highscalability.com/blog/2011/6/27/tripadvisor-architecture-40m-visitors-200m-dynamic-page-view.html) + - [ ] [PlentyOfFish Architecture](http://highscalability.com/plentyoffish-architecture) + - [ ] [Salesforce Architecture - How They Handle 1.3 Billion Transactions A Day](http://highscalability.com/blog/2013/9/23/salesforce-architecture-how-they-handle-13-billion-transacti.html) + - [ ] [ESPN's Architecture At Scale - Operating At 100,000 Duh Nuh Nuhs Per Second](http://highscalability.com/blog/2013/11/4/espns-architecture-at-scale-operating-at-100000-duh-nuh-nuhs.html) + - [ ] See "Messaging, Serialization, and Queueing Systems" way below for info on some of the technologies that can glue services together + - [ ] Twitter: + - [O'Reilly MySQL CE 2011: Jeremy Cole, "Big and Small Data at @Twitter" (video)](https://www.youtube.com/watch?v=5cKTP36HVgI) + - [Timelines at Scale](https://www.infoq.com/presentations/Twitter-Timeline-Scalability) + - For even more, see "Mining Massive Datasets" video series in the Video Series section. +- [ ] Practicing the system design process: Here are some ideas to try working through on paper, each with some documentation on how it was handled in the real world: + - review: [System Design from HiredInTech](http://www.hiredintech.com/system-design/) + - [cheat sheet](https://github.com/jwasham/google-interview-university/blob/master/extras/cheat%20sheets/system-design.pdf) + - flow: + 1. Understand the problem and scope: + - define the use cases, with interviewer's help + - suggest additional features + - remove items that interviewer deems out of scope + - assume high availability is required, add as a use case + 2. Think about constraints: + - ask how many requests per month + - ask how many requests per second (they may volunteer it or make you do the math) + - estimate reads vs. writes percentage + - keep 80/20 rule in mind when estimating + - how much data written per second + - total storage required over 5 years + - how much data read per second + 3. Abstract design: + - layers (service, data, caching) + - infrastructure: load balancing, messaging + - rough overview of any key algorithm that drives the service + - consider bottlenecks and determine solutions + - Exercises: + - [Design a CDN network: old article](http://repository.cmu.edu/cgi/viewcontent.cgi?article=2112&context=compsci) + - [Design a random unique ID generation system](https://blog.twitter.com/2010/announcing-snowflake) + - [Design an online multiplayer card game](http://www.indieflashblog.com/how-to-create-an-asynchronous-multiplayer-game.html) + - [Design a key-value database](http://www.slideshare.net/dvirsky/introduction-to-redis) + - [Design a function to return the top k requests during past time interval]( https://icmi.cs.ucsb.edu/research/tech_reports/reports/2005-23.pdf) + - [Design a picture sharing system](http://highscalability.com/blog/2011/12/6/instagram-architecture-14-million-users-terabytes-of-photos.html) + - [Design a recommendation system](http://ijcai13.org/files/tutorial_slides/td3.pdf) + - [Design a URL-shortener system: copied from above](http://www.hiredintech.com/system-design/the-system-design-process/) + - [Design a cache system](https://www.adayinthelifeof.nl/2011/02/06/memcache-internals/) + +--- + +## Final Review + + This section will have shorter videos that can you watch pretty quickly to review most of the important concepts. + It's nice if you want a refresher often. + +- [ ] Series of 2-3 minutes short subject videos (23 videos) + - [Videos](https://www.youtube.com/watch?v=r4r1DZcx1cM&list=PLmVb1OknmNJuC5POdcDv5oCS7_OUkDgpj&index=22) +- [ ] Series of 2-5 minutes short subject videos - Michael Sambol (18 videos): + - [Videos](https://www.youtube.com/channel/UCzDJwLWoYCUQowF_nG3m5OQ) +- [ ] [Sedgewick Videos - Algorithms I](https://www.youtube.com/user/algorithmscourses/playlists?shelf_id=2&view=50&sort=dd) + - [ ] [01. Union-Find](https://www.youtube.com/watch?v=8mYfZeHtdNc&list=PLe-ggMe31CTexoNYnMhbHaWhQ0dvcy43t) + - [ ] [02. Analysis of Algorithms](https://www.youtube.com/watch?v=ZN-nFW0mEpg&list=PLe-ggMe31CTf0_bkOhh7sa5uqeppp3Sr0) + - [ ] [03. Stacks and Queues](https://www.youtube.com/watch?v=TIC1gappbP8&list=PLe-ggMe31CTe-9jhnj3P_3mmrCh0A7iHh) + - [ ] [04. Elementary Sorts](https://www.youtube.com/watch?v=CD2AL6VO0ak&list=PLe-ggMe31CTe_5WhGV0F--7CK8MoRUqBd) + - [ ] [05. Mergesort](https://www.youtube.com/watch?v=4nKwesx_c8E&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [06. Quicksort](https://www.youtube.com/watch?v=5M5A7qPWk84&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [07. Priority Queues](https://www.youtube.com/watch?v=G9TMe0KC0w0&list=PLe-ggMe31CTducy9LDiGVkdSv0NfiRwn5) + - [ ] [08. Elementary Symbol Tables](https://www.youtube.com/watch?v=up_nlilw3ac&list=PLe-ggMe31CTc3a8nKRDxFZZrWrBvkc9SG) + - [ ] [09. Balanced Search Trees](https://www.youtube.com/watch?v=qC1BLLPK_5w&list=PLe-ggMe31CTf7jHH_mFT50kayjCEA6Rhu) + - [ ] [10. Geometric Applications of BST](https://www.youtube.com/watch?v=Wl30aGAp6TY&list=PLe-ggMe31CTdBsRIw0hXln0hilRs-DqAx) + - [ ] [11. Hash Tables](https://www.youtube.com/watch?v=QA8fJGO-i9o&list=PLe-ggMe31CTcKxIRGqqThMts2eHtSrf11) +- [ ] [Sedgewick Videos - Algorithms II](https://www.youtube.com/user/algorithmscourses/playlists?flow=list&shelf_id=3&view=50) + - [ ] [01. Undirected Graphs](https://www.youtube.com/watch?v=GmVhD-mmMBg&list=PLe-ggMe31CTc0zDzANxl4I2MhMoRVlbRM) + - [ ] [02. Directed Graphs](https://www.youtube.com/watch?v=_z-JsVaUS40&list=PLe-ggMe31CTcEwaU8a1P1Gd95A77HV85K) + - [ ] [03. Minimum Spanning Trees](https://www.youtube.com/watch?v=t8fNk9tfVYY&list=PLe-ggMe31CTceUZxDesGfHGLE7kcSafqj) + - [ ] [04. Shortest Paths](https://www.youtube.com/watch?v=HoGSiB7tSeI&list=PLe-ggMe31CTePpG3jbeOTsnGUGZDKxgZD) + - [ ] [05. Maximum Flow](https://www.youtube.com/watch?v=rYIKlFstBqE&list=PLe-ggMe31CTduQ68XQ-sVj32wYJIspTma) + - [ ] [06. Radix Sorts](https://www.youtube.com/watch?v=HKPrVm5FWvg&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [07. Tries](https://www.youtube.com/watch?v=00YaFPcC65g&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [08. Substring Search](https://www.youtube.com/watch?v=QzI0p6zDjK4&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) + - [ ] [09. Regular Expressions](https://www.youtube.com/watch?v=TQWNQsJSPnk&list=PLe-ggMe31CTetTlJWouM42fyttyKPgSDh) + - [ ] [10. Data Compression](https://www.youtube.com/watch?v=at9tjpxcBh8&list=PLe-ggMe31CTciifRRo6yY0Yt0mzgIXXVZ) + - [ ] [11. Reductions](https://www.youtube.com/watch?v=Ow5x-ooMGv8&list=PLe-ggMe31CTe_yliW5vc3yO-dj1LSSDyF) + - [ ] [12. Linear Programming](https://www.youtube.com/watch?v=rWhcLyiLZLA&list=PLe-ggMe31CTdy6dKzMgkWFuTTN1H8B-E1) + - [ ] [13. Intractability](https://www.youtube.com/watch?v=6qcaaDp4cdQ&list=PLe-ggMe31CTcZCjluBHw53e_ek2k9Kn-S) + +--- + +## Coding Question Practice + +Now that you know all the computer science topics above, it's time to practice answering coding problems. + +**Coding question practice is not about memorizing answers to programming problems.** + +Why you need to practice doing programming problems: +- problem recognition, and where the right data structures and algorithms fit in +- gathering requirements for the problem +- talking your way through the problem like you will in the interview +- coding on a whiteboard or paper, not a computer +- coming up with time and space complexity for your solutions +- testing your solutions + +There is a great intro for methodical, communicative problem solving in an interview. You'll get this from the programming +interview books, too, but I found this outstanding: +[Algorithm design canvas](http://www.hiredintech.com/algorithm-design/) + +[My Process for Coding Interview (Book) Exercises](https://googleyasheck.com/my-process-for-coding-interview-exercises/) + +No whiteboard at home? That makes sense. I'm a weirdo and have a big whiteboard. Instead of a whiteboard, pick up a +large drawing pad from an art store. You can sit on the couch and practice. This is my "sofa whiteboard". +I added the pen in the photo for scale. If you use a pen, you'll wish you could erase. Gets messy quick. + +![my sofa whiteboard](https://dng5l3qzreal6.cloudfront.net/2016/Oct/art_board_sm_2-1476233630368.jpg) + +Supplemental: + +- [Mathematics for Topcoders](https://www.topcoder.com/community/data-science/data-science-tutorials/mathematics-for-topcoders/) +- [Dynamic Programming – From Novice to Advanced](https://www.topcoder.com/community/data-science/data-science-tutorials/dynamic-programming-from-novice-to-advanced/) +- [MIT Interview Materials](https://web.archive.org/web/20160906124824/http://courses.csail.mit.edu/iap/interview/materials.php) +- [Exercises for getting better at a given language](http://exercism.io/languages) + +**Read and Do Programming Problems (in this order):** + +- [ ] [Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition](http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html) + - answers in C, C++ and Java +- [ ] [Cracking the Coding Interview, 6th Edition](http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/) + - answers in Java + +See [Book List above](#book-list) + +## Coding exercises/challenges + +Once you've learned your brains out, put those brains to work. +Take coding challenges every day, as many as you can. + +- [ ] [How to Find a Solution](https://www.topcoder.com/community/data-science/data-science-tutorials/how-to-find-a-solution/) +- [ ] [How to Dissect a Topcoder Problem Statement](https://www.topcoder.com/community/data-science/data-science-tutorials/how-to-dissect-a-topcoder-problem-statement/) + +Challenge sites: +- [LeetCode](https://leetcode.com/) +- [TopCoder](https://www.topcoder.com/) +- [Project Euler (math-focused)](https://projecteuler.net/index.php?section=problems) +- [Codewars](http://www.codewars.com) +- [HackerRank](https://www.hackerrank.com/) +- [Codility](https://codility.com/programmers/) +- [InterviewCake](https://www.interviewcake.com/) +- [Geeks for Geeks](http://www.geeksforgeeks.org/) +- [InterviewBit](https://www.interviewbit.com/invite/icjf) + +Maybe: +- [Mock interviewers from big companies](http://www.gainlo.co/) + +## Once you're closer to the interview + +- [ ] Cracking The Coding Interview Set 2 (videos): + - [Cracking The Code Interview](https://www.youtube.com/watch?v=4NIb9l3imAo) + - [Cracking the Coding Interview - Fullstack Speaker Series](https://www.youtube.com/watch?v=Eg5-tdAwclo) + - [Ask Me Anything: Gayle Laakmann McDowell (author of Cracking the Coding Interview)](https://www.youtube.com/watch?v=1fqxMuPmGak) + +## Your Resume + +- [Ten Tips for a (Slightly) Less Awful Resume](http://steve-yegge.blogspot.co.uk/2007_09_01_archive.html) +- See Resume prep items in Cracking The Coding Interview and back of Programming Interviews Exposed + + +## Be thinking of for when the interview comes + +Think of about 20 interview questions you'll get, along with the lines of the items below. Have 2-3 answers for each. +Have a story, not just data, about something you accomplished. + +- Why do you want this job? +- What's a tough problem you've solved? +- Biggest challenges faced? +- Best/worst designs seen? +- Ideas for improving an existing Google product. +- How do you work best, as an individual and as part of a team? +- Which of your skills or experiences would be assets in the role and why? +- What did you most enjoy at [job x / project y]? +- What was the biggest challenge you faced at [job x / project y]? +- What was the hardest bug you faced at [job x / project y]? +- What did you learn at [job x / project y]? +- What would you have done better at [job x / project y]? + +## Have questions for the interviewer + + Some of mine (I already may know answer to but want their opinion or team perspective): + +- How large is your team? +- What does your dev cycle look like? Do you do waterfall/sprints/agile? +- Are rushes to deadlines common? Or is there flexibility? +- How are decisions made in your team? +- How many meetings do you have per week? +- Do you feel your work environment helps you concentrate? +- What are you working on? +- What do you like about it? +- What is the work life like? + +## Once You've Got The Job + +Congratulations! + +- [10 things I wish I knew on my first day at Google](https://medium.com/@moonstorming/10-things-i-wish-i-knew-on-my-first-day-at-google-107581d87286#.livxn7clw) + +Keep learning. + +You're never really done. + +--- + + ***************************************************************************************************** + ***************************************************************************************************** + + Everything below this point is optional. These are my recommendations, not Google's. + By studying these, you'll get greater exposure to more CS concepts, and will be better prepared for + any software engineering job. You'll be a much more well-rounded software engineer. + + ***************************************************************************************************** + ***************************************************************************************************** + +--- + +## Additional Books + +- [ ] [The Unix Programming Environment](http://product.half.ebay.com/The-UNIX-Programming-Environment-by-Brian-W-Kernighan-and-Rob-Pike-1983-Other/54385&tg=info) + - an oldie but a goodie +- [ ] [The Linux Command Line: A Complete Introduction](https://www.amazon.com/dp/1593273894/) + - a modern option +- [ ] [TCP/IP Illustrated Series](https://en.wikipedia.org/wiki/TCP/IP_Illustrated) +- [ ] [Head First Design Patterns](https://www.amazon.com/gp/product/0596007124/) + - a gentle introduction to design patterns +- [ ] [Design Patterns: Elements of Reusable Object-Oriente​d Software](https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612) + - aka the "Gang Of Four" book, or GOF + - the canonical design patterns book +- [ ] [Site Reliability Engineering](https://landing.google.com/sre/book.html) + - [Site Reliability Engineering: How Google Runs Production Systems](https://landing.google.com/sre/) +- [ ] [UNIX and Linux System Administration Handbook, 4th Edition](https://www.amazon.com/UNIX-Linux-System-Administration-Handbook/dp/0131480057/) + +## Additional Learning + +- ### Dynamic Programming + - This subject can be pretty difficult, as each DP soluble problem must be defined as a recursion relation, and coming up with it can be tricky. + - I suggest looking at many examples of DP problems until you have a solid understanding of the pattern involved. + - [ ] Videos: + - the Skiena videos can be hard to follow since he sometimes uses the whiteboard, which is too small to see + - [ ] [Skiena: CSE373 2012 - Lecture 19 - Introduction to Dynamic Programming (video)](https://youtu.be/Qc2ieXRgR0k?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1718) + - [ ] [Skiena: CSE373 2012 - Lecture 20 - Edit Distance (video)](https://youtu.be/IsmMhMdyeGY?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=2749) + - [ ] [Skiena: CSE373 2012 - Lecture 21 - Dynamic Programming Examples (video)](https://youtu.be/o0V9eYF4UI8?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=406) + - [ ] [Skiena: CSE373 2012 - Lecture 22 - Applications of Dynamic Programming (video)](https://www.youtube.com/watch?v=dRbMC1Ltl3A&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=22) + - [ ] [Simonson: Dynamic Programming 0 (starts at 59:18) (video)](https://youtu.be/J5aJEcOr6Eo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3558) + - [ ] [Simonson: Dynamic Programming I - Lecture 11 (video)](https://www.youtube.com/watch?v=0EzHjQ_SOeU&index=11&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [Simonson: Dynamic programming II - Lecture 12 (video)](https://www.youtube.com/watch?v=v1qiRwuJU7g&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=12) + - [ ] List of individual DP problems (each is short): + [Dynamic Programming (video)](https://www.youtube.com/playlist?list=PLrmLmBdmIlpsHaNTPP_jHHDx_os9ItYXr) + - [ ] Yale Lecture notes: + - [ ] [Dynamic Programming](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#dynamicProgramming) + - [ ] Coursera: + - [ ] [The RNA secondary structure problem (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/80RrW/the-rna-secondary-structure-problem) + - [ ] [A dynamic programming algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/PSonq/a-dynamic-programming-algorithm) + - [ ] [Illustrating the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/oUEK2/illustrating-the-dp-algorithm) + - [ ] [Running time of the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/nfK2r/running-time-of-the-dp-algorithm) + - [ ] [DP vs. recursive implementation (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/M999a/dp-vs-recursive-implementation) + - [ ] [Global pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/UZ7o6/global-pairwise-sequence-alignment) + - [ ] [Local pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/WnNau/local-pairwise-sequence-alignment) + +- ### Compilers + - [ ] [How a Compiler Works in ~1 minute (video)](https://www.youtube.com/watch?v=IhC7sdYe-Jg) + - [ ] [Harvard CS50 - Compilers (video)](https://www.youtube.com/watch?v=CSZLNYF4Klo) + - [ ] [C++ (video)](https://www.youtube.com/watch?v=twodd1KFfGk) + - [ ] [Understanding Compiler Optimization (C++) (video)](https://www.youtube.com/watch?v=FnGCDLhaxKU) + +- ### Floating Point Numbers + - [ ] simple 8-bit: [Representation of Floating Point Numbers - 1 (video - there is an error in calculations - see video description)](https://www.youtube.com/watch?v=ji3SfClm8TU) + - [ ] 32 bit: [IEEE754 32-bit floating point binary (video)](https://www.youtube.com/watch?v=50ZYcZebIec) + +- ### Unicode + - [ ] [The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets]( http://www.joelonsoftware.com/articles/Unicode.html) + - [ ] [What Every Programmer Absolutely, Positively Needs To Know About Encodings And Character Sets To Work With Text](http://kunststube.net/encoding/) + +- ### Endianness + - [ ] [Big And Little Endian](https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Data/endian.html) + - [ ] [Big Endian Vs Little Endian (video)](https://www.youtube.com/watch?v=JrNF0KRAlyo) + - [ ] [Big And Little Endian Inside/Out (video)](https://www.youtube.com/watch?v=oBSuXP-1Tc0) + - Very technical talk for kernel devs. Don't worry if most is over your head. + - The first half is enough. + +- ### Emacs and vi(m) + - suggested by Yegge, from an old Amazon recruiting post: Familiarize yourself with a unix-based code editor + - vi(m): + - [Editing With vim 01 - Installation, Setup, and The Modes (video)](https://www.youtube.com/watch?v=5givLEMcINQ&index=1&list=PL13bz4SHGmRxlZVmWQ9DvXo1fEg4UdGkr) + - [VIM Adventures](http://vim-adventures.com/) + - set of 4 videos: + - [The vi/vim editor - Lesson 1](https://www.youtube.com/watch?v=SI8TeVMX8pk) + - [The vi/vim editor - Lesson 2](https://www.youtube.com/watch?v=F3OO7ZIOaJE) + - [The vi/vim editor - Lesson 3](https://www.youtube.com/watch?v=ZYEccA_nMaI) + - [The vi/vim editor - Lesson 4](https://www.youtube.com/watch?v=1lYD5gwgZIA) + - [Using Vi Instead of Emacs](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#Using_Vi_instead_of_Emacs) + - emacs: + - [Basics Emacs Tutorial (video)](https://www.youtube.com/watch?v=hbmV1bnQ-i0) + - set of 3 (videos): + - [Emacs Tutorial (Beginners) -Part 1- File commands, cut/copy/paste, cursor commands](https://www.youtube.com/watch?v=ujODL7MD04Q) + - [Emacs Tutorial (Beginners) -Part 2- Buffer management, search, M-x grep and rgrep modes](https://www.youtube.com/watch?v=XWpsRupJ4II) + - [Emacs Tutorial (Beginners) -Part 3- Expressions, Statements, ~/.emacs file and packages](https://www.youtube.com/watch?v=paSgzPso-yc) + - [Evil Mode: Or, How I Learned to Stop Worrying and Love Emacs (video)](https://www.youtube.com/watch?v=JWD1Fpdd4Pc) + - [Writing C Programs With Emacs](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#Writing_C_programs_with_Emacs) + - [(maybe) Org Mode In Depth: Managing Structure (video)](https://www.youtube.com/watch?v=nsGYet02bEk) + +- ### Unix command line tools + - suggested by Yegge, from an old Amazon recruiting post. I filled in the list below from good tools. + - [ ] bash + - [ ] cat + - [ ] grep + - [ ] sed + - [ ] awk + - [ ] curl or wget + - [ ] sort + - [ ] tr + - [ ] uniq + - [ ] [strace](https://en.wikipedia.org/wiki/Strace) + - [ ] [tcpdump](https://danielmiessler.com/study/tcpdump/) + +- ### Information theory (videos) + - [ ] [Khan Academy](https://www.khanacademy.org/computing/computer-science/informationtheory) + - [ ] more about Markov processes: + - [ ] [Core Markov Text Generation](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/waxgx/core-markov-text-generation) + - [ ] [Core Implementing Markov Text Generation](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/gZhiC/core-implementing-markov-text-generation) + - [ ] [Project = Markov Text Generation Walk Through](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/EUjrq/project-markov-text-generation-walk-through) + - See more in MIT 6.050J Information and Entropy series below. + +- ### Parity & Hamming Code (videos) + - [ ] [Intro](https://www.youtube.com/watch?v=q-3BctoUpHE) + - [ ] [Parity](https://www.youtube.com/watch?v=DdMcAUlxh1M) + - [ ] Hamming Code: + - [Error detection](https://www.youtube.com/watch?v=1A_NcXxdoCc) + - [Error correction](https://www.youtube.com/watch?v=JAMLuxdHH8o) + - [ ] [Error Checking](https://www.youtube.com/watch?v=wbH2VxzmoZk) + +- ### Entropy + - also see videos below + - make sure to watch information theory videos first + - [ ] [Information Theory, Claude Shannon, Entropy, Redundancy, Data Compression & Bits (video)](https://youtu.be/JnJq3Py0dyM?t=176) + +- ### Cryptography + - also see videos below + - make sure to watch information theory videos first + - [ ] [Khan Academy Series](https://www.khanacademy.org/computing/computer-science/cryptography) + - [ ] [Cryptography: Hash Functions](https://www.youtube.com/watch?v=KqqOXndnvic&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=30) + - [ ] [Cryptography: Encryption](https://www.youtube.com/watch?v=9TNI2wHmaeI&index=31&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + +- ### Compression + - make sure to watch information theory videos first + - [ ] Computerphile (videos): + - [ ] [Compression](https://www.youtube.com/watch?v=Lto-ajuqW3w) + - [ ] [Entropy in Compression](https://www.youtube.com/watch?v=M5c_RFKVkko) + - [ ] [Upside Down Trees (Huffman Trees)](https://www.youtube.com/watch?v=umTbivyJoiI) + - [ ] [EXTRA BITS/TRITS - Huffman Trees](https://www.youtube.com/watch?v=DV8efuB3h2g) + - [ ] [Elegant Compression in Text (The LZ 77 Method)](https://www.youtube.com/watch?v=goOa3DGezUA) + - [ ] [Text Compression Meets Probabilities](https://www.youtube.com/watch?v=cCDCfoHTsaU) + - [ ] [Compressor Head videos](https://www.youtube.com/playlist?list=PLOU2XLYxmsIJGErt5rrCqaSGTMyyqNt2H) + - [ ] [(optional) Google Developers Live: GZIP is not enough!](https://www.youtube.com/watch?v=whGwm0Lky2s) + +- ### Networking + - **if you have networking experience or want to be a systems engineer, expect questions** + - otherwise, this is just good to know + - [ ] [Khan Academy](https://www.khanacademy.org/computing/computer-science/internet-intro) + - [ ] [UDP and TCP: Comparison of Transport Protocols](https://www.youtube.com/watch?v=Vdc8TCESIg8) + - [ ] [TCP/IP and the OSI Model Explained!](https://www.youtube.com/watch?v=e5DEVa9eSN0) + - [ ] [Packet Transmission across the Internet. Networking & TCP/IP tutorial.](https://www.youtube.com/watch?v=nomyRJehhnM) + - [ ] [HTTP](https://www.youtube.com/watch?v=WGJrLqtX7As) + - [ ] [SSL and HTTPS](https://www.youtube.com/watch?v=S2iBR2ZlZf0) + - [ ] [SSL/TLS](https://www.youtube.com/watch?v=Rp3iZUvXWlM) + - [ ] [HTTP 2.0](https://www.youtube.com/watch?v=E9FxNzv1Tr8) + - [ ] [Video Series (21 videos)](https://www.youtube.com/playlist?list=PLEbnTDJUr_IegfoqO4iPnPYQui46QqT0j) + - [ ] [Subnetting Demystified - Part 5 CIDR Notation](https://www.youtube.com/watch?v=t5xYI0jzOf4) + +- ### Computer Security + - [MIT (23 videos)](https://www.youtube.com/playlist?list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Introduction, Threat Models](https://www.youtube.com/watch?v=GqmQg-cszw4&index=1&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Control Hijacking Attacks](https://www.youtube.com/watch?v=6bwzNg5qQ0o&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh&index=2) + - [ ] [Buffer Overflow Exploits and Defenses](https://www.youtube.com/watch?v=drQyrzRoRiA&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh&index=3) + - [ ] [Privilege Separation](https://www.youtube.com/watch?v=6SIJmoE9L9g&index=4&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Capabilities](https://www.youtube.com/watch?v=8VqTSY-11F4&index=5&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Sandboxing Native Code](https://www.youtube.com/watch?v=VEV74hwASeU&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh&index=6) + - [ ] [Web Security Model](https://www.youtube.com/watch?v=chkFBigodIw&index=7&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Securing Web Applications](https://www.youtube.com/watch?v=EBQIGy1ROLY&index=8&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Symbolic Execution](https://www.youtube.com/watch?v=yRVZPvHYHzw&index=9&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Network Security](https://www.youtube.com/watch?v=SIEVvk3NVuk&index=11&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Network Protocols](https://www.youtube.com/watch?v=QOtA76ga_fY&index=12&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Side-Channel Attacks](https://www.youtube.com/watch?v=PuVMkSEcPiI&index=15&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + +- ### Garbage collection + - [ ] [Garbage collection (Java); Augmenting data str (video)](https://www.youtube.com/watch?v=StdfeXaKGEc&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=25) + - [ ] [Compilers (video)](https://www.youtube.com/playlist?list=PLO9y7hOkmmSGTy5z6HZ-W4k2y8WXF7Bff) + - [ ] [GC in Python (video)](https://www.youtube.com/watch?v=iHVs_HkjdmI) + - [ ] [Deep Dive Java: Garbage Collection is Good!](https://www.infoq.com/presentations/garbage-collection-benefits) + - [ ] [Deep Dive Python: Garbage Collection in CPython (video)](https://www.youtube.com/watch?v=P-8Z0-MhdQs&list=PLdzf4Clw0VbOEWOS_sLhT_9zaiQDrS5AR&index=3) + +- ### Parallel Programming + - [ ] [Coursera (Scala)](https://www.coursera.org/learn/parprog1/home/week/1) + - [ ] [Efficient Python for High Performance Parallel Computing (video)](https://www.youtube.com/watch?v=uY85GkaYzBk) + +- ### Messaging, Serialization, and Queueing Systems + - [ ] [Thrift](https://thrift.apache.org/) + - [Tutorial](http://thrift-tutorial.readthedocs.io/en/latest/intro.html) + - [ ] [Protocol Buffers](https://developers.google.com/protocol-buffers/) + - [Tutorials](https://developers.google.com/protocol-buffers/docs/tutorials) + - [ ] [gRPC](http://www.grpc.io/) + - [gRPC 101 for Java Developers (video)](https://www.youtube.com/watch?v=5tmPvSe7xXQ&list=PLcTqM9n_dieN0k1nSeN36Z_ppKnvMJoly&index=1) + - [ ] [Redis](http://redis.io/) + - [Tutorial](http://try.redis.io/) + - [ ] [Amazon SQS (queue)](https://aws.amazon.com/sqs/) + - [ ] [Amazon SNS (pub-sub)](https://aws.amazon.com/sns/) + - [ ] [RabbitMQ](https://www.rabbitmq.com/) + - [Get Started](https://www.rabbitmq.com/getstarted.html) + - [ ] [Celery](http://www.celeryproject.org/) + - [First Steps With Celery](http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html) + - [ ] [ZeroMQ](http://zeromq.org/) + - [Intro - Read The Manual](http://zeromq.org/intro:read-the-manual) + - [ ] [ActiveMQ](http://activemq.apache.org/) + - [ ] [Kafka](http://kafka.apache.org/documentation.html#introduction) + - [ ] [MessagePack](http://msgpack.org/index.html) + - [ ] [Avro](https://avro.apache.org/) + +- ### Fast Fourier Transform + - [ ] [An Interactive Guide To The Fourier Transform](https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/) + - [ ] [What is a Fourier transform? What is it used for?](http://www.askamathematician.com/2012/09/q-what-is-a-fourier-transform-what-is-it-used-for/) + - [ ] [What is the Fourier Transform? (video)](https://www.youtube.com/watch?v=Xxut2PN-V8Q) + - [ ] [Divide & Conquer: FFT (video)](https://www.youtube.com/watch?v=iTMn0Kt18tg&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=4) + - [ ] [Understanding The FFT](http://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/) + +- ### Bloom Filter + - Given a Bloom filter with m bits and k hashing functions, both insertion and membership testing are O(k) + - [Bloom Filters](https://www.youtube.com/watch?v=-SuTGoFYjZs) + - [Bloom Filters | Mining of Massive Datasets | Stanford University](https://www.youtube.com/watch?v=qBTdukbzc78) + - [Tutorial](http://billmill.org/bloomfilter-tutorial/) + - [How To Write A Bloom Filter App](http://blog.michaelschmatz.com/2016/04/11/how-to-write-a-bloom-filter-cpp/) + +- ### HyperLogLog + - [How To Count A Billion Distinct Objects Using Only 1.5KB Of Memory](http://highscalability.com/blog/2012/4/5/big-data-counting-how-to-count-a-billion-distinct-objects-us.html) + +- ### Locality-Sensitive Hashing + - used to determine the similarity of documents + - the opposite of MD5 or SHA which are used to determine if 2 documents/strings are exactly the same. + - [Simhashing (hopefully) made simple](http://ferd.ca/simhashing-hopefully-made-simple.html) + +- ### van Emde Boas Trees + - [ ] [Divide & Conquer: van Emde Boas Trees (video)](https://www.youtube.com/watch?v=hmReJCupbNU&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=6) + - [ ] [MIT Lecture Notes](https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2012/lecture-notes/MIT6_046JS12_lec15.pdf) + +- ### Augmented Data Structures + - [ ] [CS 61B Lecture 39: Augmenting Data Structures](https://youtu.be/zksIj9O8_jc?list=PL4BBB74C7D2A1049C&t=950) + +- ### Tries + - Note there are different kinds of tries. Some have prefixes, some don't, and some use string instead of bits + to track the path. + - I read through code, but will not implement. + - [ ] [Sedgewick - Tries (3 videos)](https://www.youtube.com/playlist?list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [1. R Way Tries](https://www.youtube.com/watch?v=buq2bn8x3Vo&index=3&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [2. Ternary Search Tries](https://www.youtube.com/watch?v=LelV-kkYMIg&index=2&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [3. Character Based Operations](https://www.youtube.com/watch?v=00YaFPcC65g&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ&index=1) + - [ ] [Notes on Data Structures and Programming Techniques](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#Tries) + - [ ] Short course videos: + - [ ] [Introduction To Tries (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/08Xyf/core-introduction-to-tries) + - [ ] [Performance Of Tries (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/PvlZW/core-performance-of-tries) + - [ ] [Implementing A Trie (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/DFvd3/core-implementing-a-trie) + - [ ] [The Trie: A Neglected Data Structure](https://www.toptal.com/java/the-trie-a-neglected-data-structure) + - [ ] [TopCoder - Using Tries](https://www.topcoder.com/community/data-science/data-science-tutorials/using-tries/) + - [ ] [Stanford Lecture (real world use case) (video)](https://www.youtube.com/watch?v=TJ8SkcUSdbU) + - [ ] [MIT, Advanced Data Structures, Strings (can get pretty obscure about halfway through)](https://www.youtube.com/watch?v=NinWEPPrkDQ&index=16&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf) + +- ### Balanced search trees + - Know least one type of balanced binary tree (and know how it's implemented): + - "Among balanced search trees, AVL and 2/3 trees are now passé, and red-black trees seem to be more popular. + A particularly interesting self-organizing data structure is the splay tree, which uses rotations + to move any accessed key to the root." - Skiena + - Of these, I chose to implement a splay tree. From what I've read, you won't implement a + balanced search tree in your interview. But I wanted exposure to coding one up + and let's face it, splay trees are the bee's knees. I did read a lot of red-black tree code. + - splay tree: insert, search, delete functions + If you end up implementing red/black tree try just these: + - search and insertion functions, skipping delete + - I want to learn more about B-Tree since it's used so widely with very large data sets. + - [ ] [Self-balancing binary search tree](https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree) + + - [ ] **AVL trees** + - In practice: + From what I can tell, these aren't used much in practice, but I could see where they would be: + The AVL tree is another structure supporting O(log n) search, insertion, and removal. It is more rigidly + balanced than red–black trees, leading to slower insertion and removal but faster retrieval. This makes it + attractive for data structures that may be built once and loaded without reconstruction, such as language + dictionaries (or program dictionaries, such as the opcodes of an assembler or interpreter). + - [ ] [MIT AVL Trees / AVL Sort (video)](https://www.youtube.com/watch?v=FNeL18KsWPc&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=6) + - [ ] [AVL Trees (video)](https://www.coursera.org/learn/data-structures/lecture/Qq5E0/avl-trees) + - [ ] [AVL Tree Implementation (video)](https://www.coursera.org/learn/data-structures/lecture/PKEBC/avl-tree-implementation) + - [ ] [Split And Merge](https://www.coursera.org/learn/data-structures/lecture/22BgE/split-and-merge) + + - [ ] **Splay trees** + - In practice: + Splay trees are typically used in the implementation of caches, memory allocators, routers, garbage collectors, + data compression, ropes (replacement of string used for long text strings), in Windows NT (in the virtual memory, + networking and file system code) etc. + - [ ] [CS 61B: Splay Trees (video)](https://www.youtube.com/watch?v=Najzh1rYQTo&index=23&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd) + - [ ] MIT Lecture: Splay Trees: + - Gets very mathy, but watch the last 10 minutes for sure. + - [Video](https://www.youtube.com/watch?v=QnPl_Y6EqMo) + + - [ ] **Red/black trees** + - these are a translation of a 2-3 tree (see below) + - In practice: + Red–black trees offer worst-case guarantees for insertion time, deletion time, and search time. + Not only does this make them valuable in time-sensitive applications such as real-time applications, + but it makes them valuable building blocks in other data structures which provide worst-case guarantees; + for example, many data structures used in computational geometry can be based on red–black trees, and + the Completely Fair Scheduler used in current Linux kernels uses red–black trees. In the version 8 of Java, + the Collection HashMap has been modified such that instead of using a LinkedList to store identical elements with poor + hashcodes, a Red-Black tree is used. + - [ ] [Aduni - Algorithms - Lecture 4 (link jumps to starting point) (video)](https://youtu.be/1W3x0f_RmUo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3871) + - [ ] [Aduni - Algorithms - Lecture 5 (video)](https://www.youtube.com/watch?v=hm2GHwyKF1o&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=5) + - [ ] [Black Tree](https://en.wikipedia.org/wiki/Red%E2%80%93black_tree) + - [ ] [An Introduction To Binary Search And Red Black Tree](https://www.topcoder.com/community/data-science/data-science-tutorials/an-introduction-to-binary-search-and-red-black-trees/) + + - [ ] **2-3 search trees** + - In practice: + 2-3 trees have faster inserts at the expense of slower searches (since height is more compared to AVL trees). + - You would use 2-3 tree very rarely because its implementation involves different types of nodes. Instead, people use Red Black trees. + - [ ] [23-Tree Intuition and Definition (video)](https://www.youtube.com/watch?v=C3SsdUqasD4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=2) + - [ ] [Binary View of 23-Tree](https://www.youtube.com/watch?v=iYvBtGKsqSg&index=3&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [2-3 Trees (student recitation) (video)](https://www.youtube.com/watch?v=TOb1tuEZ2X4&index=5&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + + - [ ] **2-3-4 Trees (aka 2-4 trees)** + - In practice: + For every 2-4 tree, there are corresponding red–black trees with data elements in the same order. The insertion and deletion + operations on 2-4 trees are also equivalent to color-flipping and rotations in red–black trees. This makes 2-4 trees an + important tool for understanding the logic behind red–black trees, and this is why many introductory algorithm texts introduce + 2-4 trees just before red–black trees, even though **2-4 trees are not often used in practice**. + - [ ] [CS 61B Lecture 26: Balanced Search Trees (video)](https://www.youtube.com/watch?v=zqrqYXkth6Q&index=26&list=PL4BBB74C7D2A1049C) + - [ ] [Bottom Up 234-Trees (video)](https://www.youtube.com/watch?v=DQdMYevEyE4&index=4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [Top Down 234-Trees (video)](https://www.youtube.com/watch?v=2679VQ26Fp4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=5) + + - [ ] **N-ary (K-ary, M-ary) trees** + - note: the N or K is the branching factor (max branches) + - binary trees are a 2-ary tree, with branching factor = 2 + - 2-3 trees are 3-ary + - [ ] [K-Ary Tree](https://en.wikipedia.org/wiki/K-ary_tree) + + - [ ] **B-Trees** + - fun fact: it's a mystery, but the B could stand for Boeing, Balanced, or Bayer (co-inventor) + - In Practice: + B-Trees are widely used in databases. Most modern filesystems use B-trees (or Variants). In addition to + its use in databases, the B-tree is also used in filesystems to allow quick random access to an arbitrary + block in a particular file. The basic problem is turning the file block i address into a disk block + (or perhaps to a cylinder-head-sector) address. + - [ ] [B-Tree](https://en.wikipedia.org/wiki/B-tree) + - [ ] [Introduction to B-Trees (video)](https://www.youtube.com/watch?v=I22wEC1tTGo&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=6) + - [ ] [B-Tree Definition and Insertion (video)](https://www.youtube.com/watch?v=s3bCdZGrgpA&index=7&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [B-Tree Deletion (video)](https://www.youtube.com/watch?v=svfnVhJOfMc&index=8&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [MIT 6.851 - Memory Hierarchy Models (video)](https://www.youtube.com/watch?v=V3omVLzI0WE&index=7&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf) + - covers cache-oblivious B-Trees, very interesting data structures + - the first 37 minutes are very technical, may be skipped (B is block size, cache line size) + + +- ### k-D Trees + - great for finding number of points in a rectangle or higher dimension object + - a good fit for k-nearest neighbors + - [ ] [Kd Trees (video)](https://www.youtube.com/watch?v=W94M9D_yXKk) + - [ ] [kNN K-d tree algorithm (video)](https://www.youtube.com/watch?v=Y4ZgLlDfKDg) + +- ### Skip lists + - "These are somewhat of a cult data structure" - Skiena + - [ ] [Randomization: Skip Lists (video)](https://www.youtube.com/watch?v=2g9OSRKJuzM&index=10&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [For animations and a little more detail](https://en.wikipedia.org/wiki/Skip_list) + +- ### Network Flows + - [ ] [Ford-Fulkerson in 5 minutes (video)](https://www.youtube.com/watch?v=v1VgJmkEJW0) + - [ ] [Ford-Fulkerson Algorithm (video)](https://www.youtube.com/watch?v=v1VgJmkEJW0) + - [ ] [Network Flows (video)](https://www.youtube.com/watch?v=2vhN4Ice5jI) + +- ### Disjoint Sets & Union Find + - [ ] [UCB 61B - Disjoint Sets; Sorting & selection (video)](https://www.youtube.com/watch?v=MAEGXTwmUsI&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=21) + - [ ] [Sedgewick Algorithms - Union-Find (6 videos)](https://www.youtube.com/watch?v=8mYfZeHtdNc&list=PLe-ggMe31CTexoNYnMhbHaWhQ0dvcy43t) + +- ### Math for Fast Processing + - [ ] [Integer Arithmetic, Karatsuba Multiplication (video)](https://www.youtube.com/watch?v=eCaXlAaN2uE&index=11&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [The Chinese Remainder Theorem (used in cryptography) (video)](https://www.youtube.com/watch?v=ru7mWZJlRQg) + +- ### Treap + - Combination of a binary search tree and a heap + - [ ] [Treap](https://en.wikipedia.org/wiki/Treap) + - [ ] [Data Structures: Treaps explained (video)](https://www.youtube.com/watch?v=6podLUYinH8) + - [ ] [Applications in set operations](https://www.cs.cmu.edu/~scandal/papers/treaps-spaa98.pdf) + +- ### Linear Programming (videos) + - [ ] [Linear Programming](https://www.youtube.com/watch?v=M4K6HYLHREQ) + - [ ] [Finding minimum cost](https://www.youtube.com/watch?v=2ACJ9ewUC6U) + - [ ] [Finding maximum value](https://www.youtube.com/watch?v=8AA_81xI3ik) + - [ ] [Solve Linear Equations with Python - Simplex Algorithm](https://www.youtube.com/watch?v=44pAWI7v5Zk) + +- ### Geometry, Convex hull (videos) + - [ ] [Graph Alg. IV: Intro to geometric algorithms - Lecture 9](https://youtu.be/XIAQRlNkJAw?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3164) + - [ ] [Geometric Algorithms: Graham & Jarvis - Lecture 10](https://www.youtube.com/watch?v=J5aJEcOr6Eo&index=10&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [Divide & Conquer: Convex Hull, Median Finding](https://www.youtube.com/watch?v=EzeYI7p9MjU&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=2) + +- ### Discrete math + - see videos below + +- ### Machine Learning + - [ ] Why ML? + - [ ] [How Google Is Remaking Itself As A Machine Learning First Company](https://backchannel.com/how-google-is-remaking-itself-as-a-machine-learning-first-company-ada63defcb70) + - [ ] [Large-Scale Deep Learning for Intelligent Computer Systems (video)](https://www.youtube.com/watch?v=QSaZGT4-6EY) + - [ ] [Deep Learning and Understandability versus Software Engineering and Verification by Peter Norvig](https://www.youtube.com/watch?v=X769cyzBNVw) + - [ ] [Google's Cloud Machine learning tools (video)](https://www.youtube.com/watch?v=Ja2hxBAwG_0) + - [ ] [Google Developers' Machine Learning Recipes (Scikit Learn & Tensorflow) (video)](https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal) + - [ ] [Tensorflow (video)](https://www.youtube.com/watch?v=oZikw5k_2FM) + - [ ] [Tensorflow Tutorials](https://www.tensorflow.org/versions/r0.11/tutorials/index.html) + - [ ] [Practical Guide to implementing Neural Networks in Python (using Theano)](http://www.analyticsvidhya.com/blog/2016/04/neural-networks-python-theano/) + - Courses: + - [Great starter course: Machine Learning](https://www.coursera.org/learn/machine-learning) + - [videos only](https://www.youtube.com/playlist?list=PLZ9qNFMHZ-A4rycgrgOYma6zxF4BZGGPW) + - see videos 12-18 for a review of linear algebra (14 and 15 are duplicates) + - [Neural Networks for Machine Learning](https://www.coursera.org/learn/neural-networks) + - [Google's Deep Learning Nanodegree](https://www.udacity.com/course/deep-learning--ud730) + - [Google/Kaggle Machine Learning Engineer Nanodegree](https://www.udacity.com/course/machine-learning-engineer-nanodegree-by-google--nd009) + - [Self-Driving Car Engineer Nanodegree](https://www.udacity.com/drive) + - [Metis Online Course ($99 for 2 months)](http://www.thisismetis.com/explore-data-science) + - Resources: + - Books: + - [Python Machine Learning](https://www.amazon.com/Python-Machine-Learning-Sebastian-Raschka/dp/1783555130/) + - [Data Science from Scratch: First Principles with Python](https://www.amazon.com/Data-Science-Scratch-Principles-Python/dp/149190142X) + - [Introduction to Machine Learning with Python](https://www.amazon.com/Introduction-Machine-Learning-Python-Scientists/dp/1449369413/) + - [Machine Learning for Software Engineers](https://github.com/ZuzooVn/machine-learning-for-software-engineers) + - Data School: http://www.dataschool.io/ + +- ### Go + - [ ] Videos: + - [ ] [Why Learn Go?](https://www.youtube.com/watch?v=FTl0tl9BGdc) + - [ ] [Go Programming](https://www.youtube.com/watch?v=CF9S4QZuV30) + - [ ] [A Tour of Go](https://www.youtube.com/watch?v=ytEkHepK08c) + - [ ] Books: + - [ ] [An Introduction to Programming in Go (read free online)](https://www.golang-book.com/books/intro) + - [ ] [The Go Programming Language (Donovan & Kernighan)](https://www.amazon.com/Programming-Language-Addison-Wesley-Professional-Computing/dp/0134190440) + - [ ] [Bootcamp](https://www.golang-book.com/guides/bootcamp) + +-- + +## Additional Detail on Some Subjects + + I added these to reinforce some ideas already presented above, but didn't want to include them + above because it's just too much. It's easy to overdo it on a subject. + You want to get hired in this century, right? + +- [ ] **Union-Find** + - [ ] [Overview](https://www.coursera.org/learn/data-structures/lecture/JssSY/overview) + - [ ] [Naive Implementation](https://www.coursera.org/learn/data-structures/lecture/EM5D0/naive-implementations) + - [ ] [Trees](https://www.coursera.org/learn/data-structures/lecture/Mxu0w/trees) + - [ ] [Union By Rank](https://www.coursera.org/learn/data-structures/lecture/qb4c2/union-by-rank) + - [ ] [Path Compression](https://www.coursera.org/learn/data-structures/lecture/Q9CVI/path-compression) + - [ ] [Analysis Options](https://www.coursera.org/learn/data-structures/lecture/GQQLN/analysis-optional) + +- [ ] **More Dynamic Programming** (videos) + - [ ] [6.006: Dynamic Programming I: Fibonacci, Shortest Paths](https://www.youtube.com/watch?v=OQ5jsbhAv_M&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=19) + - [ ] [6.006: Dynamic Programming II: Text Justification, Blackjack](https://www.youtube.com/watch?v=ENyox7kNKeY&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=20) + - [ ] [6.006: DP III: Parenthesization, Edit Distance, Knapsack](https://www.youtube.com/watch?v=ocZMDMZwhCY&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=21) + - [ ] [6.006: DP IV: Guitar Fingering, Tetris, Super Mario Bros.](https://www.youtube.com/watch?v=tp4_UXaVyx8&index=22&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [6.046: Dynamic Programming & Advanced DP](https://www.youtube.com/watch?v=Tw1k46ywN6E&index=14&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [6.046: Dynamic Programming: All-Pairs Shortest Paths](https://www.youtube.com/watch?v=NzgFUwOaoIw&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=15) + - [ ] [6.046: Dynamic Programming (student recitation)](https://www.youtube.com/watch?v=krZI60lKPek&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=12) + +- [ ] **Advanced Graph Processing** (videos) + - [ ] [Synchronous Distributed Algorithms: Symmetry-Breaking. Shortest-Paths Spanning Trees](https://www.youtube.com/watch?v=mUBmcbbJNf4&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=27) + - [ ] [Asynchronous Distributed Algorithms: Shortest-Paths Spanning Trees](https://www.youtube.com/watch?v=kQ-UQAzcnzA&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=28) + +- [ ] MIT **Probability** (mathy, and go slowly, which is good for mathy things) (videos): + - [ ] [MIT 6.042J - Probability Introduction](https://www.youtube.com/watch?v=SmFwFdESMHI&index=18&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Conditional Probability](https://www.youtube.com/watch?v=E6FbvM-FGZ8&index=19&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Independence](https://www.youtube.com/watch?v=l1BCv3qqW4A&index=20&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Random Variables](https://www.youtube.com/watch?v=MOfhhFaQdjw&list=PLB7540DEDD482705B&index=21) + - [ ] [MIT 6.042J - Expectation I](https://www.youtube.com/watch?v=gGlMSe7uEkA&index=22&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Expectation II](https://www.youtube.com/watch?v=oI9fMUqgfxY&index=23&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Large Deviations](https://www.youtube.com/watch?v=q4mwO2qS2z4&index=24&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Random Walks](https://www.youtube.com/watch?v=56iFMY8QW2k&list=PLB7540DEDD482705B&index=25) + +- [ ] [Simonson: Approximation Algorithms (video)](https://www.youtube.com/watch?v=oDniZCmNmNw&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=19) + +- [ ] **String Matching** + - [ ] Rabin-Karp (videos): + - [Rabin Karps Algorithm](https://www.coursera.org/learn/data-structures/lecture/c0Qkw/rabin-karps-algorithm) + - [Precomputing](https://www.coursera.org/learn/data-structures/lecture/nYrc8/optimization-precomputation) + - [Optimization: Implementation and Analysis](https://www.coursera.org/learn/data-structures/lecture/h4ZLc/optimization-implementation-and-analysis) + - [Table Doubling, Karp-Rabin](https://www.youtube.com/watch?v=BRO7mVIFt08&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=9) + - [Rolling Hashes, Amortized Analysis](https://www.youtube.com/watch?v=w6nuXg0BISo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=32) + - [ ] Knuth-Morris-Pratt (KMP): + - [TThe Knuth-Morris-Pratt (KMP) String Matching Algorithm](https://www.youtube.com/watch?v=5i7oKodCRJo) + - [ ] Boyer–Moore string search algorithm + - [Boyer-Moore String Search Algorithm](https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm) + - [Advanced String Searching Boyer-Moore-Horspool Algorithms (video)](https://www.youtube.com/watch?v=QDZpzctPf10) + - [ ] [Coursera: Algorithms on Strings](https://www.coursera.org/learn/algorithms-on-strings/home/week/1) + - starts off great, but by the time it gets past KMP it gets more complicated than it needs to be + - nice explanation of tries + - can be skipped + +- [ ] **Sorting** + + - [ ] Stanford lectures on sorting: + - [ ] [Lecture 15 | Programming Abstractions (video)](https://www.youtube.com/watch?v=ENp00xylP7c&index=15&list=PLFE6E58F856038C69) + - [ ] [Lecture 16 | Programming Abstractions (video)](https://www.youtube.com/watch?v=y4M9IVgrVKo&index=16&list=PLFE6E58F856038C69) + - [ ] Shai Simonson, [Aduni.org](http://www.aduni.org/): + - [ ] [Algorithms - Sorting - Lecture 2 (video)](https://www.youtube.com/watch?v=odNJmw5TOEE&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=2) + - [ ] [Algorithms - Sorting II - Lecture 3 (video)](https://www.youtube.com/watch?v=hj8YKFTFKEE&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=3) + - [ ] Steven Skiena lectures on sorting: + - [ ] [lecture begins at 26:46 (video)](https://youtu.be/ute-pmMkyuk?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1600) + - [ ] [lecture begins at 27:40 (video)](https://www.youtube.com/watch?v=yLvp-pB8mak&index=8&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [lecture begins at 35:00 (video)](https://www.youtube.com/watch?v=q7K9otnzlfE&index=9&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [lecture begins at 23:50 (video)](https://www.youtube.com/watch?v=TvqIGu9Iupw&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=10) + +## Video Series + +Sit back and enjoy. "Netflix and skill" :P + +- [ ] [List of individual Dynamic Programming problems (each is short)](https://www.youtube.com/playlist?list=PLrmLmBdmIlpsHaNTPP_jHHDx_os9ItYXr) + +- [ ] [x86 Architecture, Assembly, Applications (11 videos)](https://www.youtube.com/playlist?list=PL038BE01D3BAEFDB0) + +- [ ] [MIT 18.06 Linear Algebra, Spring 2005 (35 videos)](https://www.youtube.com/playlist?list=PLE7DDD91010BC51F8) + +- [ ] [Excellent - MIT Calculus Revisited: Single Variable Calculus](https://www.youtube.com/playlist?list=PL3B08AE665AB9002A) + +- [ ] [Computer Science 70, 001 - Spring 2015 - Discrete Mathematics and Probability Theory](https://www.youtube.com/playlist?list=PL-XXv-cvA_iD8wQm8U0gG_Z1uHjImKXFy) + +- [ ] [Discrete Mathematics by Shai Simonson (19 videos)](https://www.youtube.com/playlist?list=PL3o9D4Dl2FJ9q0_gtFXPh_H4POI5dK0yG) + +- [ ] [Discrete Mathematics Part 1 by Sarada Herke (5 videos)](https://www.youtube.com/playlist?list=PLGxuz-nmYlQPOc4w1Kp2MZrdqOOm4Jxeo) + +- [ ] CSE373 - Analysis of Algorithms (25 videos) + - [Skiena lectures from Algorithm Design Manual](https://www.youtube.com/watch?v=ZFjhkohHdAA&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=1) + +- [ ] [UC Berkeley 61B (Spring 2014): Data Structures (25 videos)](https://www.youtube.com/watch?v=mFPmKGIrQs4&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd) + +- [ ] [UC Berkeley 61B (Fall 2006): Data Structures (39 videos)](https://www.youtube.com/playlist?list=PL4BBB74C7D2A1049C) + +- [ ] [UC Berkeley 61C: Machine Structures (26 videos)](https://www.youtube.com/watch?v=gJJeUFyuvvg&list=PL-XXv-cvA_iCl2-D-FS5mk0jFF6cYSJs_) + +- [ ] [OOSE: Software Dev Using UML and Java (21 videos)](https://www.youtube.com/playlist?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + +- [ ] [UC Berkeley CS 152: Computer Architecture and Engineering (20 videos)](https://www.youtube.com/watch?v=UH0QYvtP7Rk&index=20&list=PLkFD6_40KJIwEiwQx1dACXwh-2Fuo32qr) + +- [ ] [MIT 6.004: Computation Structures (49 videos)](https://www.youtube.com/playlist?list=PLrRW1w6CGAcXbMtDFj205vALOGmiRc82-) + +- [ ] [Carnegie Mellon - Computer Architecture Lectures (39 videos)](https://www.youtube.com/playlist?list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq) + +- [ ] [MIT 6.006: Intro to Algorithms (47 videos)](https://www.youtube.com/watch?v=HtSuA80QTyo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&nohtml5=False) + +- [ ] [MIT 6.033: Computer System Engineering (22 videos)](https://www.youtube.com/watch?v=zm2VP0kHl1M&list=PL6535748F59DCA484) + +- [ ] [MIT 6.034 Artificial Intelligence, Fall 2010 (30 videos)](https://www.youtube.com/playlist?list=PLUl4u3cNGP63gFHB6xb-kVBiQHYe_4hSi) + +- [ ] [MIT 6.042J: Mathematics for Computer Science, Fall 2010 (25 videos)](https://www.youtube.com/watch?v=L3LMbpZIKhQ&list=PLB7540DEDD482705B) + +- [ ] [MIT 6.046: Design and Analysis of Algorithms (34 videos)](https://www.youtube.com/watch?v=2P-yW7LQr08&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + +- [ ] [MIT 6.050J: Information and Entropy, Spring 2008 (19 videos)](https://www.youtube.com/watch?v=phxsQrZQupo&list=PL_2Bwul6T-A7OldmhGODImZL8KEVE38X7) + +- [ ] [MIT 6.851: Advanced Data Structures (22 videos)](https://www.youtube.com/watch?v=T0yzrZL1py0&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf&index=1) + +- [ ] [MIT 6.854: Advanced Algorithms, Spring 2016 (24 videos)](https://www.youtube.com/playlist?list=PL6ogFv-ieghdoGKGg2Bik3Gl1glBTEu8c) + +- [ ] [Harvard COMPSCI 224: Advanced Algorithms (25 videos)](https://www.youtube.com/playlist?list=PL2SOU6wwxB0uP4rJgf5ayhHWgw7akUWSf) + +- [ ] [MIT 6.858 Computer Systems Security, Fall 2014](https://www.youtube.com/watch?v=GqmQg-cszw4&index=1&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + +- [ ] [Stanford: Programming Paradigms (27 videos)](https://www.youtube.com/view_play_list?p=9D558D49CA734A02) + +- [ ] [Introduction to Cryptography by Christof Paar](https://www.youtube.com/playlist?list=PL6N5qY2nvvJE8X75VkXglSrVhLv1tVcfy) + - [Course Website along with Slides and Problem Sets](http://www.crypto-textbook.com/) + +- [ ] [Mining Massive Datasets - Stanford University (94 videos)](https://www.youtube.com/playlist?list=PLLssT5z_DsK9JDLcT8T62VtzwyW9LNepV) + +- [ ] [Graph Theory by Sarada Herke (67 videos)](https://www.youtube.com/user/DrSaradaHerke/playlists?shelf_id=5&view=50&sort=dd) + +## Computer Science Courses + +- [Directory of Online CS Courses](https://github.com/open-source-society/computer-science) +- [Directory of CS Courses (many with online lectures)](https://github.com/prakhar1989/awesome-courses) + From a7a86eb9810960fcbc33551ff81a78f9b2849ec6 Mon Sep 17 00:00:00 2001 From: Sourabh Mhaisekar Date: Sat, 24 Dec 2016 12:51:53 +0530 Subject: [PATCH 089/109] Update README-hn.md Additional chunk of translation --- README-hn.md | 91 +++++++++++++++++++++++----------------------------- 1 file changed, 41 insertions(+), 50 deletions(-) diff --git a/README-hn.md b/README-hn.md index 1613b73..edf8873 100644 --- a/README-hn.md +++ b/README-hn.md @@ -12,9 +12,9 @@ ## अनुक्रमणिका - [यह क्या हे?](#what-is-it) -- [इसका क्य उपयोग करे?](#why-use-it) +- [इसका उपयोग क्यू करे?](#why-use-it) - [इसका कैसे उपयोग करे?](#how-to-use-it) -- [चलो गूगली मूड में](#get-in-a-googley-mood) +- [गूगली मूड में आ जाएँ](#get-in-a-googley-mood) - [क्या मुजे नौकरी मिली?](#did-i-get-the-job) - [मेरे साथ चले](#follow-along-with-me) - [कभीबी आप चालक नहीं हो ऐसा ना सोचो](#dont-feel-you-arent-smart-enough) @@ -51,41 +51,41 @@ - [डायनामिक प्रोग्रामिंग](#dynamic-programming) - [Combinatorics (n choose k) & Probability](#combinatorics-n-choose-k--probability) - [NP, NP-Complete and Approximation Algorithms](#np-np-complete-and-approximation-algorithms) - - [Garbage collection](#garbage-collection) - - [Caches](#caches) +    - [गार्बेज कलेक्शन](#garbage-collection) +    - [काशेस](#caches) - [Processes and Threads](#processes-and-threads) - [System Design, Scalability, Data Handling](#system-design-scalability-data-handling) - [Papers](#papers) - [Unicode](#unicode) - - [Emacs and vi(m)](#emacs-and-vim) - - [Unix command line tools](#unix-command-line-tools) - - [Testing](#testing) +    - [Emacs और vi(m)](#emacs-and-vim) +    - [Unix command line उपकरण](#unix-command-line-tools) +    - [परिक्षण](#testing) - [Design patterns](#design-patterns) - [Scheduling](#scheduling) - [Implement system routines](#implement-system-routines) - [String searching & manipulations](#string-searching--manipulations) -- [Final Review](#final-review) -- [Books](#books) -- [Coding exercises/challenges](#coding-exerciseschallenges) -- [Once you're closer to the interview](#once-youre-closer-to-the-interview) -- [Your Resume](#your-resume) -- [Be thinking of for when the interview comes](#be-thinking-of-for-when-the-interview-comes) -- [Have questions for the interviewer](#have-questions-for-the-interviewer) -- [Additional Learnings (not required)](#additional-learnings-not-required) - - [Information theory](#information-theory) - - [Parity & Hamming Code](#parity--hamming-code) - - [Entropy](#entropy) - - [Cryptography](#cryptography) - - [Compression](#compression) - - [Networking](#networking) - - [Computer Security](#computer-security) - - [Parallel Programming](#parallel-programming) +- [आखरी समीक्षा](#final-review) +- [पुस्तकें](#books) +- [कोडिंग अभ्यास/चुनौतियों](#coding-exerciseschallenges) +- [एक बार जब आप इंटरव्यू के करीब हो](#once-youre-closer-to-the-interview) +- [आपका रिज्यूमे](#your-resume) +- [इंटरव्यू की सोंच](#be-thinking-of-for-when-the-interview-comes) +- [इन्तेर्विएवर के लिए प्रश्न रखे](#have-questions-for-the-interviewer) +- [अतिरिक्त पढाई(जरुरत नहीं)](#additional-learnings-not-required) +    - [इनफार्मेशन थ्योरी](#information-theory) +    - [पारिटी और हैमिंग कोड](#parity--hamming-code) +    - [एन्थ्रोपी](#entropy) + - [क्रिप्टोग्राफी](#cryptography) + - [संक्षिप्तीकरण](#compression) +    - [नेटवर्किंग](#networking) +    - [संगणक सुरक्षा](#computer-security) +    - [परैल्लेल प्रोग्रामिंग](#parallel-programming) - [Messaging, Serialization, and Queueing Systems](#messaging-serialization-and-queueing-systems) - [Fast Fourier Transform](#fast-fourier-transform) - - [Bloom Filter](#bloom-filter) +    - [ब्लूम फ़िल्टर](#bloom-filter) - [van Emde Boas Trees](#van-emde-boas-trees) - [Augmented Data Structures](#augmented-data-structures) - - [Skip lists](#skip-lists) +    - [स्किप लिस्ट](#skip-lists) - [Network Flows](#network-flows) - [Disjoint Sets & Union Find](#disjoint-sets--union-find) - [Math for Fast Processing](#math-for-fast-processing) @@ -93,43 +93,34 @@ - [Linear Programming](#linear-programming) - [Geometry, Convex hull](#geometry-convex-hull) - [Discrete math](#discrete-math) - - [Machine Learning](#machine-learning) - - [Go](#go) -- [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) +    - [मशीन लर्निंग](#machine-learning) +    - [गो](#go) +- [कुछ विषयोकी अधिक जानकारी](#additional-detail-on-some-subjects) - [Video Series](#video-series) -- [Once You've Got The Job](#once-youve-got-the-job) +- [जब आपको नौकरी मिल जाये](#once-youve-got-the-job) --- -## Why use it? +## इसका उपयोग क्यू करे? -I'm following this plan to prepare for my Google interview. I've been building the web, building -services, and launching startups since 1997. I have an economics degree, not a CS degree. I've -been very successful in my career, but I want to work at Google. I want to progress into larger systems -and get a real understanding of computer systems, algorithmic efficiency, data structure performance, -low-level languages, and how it all works. And if you don't know any of it, Google won't hire you. +मैं यह योजना का अनुपालन गूगल इनेर्विएव के तयारी के लिए कर रहा हूँ. मैं १९९७ से वेब, सर्विसेज और स्टार्टअप का निर्माण कर रहा हूँ. मेरे पास संगणक शात्र की पदवी ना होक अर्थशात्र की पदवी हैं. मैं अपने कैरियर में बहुत सफल रहा हूँ, पर मुजे गूगल में काम करने की इच्छा हें. मैं एक बड़े सिस्टम में प्रगति और कंप्यूटर प्रणालियों की एक असली समझ प्राप्त करना चाहते हु, अल्गोरिथम की निपुणता, डाटा स्ट्रक्चर का निष्पादन, +लो-लेवल भाषाए, और वो कैसे काम करती हें. और अगर आपको एनमेंसे किसी की जानकारी नहीं हे तो गूगल आपको नियुन्क्त नहीं करेगा. +मैंने जब ये परियोजना शुरू की, तब मैं स्टैक और  हीप में फरक नहीं जनता था, मुजे नहीं पता था की Big-O क्या हे, ट्रीज क्या हे, या ग्राफ को पार कैसे करते हैं. अगर मुजे छाटने का अल्गोरिथम लिखना पड़ता तो मैं आपको ये बता सकता हु के वो इतना ख़ास नहीं होगा. जो भी डाटा स्ट्रक्चर का मैंने उपयोग किया वो भाषा में समाविष्ट था, और वो कैसे काम करता हे उसकी कोई जानकारी मुजे नहीं थी. मुजे कभी मेमोरी का संचालन नहीं करता पड़ा, जबतक मेरी चलाई कोई प्रोसेस "out of +memory" का एरर न दे, और तब मुजे कोई वैकल्पिक हल धुन्दाना पड़ता था. मैंने मेरी जिन्दगी में बहोत कम मुल्ती-डायमेंशनल ऐरे और बहोत सारे अस्सोसिअतिव् ऐरे का उपयोग किया हे, पर मैंने कोई भी डाटा स्ट्रक्चर शुरू से नहीं लिखा था. +पर इस अध्ययन योजना का उपयोग करने बाद मेरा नौकरी लगाने का आत्मविश्वास बहोत बढ़ा हें. यह एक लम्बी योजना हें. यह मेरे लिए बहोत महीनोतक चलेगी. अगर आपको ईंमैसे कुछ पता हैं तो आपको कम वक्त लगेगा. -When I started this project, I didn't know a stack from a heap, didn't know Big-O anything, anything about trees, or how to -traverse a graph. If I had to code a sorting algorithm, I can tell ya it wouldn't have been very good. -Every data structure I've ever used was built into the language, and I didn't know how they worked -under the hood at all. I've never had to manage memory, unless a process I was running would give an "out of -memory" error, and then I'd have to find a workaround. I've used a few multi-dimensional arrays in my life and -thousands of associative arrays, but I've never created data structures from scratch. -But after going through this study plan I have high confidence I'll be hired. It's a long plan. It's going to take me -months. If you are familiar with a lot of this already it will take you a lot less time. +## इसका कैसे उपयोग करे? -## How to use it +नीचे सब कुछ एक रूपरेखा है, और आप ऊपर से नीचे के क्रम में पढ़े. -Everything below is an outline, and you should tackle the items in order from top to bottom. +मैं Github के विशेष Markdown का उपयोग कर रहा हूँ, प्रगति की जाँच करने के लिए कार्य सूचियों का प्रयोग करे. -I'm using Github's special markdown flavor, including tasks lists to check progress. +- [] एक नई शाखा बनाएँ ताकि आप इस तरह की वस्तुओं की जांच कर सकते हैं, बस कोष्ठक में एक एक्स डाले: [x] -- [x] Create a new branch so you can check items like this, just put an x in the brackets: [x] +[Github-flavored markdown की अधिक जानकारी](https://guides.github.com/features/mastering-markdown/#GitHub-flavored-markdown) -[More about Github-flavored markdown](https://guides.github.com/features/mastering-markdown/#GitHub-flavored-markdown) - -## Get in a Googley Mood +## गूगली मूड में आ जाएँ Print out a "[future Googler](https://github.com/jwasham/google-interview-university/blob/master/extras/future-googler.pdf)" sign (or two) and keep your eyes on the prize. From 7cf04ab1eb832e66c2b3d66145201eb2ca10f3c3 Mon Sep 17 00:00:00 2001 From: Sourabh Mhaisekar Date: Sat, 24 Dec 2016 15:43:51 +0530 Subject: [PATCH 090/109] Update README-hn.md more translation --- README-hn.md | 57 ++++++++++++++++++++++++++-------------------------- 1 file changed, 29 insertions(+), 28 deletions(-) diff --git a/README-hn.md b/README-hn.md index edf8873..4b2374f 100644 --- a/README-hn.md +++ b/README-hn.md @@ -7,6 +7,7 @@ ![Coding at the whiteboard - from HBO's Silicon Valley](https://dng5l3qzreal6.cloudfront.net/2016/Aug/coding_board_small-1470866369118.jpg) यह लम्बी सूचि **गूगल कोचिंग नोट्स** से छाती एव विस्तारित की गयी हैं, ताकि इन बातो को आपको पता चल सके. मैंने आपके इंटरव्यू में मदत कर सकने वाले कुछ अतिरिक्त विषय सूचि के आखिर में डाले हे. + अनेक विषय स्टीव येग्गे की "[Get that job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html)" से हैं. --- @@ -116,29 +117,28 @@ memory" का एरर न दे, और तब मुजे कोई वै मैं Github के विशेष Markdown का उपयोग कर रहा हूँ, प्रगति की जाँच करने के लिए कार्य सूचियों का प्रयोग करे. -- [] एक नई शाखा बनाएँ ताकि आप इस तरह की वस्तुओं की जांच कर सकते हैं, बस कोष्ठक में एक एक्स डाले: [x] +- [x] एक नई शाखा बनाएँ ताकि आप इस तरह की वस्तुओं की जांच कर सकते हैं, बस कोष्ठक में एक एक्स डाले: [x] [Github-flavored markdown की अधिक जानकारी](https://guides.github.com/features/mastering-markdown/#GitHub-flavored-markdown) ## गूगली मूड में आ जाएँ -Print out a "[future Googler](https://github.com/jwasham/google-interview-university/blob/master/extras/future-googler.pdf)" sign (or two) and keep your eyes on the prize. +"[फ्यूचर गूगलर](https://github.com/jwasham/google-interview-university/blob/master/extras/future-googler.pdf)" साइन की एक (या दो) प्रिंट निकाले और अपने पुरस्कार को आपने नजरो के सामने रखे. [![future Googler sign](https://dng5l3qzreal6.cloudfront.net/2016/Oct/Screen_Shot_2016_10_04_at_10_13_24_AM-1475601104364.png)](https://github.com/jwasham/google-interview-university/blob/master/extras/future-googler.pdf) -## Did I Get the Job? +## क्या मुजे नौकरी मिली? -I haven't applied yet. +मैंने अभीतक प्रयुक्त नहीं किया हें. -I still have a few days in the learning phase (finishing up this crazy list), and starting next week all -I'll be doing is programming questions all day long. That will continue for a few weeks, and then I'll -apply through a referral I've been holding onto since February (yes, February). +मुजे अभीभी कुछ दींन हे ये सूचि समाप्त करने के लिए, और आगे पुरे हफ्ते से में पूरा दिनप्रोग्रामिंग प्रश्न करने वाला हु. ये कुछ हफ्ते तक चलेगा और फिर मैं मेरे रेफेरेल जो की मैं  फेब्रुअरी से रखा हे उससे नौकरी का अर्ज दूंगा. Thanks for the referral, JP. -## Follow Along with Me -I'm on the journey, too. Follow along on my blog at [GoogleyAsHeck.com](https://googleyasheck.com/) +## मेरे साथ चले + +मैं एक सफ़र पर हु, मेरे साथ चलिए मेरे ब्लॉग से साथ [GoogleyAsHeck.com](https://googleyasheck.com/) - Twitter: [@googleyasheck](https://twitter.com/googleyasheck) - Twitter: [@StartupNextDoor](https://twitter.com/StartupNextDoor) @@ -147,30 +147,31 @@ I'm on the journey, too. Follow along on my blog at [GoogleyAsHeck.com](https:// ![John Washam - Google Interview University](https://dng5l3qzreal6.cloudfront.net/2016/Aug/book_stack_photo_resized_18_1469302751157-1472661280368.png) -## Don't feel you aren't smart enough -- Google engineers are smart, but many have an insecurity that they aren't smart enough, even though they work at Google. +## कभीबी आप चालक नहीं हो ऐसा ना सोचो + +- गोगल के अभियंता चालक होते हें, पर बहोत लोगो असुरक्षा होती हे की वो नहीं चालक नहीं हें, जबकि वो गूगल में काम करते हें! - [The myth of the Genius Programmer](https://www.youtube.com/watch?v=0SARbwvhupQ) -## About Google +## गूगल के बारे में -- [x] For students - [Google Careers: Technical Development Guide](https://www.google.com/about/careers/students/guide-to-technical-development.html) -- [ ] How Search Works: - - [ ] [The Evolution of Search (video)](https://www.youtube.com/watch?v=mTBShTwCnD4) - - [ ] [How Search Works - the story](https://www.google.com/insidesearch/howsearchworks/thestory/) - - [ ] [How Search Works](https://www.google.com/insidesearch/howsearchworks/) - - [ ] [How Search Works - Matt Cutts (video)](https://www.youtube.com/watch?v=BNHR6IQJGZs) - - [ ] [How Google makes improvements to its search algorithm (video)](https://www.youtube.com/watch?v=J5RZOU6vK4Q) -- [ ] Series: - - [ ] [How Google Search Dealt With Mobile](https://backchannel.com/how-google-search-dealt-with-mobile-33bc09852dc9) - - [ ] [Google's Secret Study To Find Out Our Needs](https://backchannel.com/googles-secret-study-to-find-out-our-needs-eba8700263bf) - - [ ] [Google Search Will Be Your Next Brain](https://backchannel.com/google-search-will-be-your-next-brain-5207c26e4523) - - [ ] [The Deep Mind Of Demis Hassabis](https://backchannel.com/the-deep-mind-of-demis-hassabis-156112890d8a) -- [ ] [Book: How Google Works](https://www.amazon.com/How-Google-Works-Eric-Schmidt/dp/1455582344) -- [ ] [Made by Google announcement - Oct 2016 (video)](https://www.youtube.com/watch?v=spDg-Q7zmcM) +- [ ] छात्रों के लिए - [Google Careers: Technical Development Guide](https://www.google.com/about/careers/students/guide-to-technical-development.html) +- [ ] सर्च कैसे काम करता हे: +    - [ ] [सर्च का विकास (विडियो)](https://www.youtube.com/watch?v=mTBShTwCnD4) +    - [ ] [सर्च कैसे काम करता हैं - एक कहानी](https://www.google.com/insidesearch/howsearchworks/thestory/) + - [ ] [सर्च कैसे काम करता हैं](https://www.google.com/insidesearch/howsearchworks/) +    - [ ] [सर्च कैसे काम करता हैं - मैट कट्ट्स (विडियो)](https://www.youtube.com/watch?v=BNHR6IQJGZs) +    - [ ] [कैसे गूगल अपने सर्च एल्गोरिथ्म में सुधार करता है (विडियो)](https://www.youtube.com/watch?v=J5RZOU6vK4Q) +- [ ] शृंखला: +    - [ ] [How Google Search Dealt With Mobile](https://backchannel.com/how-google-search-dealt-with-mobile-33bc09852dc9) +    - [ ] [हमारी जरूरत पता लगाने के लिए गूगल का गुप्त अध्ययन ](https://backchannel.com/googles-secret-study-to-find-out-our-needs-eba8700263bf) +    - [ ] [गूगल सर्च आपका अगला दिमाग होगा](https://backchannel.com/google-search-will-be-your-next-brain-5207c26e4523) +    - [ ] [Demis Hassabis का गहरा मन](https://backchannel.com/the-deep-mind-of-demis-hassabis-156112890d8a) +- [ ] [पुष्तक: गूगल कैसे काम करता हैं](https://www.amazon.com/How-Google-Works-Eric-Schmidt/dp/1455582344) +- [ ] [Made by Google घोषणा - ओक्टोबर २०१६ (विडियो)](https://www.youtube.com/watch?v=spDg-Q7zmcM) -## About Video Resources +## विडियो संसाधनों के बारे में -Some videos are available only by enrolling in a Coursera, EdX, or Lynda.com class. These are called MOOCs. +कुछ विडियो सिर्फ Coursera, EdX, or Lynda.com के वर्ग में दाखिला लेने का बाद ही उपलब्ध हैं. उन्हें MOOC कहा जाता हैं. It is free to do so, but sometimes the classes are not in session so you have to wait a couple of months, so you have no access. I'd appreciate your help converting the MOOC video links to public sources to replace the online course videos over time. I like using university lectures. From a48873312cded1daa6ac0f3dcbb90f4bb48f0718 Mon Sep 17 00:00:00 2001 From: Sourabh Mhaisekar Date: Sat, 24 Dec 2016 15:52:53 +0530 Subject: [PATCH 091/109] Update README-hn.md Test Link --- README-hn.md | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/README-hn.md b/README-hn.md index 4b2374f..d2f4e99 100644 --- a/README-hn.md +++ b/README-hn.md @@ -9,10 +9,11 @@ यह लम्बी सूचि **गूगल कोचिंग नोट्स** से छाती एव विस्तारित की गयी हैं, ताकि इन बातो को आपको पता चल सके. मैंने आपके इंटरव्यू में मदत कर सकने वाले कुछ अतिरिक्त विषय सूचि के आखिर में डाले हे. अनेक विषय स्टीव येग्गे की "[Get that job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html)" से हैं. + --- ## अनुक्रमणिका -- [यह क्या हे?](#what-is-it) +- [यह क्या हे?](#यह-क्या-हे) - [इसका उपयोग क्यू करे?](#why-use-it) - [इसका कैसे उपयोग करे?](#how-to-use-it) - [गूगली मूड में आ जाएँ](#get-in-a-googley-mood) From 653b4bc4d97ee572251a6766cc3773f65fc44d7e Mon Sep 17 00:00:00 2001 From: Sourabh Mhaisekar Date: Sat, 24 Dec 2016 15:56:15 +0530 Subject: [PATCH 092/109] Update README-hn.md Link updated --- README-hn.md | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/README-hn.md b/README-hn.md index d2f4e99..7467220 100644 --- a/README-hn.md +++ b/README-hn.md @@ -14,14 +14,14 @@ ## अनुक्रमणिका - [यह क्या हे?](#यह-क्या-हे) -- [इसका उपयोग क्यू करे?](#why-use-it) -- [इसका कैसे उपयोग करे?](#how-to-use-it) -- [गूगली मूड में आ जाएँ](#get-in-a-googley-mood) -- [क्या मुजे नौकरी मिली?](#did-i-get-the-job) -- [मेरे साथ चले](#follow-along-with-me) -- [कभीबी आप चालक नहीं हो ऐसा ना सोचो](#dont-feel-you-arent-smart-enough) -- [गूगल के बारे में](#about-google) -- [विडियो संसाधनों के बारे में](#about-video-resources) +- [इसका उपयोग क्यू करे?](#इसका-उपयोग-क्यू-करे) +- [इसका कैसे उपयोग करे?](#इसका-कैसे-उपयोग-करे) +- [गूगली मूड में आ जाएँ](#गूगली-मूड-में-आ-जाएँ) +- [क्या मुजे नौकरी मिली?](#क्या-मुजे-नौकरी-मिली) +- [मेरे साथ चले](#मेरे-साथ-चले) +- [कभीबी आप चालक नहीं हो ऐसा ना सोचो](#कभीबी-आप-चालक-नहीं-हो-ऐसा-ना-सोचो) +- [गूगल के बारे में](#गूगल-के-बारे-में) +- [विडियो संसाधनों के बारे में](#विडियो-संसाधनों-के-बारे-में) - [इंटरव्यू प्रकिया और साधारण इंटरव्यू तयारी](#interview-process--general-interview-prep) - [इंटरव्यू के लिए एक संगणक भाषा चुने](#pick-one-language-for-the-interview) - [प्रारंभ करने से पहले](#before-you-get-started) From e31335a4fb81754d8dc1c537fd90d05a66640f35 Mon Sep 17 00:00:00 2001 From: Pavlo Kapyshin Date: Sat, 24 Dec 2016 13:22:14 +0200 Subject: [PATCH 093/109] Begin Ukrainian translation --- README-uk.md | 2018 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2018 insertions(+) create mode 100644 README-uk.md diff --git a/README-uk.md b/README-uk.md new file mode 100644 index 0000000..07f48c9 --- /dev/null +++ b/README-uk.md @@ -0,0 +1,2018 @@ +# Google Interview University + +Original: [англійською](README.md) + +## Що це? + +Це мій багатомісячний навчальний план для перетворення з веб-розробника (самоучки без ступеню з CS) +на розробника програмного забезпечення у Google. + +![Програмування у дошки — з серіалу «Silicon Valley» HBO](https://dng5l3qzreal6.cloudfront.net/2016/Aug/coding_board_small-1470866369118.jpg) + +This long list has been extracted and expanded from **Google's coaching notes**, so these are the things you need to know. +There are extra items I added at the bottom that may come up in the interview or be helpful in solving a problem. Many items are from +Steve Yegge's "[Get that job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html)" and are reflected +sometimes word-for-word in Google's coaching notes. + +I've pared down what you need to know from what Yegge recommends. I've altered Yegge's requirements +from information received from my contact at Google. This is meant for **new software engineers** or those switching from +software/web development to software engineering (where computer science knowledge is required). If you have +many years of experience and are claiming many years of software engineering experience, expect a harder interview. +[Read more here](https://googleyasheck.com/what-you-need-to-know-for-your-google-interview-and-what-you-dont/). + +If you have many years of software/web development experience, note that Google views software engineering as +different from software/web development and they require computer science knowledge. + +If you want to be a reliability engineer or systems engineer, study more from the optional list (networking, security). + +--- + +## Table of Contents + +- [What is it?](#what-is-it) +- [Why use it?](#why-use-it) +- [How to use it](#how-to-use-it) +- [Get in a Googley Mood](#get-in-a-googley-mood) +- [Did I Get the Job?](#did-i-get-the-job) +- [Follow Along with Me](#follow-along-with-me) +- [Don't feel you aren't smart enough](#dont-feel-you-arent-smart-enough) +- [About Google](#about-google) +- [About Video Resources](#about-video-resources) +- [Interview Process & General Interview Prep](#interview-process--general-interview-prep) +- [Pick One Language for the Interview](#pick-one-language-for-the-interview) +- [Book List](#book-list) +- [Before you Get Started](#before-you-get-started) +- [What you Won't See Covered](#what-you-wont-see-covered) +- [Prerequisite Knowledge](#prerequisite-knowledge) +- [The Daily Plan](#the-daily-plan) +- [Algorithmic complexity / Big-O / Asymptotic analysis](#algorithmic-complexity--big-o--asymptotic-analysis) +- [Data Structures](#data-structures) + - [Arrays](#arrays) + - [Linked Lists](#linked-lists) + - [Stack](#stack) + - [Queue](#queue) + - [Hash table](#hash-table) +- [More Knowledge](#more-knowledge) + - [Binary search](#binary-search) + - [Bitwise operations](#bitwise-operations) +- [Trees](#trees) + - [Trees - Notes & Background](#trees---notes--background) + - [Binary search trees: BSTs](#binary-search-trees-bsts) + - [Heap / Priority Queue / Binary Heap](#heap--priority-queue--binary-heap) + - balanced search trees (general concept, not details) + - traversals: preorder, inorder, postorder, BFS, DFS +- [Sorting](#sorting) + - selection + - insertion + - heapsort + - quicksort + - merge sort +- [Graphs](#graphs) + - directed + - undirected + - adjacency matrix + - adjacency list + - traversals: BFS, DFS +- [Even More Knowledge](#even-more-knowledge) + - [Recursion](#recursion) + - [Object-Oriented Programming](#object-oriented-programming) + - [Design Patterns](#design-patterns) + - [Combinatorics (n choose k) & Probability](#combinatorics-n-choose-k--probability) + - [NP, NP-Complete and Approximation Algorithms](#np-np-complete-and-approximation-algorithms) + - [Caches](#caches) + - [Processes and Threads](#processes-and-threads) + - [Papers](#papers) + - [Testing](#testing) + - [Scheduling](#scheduling) + - [Implement system routines](#implement-system-routines) + - [String searching & manipulations](#string-searching--manipulations) +- [System Design, Scalability, Data Handling](#system-design-scalability-data-handling) (if you have 4+ years experience) +- [Final Review](#final-review) +- [Coding Question Practice](#coding-question-practice) +- [Coding exercises/challenges](#coding-exerciseschallenges) +- [Once you're closer to the interview](#once-youre-closer-to-the-interview) +- [Your Resume](#your-resume) +- [Be thinking of for when the interview comes](#be-thinking-of-for-when-the-interview-comes) +- [Have questions for the interviewer](#have-questions-for-the-interviewer) +- [Once You've Got The Job](#once-youve-got-the-job) + +---------------- Everything below this point is optional ---------------- + +- [Additional Books](#additional-books) +- [Additional Learning](#additional-learning) + - [Dynamic Programming](#dynamic-programming) + - [Compilers](#compilers) + - [Floating Point Numbers](#floating-point-numbers) + - [Unicode](#unicode) + - [Endianness](#endianness) + - [Emacs and vi(m)](#emacs-and-vim) + - [Unix command line tools](#unix-command-line-tools) + - [Information theory](#information-theory) + - [Parity & Hamming Code](#parity--hamming-code) + - [Entropy](#entropy) + - [Cryptography](#cryptography) + - [Compression](#compression) + - [Networking](#networking) (if you have networking experience or want to be a systems engineer, expect questions) + - [Computer Security](#computer-security) + - [Garbage collection](#garbage-collection) + - [Parallel Programming](#parallel-programming) + - [Messaging, Serialization, and Queueing Systems](#messaging-serialization-and-queueing-systems) + - [Fast Fourier Transform](#fast-fourier-transform) + - [Bloom Filter](#bloom-filter) + - [HyperLogLog](#hyperloglog) + - [Locality-Sensitive Hashing](#locality-sensitive-hashing) + - [van Emde Boas Trees](#van-emde-boas-trees) + - [Augmented Data Structures](#augmented-data-structures) + - [Tries](#tries) + - [N-ary (K-ary, M-ary) trees](#n-ary-k-ary-m-ary-trees) + - [Balanced search trees](#balanced-search-trees) + - AVL trees + - Splay trees + - Red/black trees + - 2-3 search trees + - 2-3-4 Trees (aka 2-4 trees) + - N-ary (K-ary, M-ary) trees + - B-Trees + - [k-D Trees](#k-d-trees) + - [Skip lists](#skip-lists) + - [Network Flows](#network-flows) + - [Disjoint Sets & Union Find](#disjoint-sets--union-find) + - [Math for Fast Processing](#math-for-fast-processing) + - [Treap](#treap) + - [Linear Programming](#linear-programming) + - [Geometry, Convex hull](#geometry-convex-hull) + - [Discrete math](#discrete-math) + - [Machine Learning](#machine-learning) + - [Go](#go) +- [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) +- [Video Series](#video-series) +- [Computer Science Courses](#computer-science-courses) + +--- + +## Why use it? + +I'm following this plan to prepare for my Google interview. I've been building the web, building +services, and launching startups since 1997. I have an economics degree, not a CS degree. I've +been very successful in my career, but I want to work at Google. I want to progress into larger systems +and get a real understanding of computer systems, algorithmic efficiency, data structure performance, +low-level languages, and how it all works. And if you don't know any of it, Google won't hire you. + +When I started this project, I didn't know a stack from a heap, didn't know Big-O anything, anything about trees, or how to +traverse a graph. If I had to code a sorting algorithm, I can tell ya it wouldn't have been very good. +Every data structure I've ever used was built into the language, and I didn't know how they worked +under the hood at all. I've never had to manage memory unless a process I was running would give an "out of +memory" error, and then I'd have to find a workaround. I've used a few multidimensional arrays in my life and +thousands of associative arrays, but I've never created data structures from scratch. + +But after going through this study plan I have high confidence I'll be hired. It's a long plan. It's going to take me +months. If you are familiar with a lot of this already it will take you a lot less time. + +## How to use it + +Everything below is an outline, and you should tackle the items in order from top to bottom. + +I'm using Github's special markdown flavor, including tasks lists to check progress. + +- [x] Create a new branch so you can check items like this, just put an x in the brackets: [x] + + + Fork a branch and follow the commands below + +`git checkout -b progress` + +`git remote add jwasham https://github.com/jwasham/google-interview-university` + +`git fetch --all` + + Mark all boxes with X after you completed your changes + +`git add . ` + +`git commit -m "Marked x" ` + +`git rebase jwasham/master ` + +`git push --force ` + +[More about Github-flavored markdown](https://guides.github.com/features/mastering-markdown/#GitHub-flavored-markdown) + +## Get in a Googley Mood + +Print out a "[future Googler](https://github.com/jwasham/google-interview-university/blob/master/extras/future-googler.pdf)" sign (or two) and keep your eyes on the prize. + +[![future Googler sign](https://dng5l3qzreal6.cloudfront.net/2016/Oct/Screen_Shot_2016_10_04_at_10_13_24_AM-1475601104364.png)](https://github.com/jwasham/google-interview-university/blob/master/extras/future-googler.pdf) + +## Did I Get the Job? + +I'm in the queue right now. Hope to interview soon. + + Thanks for the referral, JP. + +## Follow Along with Me + +My story: [Why I Studied Full-Time for 8 Months for a Google Interview](https://medium.com/@googleyasheck/why-i-studied-full-time-for-8-months-for-a-google-interview-cc662ce9bb13) + +I'm on the journey, too. Follow along: + +- **Blog**: [GoogleyAsHeck.com](https://googleyasheck.com/) +- Twitter: [@googleyasheck](https://twitter.com/googleyasheck) +- Twitter: [@StartupNextDoor](https://twitter.com/StartupNextDoor) +- Google+: [+Googleyasheck](https://plus.google.com/+Googleyasheck) +- LinkedIn: [johnawasham](https://www.linkedin.com/in/johnawasham) + +![John Washam - Google Interview University](https://dng5l3qzreal6.cloudfront.net/2016/Aug/book_stack_photo_resized_18_1469302751157-1472661280368.png) + +## Don't feel you aren't smart enough +- Google engineers are smart, but many have an insecurity that they aren't smart enough, even though they work at Google. +- [The myth of the Genius Programmer](https://www.youtube.com/watch?v=0SARbwvhupQ) +- [It's Dangerous to Go Alone: Battling the Invisible Monsters in Tech](https://www.youtube.com/watch?v=1i8ylq4j_EY) + +## About Google + +- [ ] For students - [Google Careers: Technical Development Guide](https://www.google.com/about/careers/students/guide-to-technical-development.html) +- [ ] How Search Works: + - [ ] [The Evolution of Search (video)](https://www.youtube.com/watch?v=mTBShTwCnD4) + - [ ] [How Search Works - the story](https://www.google.com/insidesearch/howsearchworks/thestory/) + - [ ] [How Search Works](https://www.google.com/insidesearch/howsearchworks/) + - [ ] [How Search Works - Matt Cutts (video)](https://www.youtube.com/watch?v=BNHR6IQJGZs) + - [ ] [How Google makes improvements to its search algorithm (video)](https://www.youtube.com/watch?v=J5RZOU6vK4Q) +- [ ] Series: + - [ ] [How Google Search Dealt With Mobile](https://backchannel.com/how-google-search-dealt-with-mobile-33bc09852dc9) + - [ ] [Google's Secret Study To Find Out Our Needs](https://backchannel.com/googles-secret-study-to-find-out-our-needs-eba8700263bf) + - [ ] [Google Search Will Be Your Next Brain](https://backchannel.com/google-search-will-be-your-next-brain-5207c26e4523) + - [ ] [The Deep Mind Of Demis Hassabis](https://backchannel.com/the-deep-mind-of-demis-hassabis-156112890d8a) +- [ ] [Book: How Google Works](https://www.amazon.com/How-Google-Works-Eric-Schmidt/dp/1455582344) +- [ ] [Made by Google announcement - Oct 2016 (video)](https://www.youtube.com/watch?v=q4y0KOeXViI) + +## About Video Resources + +Some videos are available only by enrolling in a Coursera, EdX, or Lynda.com class. These are called MOOCs. +Sometimes the classes are not in session so you have to wait a couple of months, so you have no access. Lynda.com courses are not free. + + I'd appreciate your help to add free and always-available public sources, such as YouTube videos to accompany the online course videos. + I like using university lectures. + + +## Interview Process & General Interview Prep + +- [ ] Videos: + - [ ] [How to Work at Google: Prepare for an Engineering Interview (video)](https://www.youtube.com/watch?v=ko-KkSmp-Lk) + - [ ] [How to Work at Google: Example Coding/Engineering Interview (video)](https://www.youtube.com/watch?v=XKu_SEDAykw) + - [ ] [How to Work at Google - Candidate Coaching Session (video)](https://www.youtube.com/watch?v=oWbUtlUhwa8&feature=youtu.be) + - [ ] [Google Recruiters Share Technical Interview Tips (video)](https://www.youtube.com/watch?v=qc1owf2-220&feature=youtu.be) + - [ ] [How to Work at Google: Tech Resume Preparation (video)](https://www.youtube.com/watch?v=8npJLXkcmu8) + +- [ ] Articles: + - [ ] [Becoming a Googler in Three Steps](http://www.google.com/about/careers/lifeatgoogle/hiringprocess/) + - [ ] [Get That Job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html) + - all the things he mentions that you need to know are listed below + - [ ] _(very dated)_ [How To Get A Job At Google, Interview Questions, Hiring Process](http://dondodge.typepad.com/the_next_big_thing/2010/09/how-to-get-a-job-at-google-interview-questions-hiring-process.html) + - [ ] [Phone Screen Questions](http://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions) + +- [ ] Prep Courses: + - [ ] [Software Engineer Interview Unleashed (paid course)](https://www.udemy.com/software-engineer-interview-unleashed): + - Learn how to make yourself ready for software engineer interviews from a former Google interviewer. + +- [ ] Additional (not suggested by Google but I added): + - [ ] [ABC: Always Be Coding](https://medium.com/always-be-coding/abc-always-be-coding-d5f8051afce2#.4heg8zvm4) + - [ ] [Four Steps To Google Without A Degree](https://medium.com/always-be-coding/four-steps-to-google-without-a-degree-8f381aa6bd5e#.asalo1vfx) + - [ ] [Whiteboarding](https://medium.com/@dpup/whiteboarding-4df873dbba2e#.hf6jn45g1) + - [ ] [How Google Thinks About Hiring, Management And Culture](http://www.kpcb.com/blog/lessons-learned-how-google-thinks-about-hiring-management-and-culture) + - [ ] [Effective Whiteboarding during Programming Interviews](http://www.coderust.com/blog/2014/04/10/effective-whiteboarding-during-programming-interviews/) + - [ ] Cracking The Coding Interview Set 1: + - [ ] [Gayle L McDowell - Cracking The Coding Interview (video)](https://www.youtube.com/watch?v=rEJzOhC5ZtQ) + - [ ] [Cracking the Coding Interview with Author Gayle Laakmann McDowell (video)](https://www.youtube.com/watch?v=aClxtDcdpsQ) + - [ ] How to Get a Job at the Big 4: + - [ ] ['How to Get a Job at the Big 4 - Amazon, Facebook, Google & Microsoft' (video)](https://www.youtube.com/watch?v=YJZCUhxNCv8) + - [ ] [Failing at Google Interviews](http://alexbowe.com/failing-at-google-interviews/) + +## Pick One Language for the Interview + +I wrote this short article about it: [Important: Pick One Language for the Google Interview](https://googleyasheck.com/important-pick-one-language-for-the-google-interview/) + +You can use a language you are comfortable in to do the coding part of the interview, but for Google, these are solid choices: + +- C++ +- Java +- Python + +You could also use these, but read around first. There may be caveats: + +- JavaScript +- Ruby + +You need to be very comfortable in the language and be knowledgeable. + +Read more about choices: +- http://www.byte-by-byte.com/choose-the-right-language-for-your-coding-interview/ +- http://blog.codingforinterviews.com/best-programming-language-jobs/ +- https://www.quora.com/What-is-the-best-language-to-program-in-for-an-in-person-Google-interview + +[See language resources here](programming-language-resources.md) + +You'll see some C, C++, and Python learning included below, because I'm learning. There are a few books involved, see the bottom. + +## Book List + +This is a shorter list than what I used. This is abbreviated to save you time. + +### Interview Prep + +- [ ] [Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition](http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html) + - answers in C++ and Java + - recommended in Google candidate coaching + - this is a good warm-up for Cracking the Coding Interview + - not too difficult, most problems may be easier than what you'll see in an interview (from what I've read) +- [ ] [Cracking the Coding Interview, 6th Edition](http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/) + - answers in Java + - recommended on the [Google Careers site](https://www.google.com/about/careers/how-we-hire/interview/) + - If you see people reference "The Google Resume", it was a book replaced by "Cracking the Coding Interview". + +If you have tons of extra time: + +- [ ] [Elements of Programming Interviews](https://www.amazon.com/Elements-Programming-Interviews-Insiders-Guide/dp/1479274836) + - all code is in C++, very good if you're looking to use C++ in your interview + - a good book on problem solving in general. + +### Computer Architecture + +If short on time: + +- [ ] [Write Great Code: Volume 1: Understanding the Machine](https://www.amazon.com/Write-Great-Code-Understanding-Machine/dp/1593270038) + - The book was published in 2004, and is somewhat outdated, but it's a terrific resource for understanding a computer in brief. + - The author invented HLA, so take mentions and examples in HLA with a grain of salt. Not widely used, but decent examples of what assembly looks like. + - These chapters are worth the read to give you a nice foundation: + - Chapter 2 - Numeric Representation + - Chapter 3 - Binary Arithmetic and Bit Operations + - Chapter 4 - Floating-Point Representation + - Chapter 5 - Character Representation + - Chapter 6 - Memory Organization and Access + - Chapter 7 - Composite Data Types and Memory Objects + - Chapter 9 - CPU Architecture + - Chapter 10 - Instruction Set Architecture + - Chapter 11 - Memory Architecture and Organization + +If you have more time (I want this book): + +- [ ] [Computer Architecture, Fifth Edition: A Quantitative Approach](https://www.amazon.com/dp/012383872X/) + - For a richer, more up-to-date (2011), but longer treatment + +### Language Specific + +**You need to choose a language for the interview (see above).** Here are my recommendations by language. I don't have resources for all languages. I welcome additions. + +If you read though one of these, you should have all the data structures and algorithms knowledge you'll need to start doing coding problems. +**You can skip all the video lectures in this project**, unless you'd like a review. + +[Additional language-specific resources here.](programming-language-resources.md) + +### C++ + +I haven't read these two, but they are highly rated and written by Sedgewick. He's awesome. + +- [ ] [Algorithms in C++, Parts 1-4: Fundamentals, Data Structure, Sorting, Searching](https://www.amazon.com/Algorithms-Parts-1-4-Fundamentals-Structure/dp/0201350882/) +- [ ] [Algorithms in C++ Part 5: Graph Algorithms](https://www.amazon.com/Algorithms-Part-Graph-3rd-Pt-5/dp/0201361183/) + +If you have a better recommendation for C++, please let me know. Looking for a comprehensive resource. + +### Java + +- [ ] [Algorithms (Sedgewick and Wayne)](https://www.amazon.com/Algorithms-4th-Robert-Sedgewick/dp/032157351X/) + - videos with book content (and Sedgewick!): + - [Algorithms I](https://www.youtube.com/user/algorithmscourses/playlists?view=50&sort=dd&shelf_id=2) + - [Algorithms II](https://www.youtube.com/user/algorithmscourses/playlists?shelf_id=3&view=50&sort=dd) + +OR: + +- [ ] [Data Structures and Algorithms in Java](https://www.amazon.com/Data-Structures-Algorithms-Michael-Goodrich/dp/1118771338/) + - by Goodrich, Tamassia, Goldwasser + - used as optional text for CS intro course at UC Berkeley + - see my book report on the Python version below. This book covers the same topics. + +### Python + +- [ ] [Data Structures and Algorithms in Python](https://www.amazon.com/Structures-Algorithms-Python-Michael-Goodrich/dp/1118290275/) + - by Goodrich, Tamassia, Goldwasser + - I loved this book. It covered everything and more. + - Pythonic code + - my glowing book report: https://googleyasheck.com/book-report-data-structures-and-algorithms-in-python/ + + +### Optional Books + +**Some people recommend these, but I think it's going overboard, unless you have many years of software engineering experience and expect a much harder interview:** + +- [ ] [Algorithm Design Manual](http://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202) (Skiena) + - As a review and problem recognition + - The algorithm catalog portion is well beyond the scope of difficulty you'll get in an interview. + - This book has 2 parts: + - class textbook on data structures and algorithms + - pros: + - is a good review as any algorithms textbook would be + - nice stories from his experiences solving problems in industry and academia + - code examples in C + - cons: + - can be as dense or impenetrable as CLRS, and in some cases, CLRS may be a better alternative for some subjects + - chapters 7, 8, 9 can be painful to try to follow, as some items are not explained well or require more brain than I have + - don't get me wrong: I like Skiena, his teaching style, and mannerisms, but I may not be Stony Brook material. + - algorithm catalog: + - this is the real reason you buy this book. + - about to get to this part. Will update here once I've made my way through it. + - To quote Yegge: "More than any other book it helped me understand just how astonishingly commonplace + (and important) graph problems are – they should be part of every working programmer's toolkit. The book also + covers basic data structures and sorting algorithms, which is a nice bonus. But the gold mine is the second half + of the book, which is a sort of encyclopedia of 1-pagers on zillions of useful problems and various ways to solve + them, without too much detail. Almost every 1-pager has a simple picture, making it easy to remember. This is a + great way to learn how to identify hundreds of problem types." + - Can rent it on kindle + - Half.com is a great resource for textbooks at good prices. + - Answers: + - [Solutions](http://www.algorithm.cs.sunysb.edu/algowiki/index.php/The_Algorithms_Design_Manual_(Second_Edition)) + - [Solutions](http://blog.panictank.net/category/algorithmndesignmanualsolutions/page/2/) + - [Errata](http://www3.cs.stonybrook.edu/~skiena/algorist/book/errata) + +- [ ] [Introduction to Algorithms](https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844) + - **Important:** Reading this book will only have limited value. This book is a great review of algorithms and data structures, but won't teach you how to write good code. You have to be able to code a decent solution efficiently. + - To quote Yegge: "But if you want to come into your interviews *prepped*, then consider deferring your application until you've made your way through that book." + - Half.com is a great resource for textbooks at good prices. + - aka CLR, sometimes CLRS, because Stein was late to the game + +- [ ] [Programming Pearls](http://www.amazon.com/Programming-Pearls-2nd-Jon-Bentley/dp/0201657880) + - The first couple of chapters present clever solutions to programming problems (some very old using data tape) but + that is just an intro. This a guidebook on program design and architecture, much like Code Complete, but much shorter. + +- ~~"Algorithms and Programming: Problems and Solutions" by Shen~~ + - A fine book, but after working through problems on several pages I got frustrated with the Pascal, do while loops, 1-indexed arrays, and unclear post-condition satisfaction results. + - Would rather spend time on coding problems from another book or online coding problems. + + +## Before you Get Started + +This list grew over many months, and yes, it kind of got out of hand. + +Here are some mistakes I made so you'll have a better experience. + +### 1. You Won't Remember it All + +I watched hours of videos and took copious notes, and months later there was much I didn't remember. I spent 3 days going +through my notes and making flashcards so I could review. + +Read please so you won't make my mistakes: + +[Retaining Computer Science Knowledge](https://googleyasheck.com/retaining-computer-science-knowledge/) + +### 2. Use Flashcards + +To solve the problem, I made a little flashcards site where I could add flashcards of 2 types: general and code. +Each card has different formatting. + +I made a mobile-first website so I could review on my phone and tablet, wherever I am. + +Make your own for free: + +- [Flashcards site repo](https://github.com/jwasham/computer-science-flash-cards) +- [My flash cards database](https://github.com/jwasham/computer-science-flash-cards/blob/master/cards-jwasham.db): Keep in mind I went overboard and have cards covering everything from assembly language and Python trivia to machine learning and statistics. It's way too much for what's required by Google. + +**Note on flashcards:** The first time you recognize you know the answer, don't mark it as known. You have to see the +same card and answer it several times correctly before you really know it. Repetition will put that knowledge deeper in +your brain. + +An alternative to using my flashcard site is [Anki](http://ankisrs.net/), which has been recommended to me numerous times. It uses a repetition system to help you remember. +It's user-friendly, available on all platforms and has a cloud sync system. It costs $25 on iOS but is free on other platforms. + +My flashcard database in Anki format: https://ankiweb.net/shared/info/25173560 (thanks [@xiewenya](https://github.com/xiewenya)) + +### 3. Review, review, review + +I keep a set of cheat sheets on ASCII, OSI stack, Big-O notations, and more. I study them when I have some spare time. + +Take a break from programming problems for a half hour and go through your flashcards. + +### 4. Focus + +There are a lot of distractions that can take up valuable time. Focus and concentration are hard. + +## What you won't see covered + +This big list all started as a personal to-do list made from Google interview coaching notes. These are prevalent +technologies but were not mentioned in those notes: + +- SQL +- Javascript +- HTML, CSS, and other front-end technologies + +## The Daily Plan + +Some subjects take one day, and some will take multiple days. Some are just learning with nothing to implement. + +Each day I take one subject from the list below, watch videos about that subject, and write an implementation in: +- C - using structs and functions that take a struct * and something else as args. +- C++ - without using built-in types +- C++ - using built-in types, like STL's std::list for a linked list +- Python - using built-in types (to keep practicing Python) +- and write tests to ensure I'm doing it right, sometimes just using simple assert() statements +- You may do Java or something else, this is just my thing. + +You don't need all these. You need only [one language for the interview](#pick-one-language-for-the-interview). + +Why code in all of these? +- Practice, practice, practice, until I'm sick of it, and can do it with no problem (some have many edge cases and bookkeeping details to remember) +- Work within the raw constraints (allocating/freeing memory without help of garbage collection (except Python)) +- Make use of built-in types so I have experience using the built-in tools for real-world use (not going to write my own linked list implementation in production) + +I may not have time to do all of these for every subject, but I'll try. + +You can see my code here: + - [C] (https://github.com/jwasham/practice-c) + - [C++] (https://github.com/jwasham/practice-cpp) + - [Python] (https://github.com/jwasham/practice-python) + +You don't need to memorize the guts of every algorithm. + +Write code on a whiteboard or paper, not a computer. Test with some sample inputs. Then test it out on a computer. + +## Prerequisite Knowledge + +- [ ] **Learn C** + - C is everywhere. You'll see examples in books, lectures, videos, *everywhere* while you're studying. + - [ ] [C Programming Language, Vol 2](https://www.amazon.com/Programming-Language-Brian-W-Kernighan/dp/0131103628) + - This is a short book, but it will give you a great handle on the C language and if you practice it a little + you'll quickly get proficient. Understanding C helps you understand how programs and memory work. + - [answers to questions](https://github.com/lekkas/c-algorithms) + +- [ ] **How computers process a program:** + - [ ] [How does CPU execute program (video)](https://www.youtube.com/watch?v=42KTvGYQYnA) + - [ ] [Machine Code Instructions (video)](https://www.youtube.com/watch?v=Mv2XQgpbTNE) + +## Algorithmic complexity / Big-O / Asymptotic analysis +- nothing to implement +- [ ] [Harvard CS50 - Asymptotic Notation (video)](https://www.youtube.com/watch?v=iOq5kSKqeR4) +- [ ] [Big O Notations (general quick tutorial) (video)](https://www.youtube.com/watch?v=V6mKVRU1evU) +- [ ] [Big O Notation (and Omega and Theta) - best mathematical explanation (video)](https://www.youtube.com/watch?v=ei-A_wy5Yxw&index=2&list=PL1BaGV1cIH4UhkL8a9bJGG356covJ76qN) +- [ ] Skiena: + - [video](https://www.youtube.com/watch?v=gSyDMtdPNpU&index=2&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [slides](http://www3.cs.stonybrook.edu/~algorith/video-lectures/2007/lecture2.pdf) +- [ ] [A Gentle Introduction to Algorithm Complexity Analysis](http://discrete.gr/complexity/) +- [ ] [Orders of Growth (video)](https://class.coursera.org/algorithmicthink1-004/lecture/59) +- [ ] [Asymptotics (video)](https://class.coursera.org/algorithmicthink1-004/lecture/61) +- [ ] [UC Berkeley Big O (video)](https://youtu.be/VIS4YDpuP98) +- [ ] [UC Berkeley Big Omega (video)](https://youtu.be/ca3e7UVmeUc) +- [ ] [Amortized Analysis (video)](https://www.youtube.com/watch?v=B3SpQZaAZP4&index=10&list=PL1BaGV1cIH4UhkL8a9bJGG356covJ76qN) +- [ ] [Illustrating "Big O" (video)](https://class.coursera.org/algorithmicthink1-004/lecture/63) +- [ ] TopCoder (includes recurrence relations and master theorem): + - [Computational Complexity: Section 1](https://www.topcoder.com/community/data-science/data-science-tutorials/computational-complexity-section-1/) + - [Computational Complexity: Section 2](https://www.topcoder.com/community/data-science/data-science-tutorials/computational-complexity-section-2/) +- [ ] [Cheat sheet](http://bigocheatsheet.com/) + + + If some of the lectures are too mathy, you can jump down to the bottom and + watch the discrete mathematics videos to get the background knowledge. + +## Data Structures + +- ### Arrays + - Implement an automatically resizing vector. + - [ ] Description: + - [Arrays (video)](https://www.coursera.org/learn/data-structures/lecture/OsBSF/arrays) + - [UCBerkley CS61B - Linear and Multi-Dim Arrays (video)](https://youtu.be/Wp8oiO_CZZE?t=15m32s) + - [Basic Arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Basic-arrays/149042/177104-4.html) + - [Multi-dim (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Multidimensional-arrays/149042/177105-4.html) + - [Dynamic Arrays (video)](https://www.coursera.org/learn/data-structures/lecture/EwbnV/dynamic-arrays) + - [Jagged Arrays (video)](https://www.youtube.com/watch?v=1jtrQqYpt7g) + - [Jagged Arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Jagged-arrays/149042/177106-4.html) + - [Resizing arrays (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Resizable-arrays/149042/177108-4.html) + - [ ] Implement a vector (mutable array with automatic resizing): + - [ ] Practice coding using arrays and pointers, and pointer math to jump to an index instead of using indexing. + - [ ] new raw data array with allocated memory + - can allocate int array under the hood, just not use its features + - start with 16, or if starting number is greater, use power of 2 - 16, 32, 64, 128 + - [ ] size() - number of items + - [ ] capacity() - number of items it can hold + - [ ] is_empty() + - [ ] at(index) - returns item at given index, blows up if index out of bounds + - [ ] push(item) + - [ ] insert(index, item) - inserts item at index, shifts that index's value and trailing elements to the right + - [ ] prepend(item) - can use insert above at index 0 + - [ ] pop() - remove from end, return value + - [ ] delete(index) - delete item at index, shifting all trailing elements left + - [ ] remove(item) - looks for value and removes index holding it (even if in multiple places) + - [ ] find(item) - looks for value and returns first index with that value, -1 if not found + - [ ] resize(new_capacity) // private function + - when you reach capacity, resize to double the size + - when popping an item, if size is 1/4 of capacity, resize to half + - [ ] Time + - O(1) to add/remove at end (amortized for allocations for more space), index, or update + - O(n) to insert/remove elsewhere + - [ ] Space + - contiguous in memory, so proximity helps performance + - space needed = (array capacity, which is >= n) * size of item, but even if 2n, still O(n) + +- ### Linked Lists + - [ ] Description: + - [ ] [Singly Linked Lists (video)](https://www.coursera.org/learn/data-structures/lecture/kHhgK/singly-linked-lists) + - [ ] [CS 61B - Linked Lists (video)](https://www.youtube.com/watch?v=sJtJOtXCW_M&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=5) + - [ ] [C Code (video)](https://www.youtube.com/watch?v=QN6FPiD0Gzo) + - not the whole video, just portions about Node struct and memory allocation. + - [ ] Linked List vs Arrays: + - [Core Linked Lists Vs Arrays (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/rjBs9/core-linked-lists-vs-arrays) + - [In The Real World Linked Lists Vs Arrays (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/QUaUd/in-the-real-world-lists-vs-arrays) + - [ ] [why you should avoid linked lists (video)](https://www.youtube.com/watch?v=YQs6IC-vgmo) + - [ ] Gotcha: you need pointer to pointer knowledge: + (for when you pass a pointer to a function that may change the address where that pointer points) + This page is just to get a grasp on ptr to ptr. I don't recommend this list traversal style. Readability and maintainability suffer due to cleverness. + - [Pointers to Pointers](https://www.eskimo.com/~scs/cclass/int/sx8.html) + - [ ] implement (I did with tail pointer & without): + - [ ] size() - returns number of data elements in list + - [ ] empty() - bool returns true if empty + - [ ] value_at(index) - returns the value of the nth item (starting at 0 for first) + - [ ] push_front(value) - adds an item to the front of the list + - [ ] pop_front() - remove front item and return its value + - [ ] push_back(value) - adds an item at the end + - [ ] pop_back() - removes end item and returns its value + - [ ] front() - get value of front item + - [ ] back() - get value of end item + - [ ] insert(index, value) - insert value at index, so current item at that index is pointed to by new item at index + - [ ] erase(index) - removes node at given index + - [ ] value_n_from_end(n) - returns the value of the node at nth position from the end of the list + - [ ] reverse() - reverses the list + - [ ] remove_value(value) - removes the first item in the list with this value + - [ ] Doubly-linked List + - [Description (video)](https://www.coursera.org/learn/data-structures/lecture/jpGKD/doubly-linked-lists) + - No need to implement + +- ### Stack + - [ ] [Stacks (video)](https://www.coursera.org/learn/data-structures/lecture/UdKzQ/stacks) + - [ ] [Using Stacks Last-In First-Out (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-stacks-last-first-out/149042/177120-4.html) + - [ ] Will not implement. Implementing with array is trivial. + +- ### Queue + - [ ] [Using Queues First-In First-Out(video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-queues-first-first-out/149042/177122-4.html) + - [ ] [Queue (video)](https://www.coursera.org/learn/data-structures/lecture/EShpq/queue) + - [ ] [Circular buffer/FIFO](https://en.wikipedia.org/wiki/Circular_buffer) + - [ ] [Priority Queues (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Priority-queues-deques/149042/177123-4.html) + - [ ] Implement using linked-list, with tail pointer: + - enqueue(value) - adds value at position at tail + - dequeue() - returns value and removes least recently added element (front) + - empty() + - [ ] Implement using fixed-sized array: + - enqueue(value) - adds item at end of available storage + - dequeue() - returns value and removes least recently added element + - empty() + - full() + - [ ] Cost: + - a bad implementation using linked list where you enqueue at head and dequeue at tail would be O(n) + because you'd need the next to last element, causing a full traversal each dequeue + - enqueue: O(1) (amortized, linked list and array [probing]) + - dequeue: O(1) (linked list and array) + - empty: O(1) (linked list and array) + +- ### Hash table + - [ ] Videos: + - [ ] [Hashing with Chaining (video)](https://www.youtube.com/watch?v=0M_kIqhwbFo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=8) + - [ ] [Table Doubling, Karp-Rabin (video)](https://www.youtube.com/watch?v=BRO7mVIFt08&index=9&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [Open Addressing, Cryptographic Hashing (video)](https://www.youtube.com/watch?v=rvdJDijO2Ro&index=10&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [PyCon 2010: The Mighty Dictionary (video)](https://www.youtube.com/watch?v=C4Kc8xzcA68) + - [ ] [(Advanced) Randomization: Universal & Perfect Hashing (video)](https://www.youtube.com/watch?v=z0lJ2k0sl1g&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=11) + - [ ] [(Advanced) Perfect hashing (video)](https://www.youtube.com/watch?v=N0COwN14gt0&list=PL2B4EEwhKD-NbwZ4ezj7gyc_3yNrojKM9&index=4) + + - [ ] Online Courses: + - [ ] [Understanding Hash Functions (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Understanding-hash-functions/149042/177126-4.html) + - [ ] [Using Hash Tables (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-hash-tables/149042/177127-4.html) + - [ ] [Supporting Hashing (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Supporting-hashing/149042/177128-4.html) + - [ ] [Language Support Hash Tables (video)](https://www.lynda.com/Developer-Programming-Foundations-tutorials/Language-support-hash-tables/149042/177129-4.html) + - [ ] [Core Hash Tables (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/m7UuP/core-hash-tables) + - [ ] [Data Structures (video)](https://www.coursera.org/learn/data-structures/home/week/3) + - [ ] [Phone Book Problem (video)](https://www.coursera.org/learn/data-structures/lecture/NYZZP/phone-book-problem) + - [ ] distributed hash tables: + - [Instant Uploads And Storage Optimization In Dropbox (video)](https://www.coursera.org/learn/data-structures/lecture/DvaIb/instant-uploads-and-storage-optimization-in-dropbox) + - [Distributed Hash Tables (video)](https://www.coursera.org/learn/data-structures/lecture/tvH8H/distributed-hash-tables) + + - [ ] implement with array using linear probing + - hash(k, m) - m is size of hash table + - add(key, value) - if key already exists, update value + - exists(key) + - get(key) + - remove(key) + +## More Knowledge + +- ### Binary search + - [ ] [Binary Search (video)](https://www.youtube.com/watch?v=D5SrAga1pno) + - [ ] [Binary Search (video)](https://www.khanacademy.org/computing/computer-science/algorithms/binary-search/a/binary-search) + - [ ] [detail](https://www.topcoder.com/community/data-science/data-science-tutorials/binary-search/) + - [ ] Implement: + - binary search (on sorted array of integers) + - binary search using recursion + +- ### Bitwise operations + - [ ] [Bits cheat sheet](https://github.com/jwasham/google-interview-university/blob/master/extras/cheat%20sheets/bits-cheat-cheet.pdf) - you should know many of the powers of 2 from (2^1 to 2^16 and 2^32) + - [ ] Get a really good understanding of manipulating bits with: &, |, ^, ~, >>, << + - [ ] [words](https://en.wikipedia.org/wiki/Word_(computer_architecture)) + - [ ] Good intro: + [Bit Manipulation (video)](https://www.youtube.com/watch?v=7jkIUgLC29I) + - [ ] [C Programming Tutorial 2-10: Bitwise Operators (video)](https://www.youtube.com/watch?v=d0AwjSpNXR0) + - [ ] [Bit Manipulation](https://en.wikipedia.org/wiki/Bit_manipulation) + - [ ] [Bitwise Operation](https://en.wikipedia.org/wiki/Bitwise_operation) + - [ ] [Bithacks](https://graphics.stanford.edu/~seander/bithacks.html) + - [ ] [The Bit Twiddler](http://bits.stephan-brumme.com/) + - [ ] [The Bit Twiddler Interactive](http://bits.stephan-brumme.com/interactive.html) + - [ ] 2s and 1s complement + - [Binary: Plusses & Minuses (Why We Use Two's Complement) (video)](https://www.youtube.com/watch?v=lKTsv6iVxV4) + - [1s Complement](https://en.wikipedia.org/wiki/Ones%27_complement) + - [2s Complement](https://en.wikipedia.org/wiki/Two%27s_complement) + - [ ] count set bits + - [4 ways to count bits in a byte (video)](https://youtu.be/Hzuzo9NJrlc) + - [Count Bits](https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetKernighan) + - [How To Count The Number Of Set Bits In a 32 Bit Integer](http://stackoverflow.com/questions/109023/how-to-count-the-number-of-set-bits-in-a-32-bit-integer) + - [ ] round to next power of 2: + - [Round Up To Next Power Of Two](http://bits.stephan-brumme.com/roundUpToNextPowerOfTwo.html) + - [ ] swap values: + - [Swap](http://bits.stephan-brumme.com/swap.html) + - [ ] absolute value: + - [Absolute Integer](http://bits.stephan-brumme.com/absInteger.html) + +## Trees + +- ### Trees - Notes & Background + - [ ] [Series: Core Trees (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/ovovP/core-trees) + - [ ] [Series: Trees (video)](https://www.coursera.org/learn/data-structures/lecture/95qda/trees) + - basic tree construction + - traversal + - manipulation algorithms + - BFS (breadth-first search) + - [MIT (video)](https://www.youtube.com/watch?v=s-CYnVz-uh4&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=13) + - level order (BFS, using queue) + time complexity: O(n) + space complexity: best: O(1), worst: O(n/2)=O(n) + - DFS (depth-first search) + - [MIT (video)](https://www.youtube.com/watch?v=AfSk24UTFS8&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=14) + - notes: + time complexity: O(n) + space complexity: + best: O(log n) - avg. height of tree + worst: O(n) + - inorder (DFS: left, self, right) + - postorder (DFS: left, right, self) + - preorder (DFS: self, left, right) + +- ### Binary search trees: BSTs + - [ ] [Binary Search Tree Review (video)](https://www.youtube.com/watch?v=x6At0nzX92o&index=1&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [Series (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/p82sw/core-introduction-to-binary-search-trees) + - starts with symbol table and goes through BST applications + - [ ] [Introduction (video)](https://www.coursera.org/learn/data-structures/lecture/E7cXP/introduction) + - [ ] [MIT (video)](https://www.youtube.com/watch?v=9Jry5-82I68) + - C/C++: + - [ ] [Binary search tree - Implementation in C/C++ (video)](https://www.youtube.com/watch?v=COZK7NATh4k&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=28) + - [ ] [BST implementation - memory allocation in stack and heap (video)](https://www.youtube.com/watch?v=hWokyBoo0aI&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=29) + - [ ] [Find min and max element in a binary search tree (video)](https://www.youtube.com/watch?v=Ut90klNN264&index=30&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Find height of a binary tree (video)](https://www.youtube.com/watch?v=_pnqMz5nrRs&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=31) + - [ ] [Binary tree traversal - breadth-first and depth-first strategies (video)](https://www.youtube.com/watch?v=9RHO6jU--GU&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=32) + - [ ] [Binary tree: Level Order Traversal (video)](https://www.youtube.com/watch?v=86g8jAQug04&index=33&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Binary tree traversal: Preorder, Inorder, Postorder (video)](https://www.youtube.com/watch?v=gm8DUJJhmY4&index=34&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Check if a binary tree is binary search tree or not (video)](https://www.youtube.com/watch?v=yEwSGhSsT0U&index=35&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] [Delete a node from Binary Search Tree (video)](https://www.youtube.com/watch?v=gcULXE7ViZw&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=36) + - [ ] [Inorder Successor in a binary search tree (video)](https://www.youtube.com/watch?v=5cPbNCrdotA&index=37&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P) + - [ ] Implement: + - [ ] insert // insert value into tree + - [ ] get_node_count // get count of values stored + - [ ] print_values // prints the values in the tree, from min to max + - [ ] delete_tree + - [ ] is_in_tree // returns true if given value exists in the tree + - [ ] get_height // returns the height in nodes (single node's height is 1) + - [ ] get_min // returns the minimum value stored in the tree + - [ ] get_max // returns the maximum value stored in the tree + - [ ] is_binary_search_tree + - [ ] delete_value + - [ ] get_successor // returns next-highest value in tree after given value, -1 if none + +- ### Heap / Priority Queue / Binary Heap + - visualized as a tree, but is usually linear in storage (array, linked list) + - [ ] [Heap](https://en.wikipedia.org/wiki/Heap_(data_structure)) + - [ ] [Introduction (video)](https://www.coursera.org/learn/data-structures/lecture/2OpTs/introduction) + - [ ] [Naive Implementations (video)](https://www.coursera.org/learn/data-structures/lecture/z3l9N/naive-implementations) + - [ ] [Binary Trees (video)](https://www.coursera.org/learn/data-structures/lecture/GRV2q/binary-trees) + - [ ] [Tree Height Remark (video)](https://www.coursera.org/learn/data-structures/supplement/S5xxz/tree-height-remark) + - [ ] [Basic Operations (video)](https://www.coursera.org/learn/data-structures/lecture/0g1dl/basic-operations) + - [ ] [Complete Binary Trees (video)](https://www.coursera.org/learn/data-structures/lecture/gl5Ni/complete-binary-trees) + - [ ] [Pseudocode (video)](https://www.coursera.org/learn/data-structures/lecture/HxQo9/pseudocode) + - [ ] [Heap Sort - jumps to start (video)](https://youtu.be/odNJmw5TOEE?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3291) + - [ ] [Heap Sort (video)](https://www.coursera.org/learn/data-structures/lecture/hSzMO/heap-sort) + - [ ] [Building a heap (video)](https://www.coursera.org/learn/data-structures/lecture/dwrOS/building-a-heap) + - [ ] [MIT: Heaps and Heap Sort (video)](https://www.youtube.com/watch?v=B7hVxCmfPtM&index=4&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [CS 61B Lecture 24: Priority Queues (video)](https://www.youtube.com/watch?v=yIUFT6AKBGE&index=24&list=PL4BBB74C7D2A1049C) + - [ ] [Linear Time BuildHeap (max-heap)](https://www.youtube.com/watch?v=MiyLo8adrWw) + - [ ] Implement a max-heap: + - [ ] insert + - [ ] sift_up - needed for insert + - [ ] get_max - returns the max item, without removing it + - [ ] get_size() - return number of elements stored + - [ ] is_empty() - returns true if heap contains no elements + - [ ] extract_max - returns the max item, removing it + - [ ] sift_down - needed for extract_max + - [ ] remove(i) - removes item at index x + - [ ] heapify - create a heap from an array of elements, needed for heap_sort + - [ ] heap_sort() - take an unsorted array and turn it into a sorted array in-place using a max heap + - note: using a min heap instead would save operations, but double the space needed (cannot do in-place). + +## Sorting + +- [ ] Notes: + - Implement sorts & know best case/worst case, average complexity of each: + - no bubble sort - it's terrible - O(n^2), except when n <= 16 + - [ ] stability in sorting algorithms ("Is Quicksort stable?") + - [Sorting Algorithm Stability](https://en.wikipedia.org/wiki/Sorting_algorithm#Stability) + - [Stability In Sorting Algorithms](http://stackoverflow.com/questions/1517793/stability-in-sorting-algorithms) + - [Stability In Sorting Algorithms](http://www.geeksforgeeks.org/stability-in-sorting-algorithms/) + - [Sorting Algorithms - Stability](http://homepages.math.uic.edu/~leon/cs-mcs401-s08/handouts/stability.pdf) + - [ ] Which algorithms can be used on linked lists? Which on arrays? Which on both? + - I wouldn't recommend sorting a linked list, but merge sort is doable. + - [Merge Sort For Linked List](http://www.geeksforgeeks.org/merge-sort-for-linked-list/) + +- For heapsort, see Heap data structure above. Heap sort is great, but not stable. + +- [ ] [Sedgewick - Mergesort (5 videos)](https://www.youtube.com/watch?v=4nKwesx_c8E&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [1. Mergesort](https://www.youtube.com/watch?v=4nKwesx_c8E&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9&index=1) + - [ ] [2. Bottom up Mergesort](https://www.youtube.com/watch?v=HGOIGUYjeyk&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9&index=2) + - [ ] [3. Sorting Complexity](https://www.youtube.com/watch?v=WvU_mIWo0Ac&index=3&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [4. Comparators](https://www.youtube.com/watch?v=7MvC1kmBza0&index=4&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [5. Stability](https://www.youtube.com/watch?v=XD_5iINB5GI&index=5&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + +- [ ] [Sedgewick - Quicksort (4 videos)](https://www.youtube.com/playlist?list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [1. Quicksort](https://www.youtube.com/watch?v=5M5A7qPWk84&index=1&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [2. Selection](https://www.youtube.com/watch?v=CgVYfSyct_M&index=2&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [3. Duplicate Keys](https://www.youtube.com/watch?v=WBFzOYJ5ybM&index=3&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [4. System Sorts](https://www.youtube.com/watch?v=rejpZ2htBjE&index=4&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + +- [ ] UC Berkeley: + - [ ] [CS 61B Lecture 29: Sorting I (video)](https://www.youtube.com/watch?v=EiUvYS2DT6I&list=PL4BBB74C7D2A1049C&index=29) + - [ ] [CS 61B Lecture 30: Sorting II (video)](https://www.youtube.com/watch?v=2hTY3t80Qsk&list=PL4BBB74C7D2A1049C&index=30) + - [ ] [CS 61B Lecture 32: Sorting III (video)](https://www.youtube.com/watch?v=Y6LOLpxg6Dc&index=32&list=PL4BBB74C7D2A1049C) + - [ ] [CS 61B Lecture 33: Sorting V (video)](https://www.youtube.com/watch?v=qNMQ4ly43p4&index=33&list=PL4BBB74C7D2A1049C) + +- [ ] [Bubble Sort (video)](https://www.youtube.com/watch?v=P00xJgWzz2c&index=1&list=PL89B61F78B552C1AB) +- [ ] [Analyzing Bubble Sort (video)](https://www.youtube.com/watch?v=ni_zk257Nqo&index=7&list=PL89B61F78B552C1AB) +- [ ] [Insertion Sort, Merge Sort (video)](https://www.youtube.com/watch?v=Kg4bqzAqRBM&index=3&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) +- [ ] [Insertion Sort (video)](https://www.youtube.com/watch?v=c4BRHC7kTaQ&index=2&list=PL89B61F78B552C1AB) +- [ ] [Merge Sort (video)](https://www.youtube.com/watch?v=GCae1WNvnZM&index=3&list=PL89B61F78B552C1AB) +- [ ] [Quicksort (video)](https://www.youtube.com/watch?v=y_G9BkAm6B8&index=4&list=PL89B61F78B552C1AB) +- [ ] [Selection Sort (video)](https://www.youtube.com/watch?v=6nDMgr0-Yyo&index=8&list=PL89B61F78B552C1AB) + +- [ ] Merge sort code: + - [ ] [Using output array (C)](http://www.cs.yale.edu/homes/aspnes/classes/223/examples/sorting/mergesort.c) + - [ ] [Using output array (Python)](https://github.com/jwasham/practice-python/blob/master/merge_sort/merge_sort.py) + - [ ] [In-place (C++)](https://github.com/jwasham/practice-cpp/blob/master/merge_sort/merge_sort.cc) +- [ ] Quick sort code: + - [ ] [Implementation (C)](http://www.cs.yale.edu/homes/aspnes/classes/223/examples/randomization/quick.c) + - [ ] [Implementation (C)](https://github.com/jwasham/practice-c/blob/master/quick_sort/quick_sort.c) + - [ ] [Implementation (Python)](https://github.com/jwasham/practice-python/blob/master/quick_sort/quick_sort.py) + +- [ ] Implement: + - [ ] Mergesort: O(n log n) average and worst case + - [ ] Quicksort O(n log n) average case + - Selection sort and insertion sort are both O(n^2) average and worst case + - For heapsort, see Heap data structure above. + +- [ ] Not required, but I recommended them: + - [ ] [Sedgewick - Radix Sorts (6 videos)](https://www.youtube.com/playlist?list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [1. Strings in Java](https://www.youtube.com/watch?v=zRzU-FWsjNU&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=6) + - [ ] [2. Key Indexed Counting](https://www.youtube.com/watch?v=CtgKYmXs62w&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=5) + - [ ] [3. Least Significant Digit First String Radix Sort](https://www.youtube.com/watch?v=2pGVq_BwPKs&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=4) + - [ ] [4. Most Significant Digit First String Radix Sort](https://www.youtube.com/watch?v=M3cYNY90R6c&index=3&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [5. 3 Way Radix Quicksort](https://www.youtube.com/watch?v=YVl58kfE6i8&index=2&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [6. Suffix Arrays](https://www.youtube.com/watch?v=HKPrVm5FWvg&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53&index=1) + - [ ] [Radix Sort](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#radixSort) + - [ ] [Radix Sort (video)](https://www.youtube.com/watch?v=xhr26ia4k38) + - [ ] [Radix Sort, Counting Sort (linear time given constraints) (video)](https://www.youtube.com/watch?v=Nz1KZXbghj8&index=7&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [Randomization: Matrix Multiply, Quicksort, Freivalds' algorithm (video)](https://www.youtube.com/watch?v=cNB2lADK3_s&index=8&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [Sorting in Linear Time (video)](https://www.youtube.com/watch?v=pOKy3RZbSws&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf&index=14) + +If you need more detail on this subject, see "Sorting" section in [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) + +## Graphs + +Graphs can be used to represent many problems in computer science, so this section is long, like trees and sorting were. + +- Notes from Yegge: + - There are three basic ways to represent a graph in memory: + - objects and pointers + - matrix + - adjacency list + - Familiarize yourself with each representation and its pros & cons + - BFS and DFS - know their computational complexity, their tradeoffs, and how to implement them in real code + - When asked a question, look for a graph-based solution first, then move on if none. + +- [ ] Skiena Lectures - great intro: + - [ ] [CSE373 2012 - Lecture 11 - Graph Data Structures (video)](https://www.youtube.com/watch?v=OiXxhDrFruw&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=11) + - [ ] [CSE373 2012 - Lecture 12 - Breadth-First Search (video)](https://www.youtube.com/watch?v=g5vF8jscteo&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=12) + - [ ] [CSE373 2012 - Lecture 13 - Graph Algorithms (video)](https://www.youtube.com/watch?v=S23W6eTcqdY&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=13) + - [ ] [CSE373 2012 - Lecture 14 - Graph Algorithms (con't) (video)](https://www.youtube.com/watch?v=WitPBKGV0HY&index=14&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [CSE373 2012 - Lecture 15 - Graph Algorithms (con't 2) (video)](https://www.youtube.com/watch?v=ia1L30l7OIg&index=15&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [CSE373 2012 - Lecture 16 - Graph Algorithms (con't 3) (video)](https://www.youtube.com/watch?v=jgDOQq6iWy8&index=16&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + +- [ ] Graphs (review and more): + + - [ ] [6.006 Single-Source Shortest Paths Problem (video)](https://www.youtube.com/watch?v=Aa2sqUhIn-E&index=15&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [6.006 Dijkstra (video)](https://www.youtube.com/watch?v=2E7MmKv0Y24&index=16&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [6.006 Bellman-Ford (video)](https://www.youtube.com/watch?v=ozsuci5pIso&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=17) + - [ ] [6.006 Speeding Up Dijkstra (video)](https://www.youtube.com/watch?v=CHvQ3q_gJ7E&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=18) + - [ ] [Aduni: Graph Algorithms I - Topological Sorting, Minimum Spanning Trees, Prim's Algorithm - Lecture 6 (video)]( https://www.youtube.com/watch?v=i_AQT_XfvD8&index=6&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [Aduni: Graph Algorithms II - DFS, BFS, Kruskal's Algorithm, Union Find Data Structure - Lecture 7 (video)]( https://www.youtube.com/watch?v=ufj5_bppBsA&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=7) + - [ ] [Aduni: Graph Algorithms III: Shortest Path - Lecture 8 (video)](https://www.youtube.com/watch?v=DiedsPsMKXc&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=8) + - [ ] [Aduni: Graph Alg. IV: Intro to geometric algorithms - Lecture 9 (video)](https://www.youtube.com/watch?v=XIAQRlNkJAw&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=9) + - [ ] [CS 61B 2014 (starting at 58:09) (video)](https://youtu.be/dgjX4HdMI-Q?list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&t=3489) + - [ ] [CS 61B 2014: Weighted graphs (video)](https://www.youtube.com/watch?v=aJjlQCFwylA&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=19) + - [ ] [Greedy Algorithms: Minimum Spanning Tree (video)](https://www.youtube.com/watch?v=tKwnms5iRBU&index=16&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [Strongly Connected Components Kosaraju's Algorithm Graph Algorithm (video)](https://www.youtube.com/watch?v=RpgcYiky7uw) + +- Full Coursera Course: + - [ ] [Algorithms on Graphs (video)](https://www.coursera.org/learn/algorithms-on-graphs/home/welcome) + +- Yegge: If you get a chance, try to study up on fancier algorithms: + - [ ] Dijkstra's algorithm - see above - 6.006 + - [ ] A* + - [ ] [A Search Algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm) + - [ ] [A* Pathfinding Tutorial (video)](https://www.youtube.com/watch?v=KNXfSOx4eEE) + - [ ] [A* Pathfinding (E01: algorithm explanation) (video)](https://www.youtube.com/watch?v=-L-WgKMFuhE) + +- I'll implement: + - [ ] DFS with adjacency list (recursive) + - [ ] DFS with adjacency list (iterative with stack) + - [ ] DFS with adjacency matrix (recursive) + - [ ] DFS with adjacency matrix (iterative with stack) + - [ ] BFS with adjacency list + - [ ] BFS with adjacency matrix + - [ ] single-source shortest path (Dijkstra) + - [ ] minimum spanning tree + - DFS-based algorithms (see Aduni videos above): + - [ ] check for cycle (needed for topological sort, since we'll check for cycle before starting) + - [ ] topological sort + - [ ] count connected components in a graph + - [ ] list strongly connected components + - [ ] check for bipartite graph + +You'll get more graph practice in Skiena's book (see Books section below) and the interview books + +## Even More Knowledge + +- ### Recursion + - [ ] Stanford lectures on recursion & backtracking: + - [ ] [Lecture 8 | Programming Abstractions (video)](https://www.youtube.com/watch?v=gl3emqCuueQ&list=PLFE6E58F856038C69&index=8) + - [ ] [Lecture 9 | Programming Abstractions (video)](https://www.youtube.com/watch?v=uFJhEPrbycQ&list=PLFE6E58F856038C69&index=9) + - [ ] [Lecture 10 | Programming Abstractions (video)](https://www.youtube.com/watch?v=NdF1QDTRkck&index=10&list=PLFE6E58F856038C69) + - [ ] [Lecture 11 | Programming Abstractions (video)](https://www.youtube.com/watch?v=p-gpaIGRCQI&list=PLFE6E58F856038C69&index=11) + - when it is appropriate to use it + - how is tail recursion better than not? + - [ ] [What Is Tail Recursion Why Is It So Bad?](https://www.quora.com/What-is-tail-recursion-Why-is-it-so-bad) + - [ ] [Tail Recursion (video)](https://www.youtube.com/watch?v=L1jjXGfxozc) + +- ### Object-Oriented Programming + - [ ] [Optional: UML 2.0 Series (video)](https://www.youtube.com/watch?v=OkC7HKtiZC0&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc) + - [ ] Object-Oriented Software Engineering: Software Dev Using UML and Java (21 videos): + - Can skip this if you have a great grasp of OO and OO design practices. + - [OOSE: Software Dev Using UML and Java](https://www.youtube.com/playlist?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + - [ ] SOLID OOP Principles: + - [ ] [Bob Martin SOLID Principles of Object Oriented and Agile Design (video)](https://www.youtube.com/watch?v=TMuno5RZNeE) + - [ ] [SOLID Design Patterns in C# (video)](https://www.youtube.com/playlist?list=PL8m4NUhTQU48oiGCSgCP1FiJEcg_xJzyQ) + - [ ] [SOLID Principles (video)](https://www.youtube.com/playlist?list=PL4CE9F710017EA77A) + - [ ] S - [Single Responsibility Principle](http://www.oodesign.com/single-responsibility-principle.html) | [Single responsibility to each Object](http://www.javacodegeeks.com/2011/11/solid-single-responsibility-principle.html) + - [more flavor](https://docs.google.com/open?id=0ByOwmqah_nuGNHEtcU5OekdDMkk) + - [ ] O - [Open/Closed Principal](http://www.oodesign.com/open-close-principle.html) | [On production level Objects are ready for extension for not for modification](https://en.wikipedia.org/wiki/Open/closed_principle) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgN2M5MTkwM2EtNWFkZC00ZTI3LWFjZTUtNTFhZGZiYmUzODc1&hl=en) + - [ ] L - [Liskov Substitution Principal](http://www.oodesign.com/liskov-s-substitution-principle.html) | [Base Class and Derived class follow ‘IS A’ principal](http://stackoverflow.com/questions/56860/what-is-the-liskov-substitution-principle) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgNzAzZjA5ZmItNjU3NS00MzQ5LTkwYjMtMDJhNDU5ZTM0MTlh&hl=en) + - [ ] I - [Interface segregation principle](http://www.oodesign.com/interface-segregation-principle.html) | clients should not be forced to implement interfaces they don't use + - [Interface Segregation Principle in 5 minutes (video)](https://www.youtube.com/watch?v=3CtAfl7aXAQ) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgOTViYjJhYzMtMzYxMC00MzFjLWJjMzYtOGJiMDc5N2JkYmJi&hl=en) + - [ ] D -[Dependency Inversion principle](http://www.oodesign.com/dependency-inversion-principle.html) | Reduce the dependency In composition of objects. + - [Why Is The Dependency Inversion Principle And Why Is It Important](http://stackoverflow.com/questions/62539/what-is-the-dependency-inversion-principle-and-why-is-it-important) + - [more flavor](http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgMjdlMWIzNGUtZTQ0NC00ZjQ5LTkwYzQtZjRhMDRlNTQ3ZGMz&hl=en) + +- ### Design patterns + - [ ] [Quick UML review (video)](https://www.youtube.com/watch?v=3cmzqZzwNDM&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc&index=3) + - [ ] Learn these patterns: + - [ ] strategy + - [ ] singleton + - [ ] adapter + - [ ] prototype + - [ ] decorator + - [ ] visitor + - [ ] factory, abstract factory + - [ ] facade + - [ ] observer + - [ ] proxy + - [ ] delegate + - [ ] command + - [ ] state + - [ ] memento + - [ ] iterator + - [ ] composite + - [ ] flyweight + - [ ] [Chapter 6 (Part 1) - Patterns (video)](https://youtu.be/LAP2A80Ajrg?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO&t=3344) + - [ ] [Chapter 6 (Part 2) - Abstraction-Occurrence, General Hierarchy, Player-Role, Singleton, Observer, Delegation (video)](https://www.youtube.com/watch?v=U8-PGsjvZc4&index=12&list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + - [ ] [Chapter 6 (Part 3) - Adapter, Facade, Immutable, Read-Only Interface, Proxy (video)](https://www.youtube.com/watch?v=7sduBHuex4c&index=13&list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + - [ ] [Series of videos (27 videos)](https://www.youtube.com/playlist?list=PLF206E906175C7E07) + - [ ] [Head First Design Patterns](https://www.amazon.com/Head-First-Design-Patterns-Freeman/dp/0596007124) + - I know the canonical book is "Design Patterns: Elements of Reusable Object-Oriented Software", but Head First is great for beginners to OO. + - [ ] [Handy reference: 101 Design Patterns & Tips for Developers](https://sourcemaking.com/design-patterns-and-tips) + +- ### Combinatorics (n choose k) & Probability + - [ ] [Math Skills: How to find Factorial, Permutation and Combination (Choose) (video)](https://www.youtube.com/watch?v=8RRo6Ti9d0U) + - [ ] [Make School: Probability (video)](https://www.youtube.com/watch?v=sZkAAk9Wwa4) + - [ ] [Make School: More Probability and Markov Chains (video)](https://www.youtube.com/watch?v=dNaJg-mLobQ) + - [ ] Khan Academy: + - Course layout: + - [ ] [Basic Theoretical Probability](https://www.khanacademy.org/math/probability/probability-and-combinatorics-topic) + - Just the videos - 41 (each are simple and each are short): + - [ ] [Probability Explained (video)](https://www.youtube.com/watch?v=uzkc-qNVoOk&list=PLC58778F28211FA19) + +- ### NP, NP-Complete and Approximation Algorithms + - Know about the most famous classes of NP-complete problems, such as traveling salesman and the knapsack problem, + and be able to recognize them when an interviewer asks you them in disguise. + - Know what NP-complete means. + - [ ] [Computational Complexity (video)](https://www.youtube.com/watch?v=moPtwq_cVH8&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=23) + - [ ] Simonson: + - [ ] [Greedy Algs. II & Intro to NP Completeness (video)](https://youtu.be/qcGnJ47Smlo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=2939) + - [ ] [NP Completeness II & Reductions (video)](https://www.youtube.com/watch?v=e0tGC6ZQdQE&index=16&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [NP Completeness III (Video)](https://www.youtube.com/watch?v=fCX1BGT3wjE&index=17&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [NP Completeness IV (video)](https://www.youtube.com/watch?v=NKLDp3Rch3M&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=18) + - [ ] Skiena: + - [ ] [CSE373 2012 - Lecture 23 - Introduction to NP-Completeness (video)](https://youtu.be/KiK5TVgXbFg?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1508) + - [ ] [CSE373 2012 - Lecture 24 - NP-Completeness Proofs (video)](https://www.youtube.com/watch?v=27Al52X3hd4&index=24&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [CSE373 2012 - Lecture 25 - NP-Completeness Challenge (video)](https://www.youtube.com/watch?v=xCPH4gwIIXM&index=25&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [Complexity: P, NP, NP-completeness, Reductions (video)](https://www.youtube.com/watch?v=eHZifpgyH_4&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=22) + - [ ] [Complexity: Approximation Algorithms (video)](https://www.youtube.com/watch?v=MEz1J9wY2iM&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=24) + - [ ] [Complexity: Fixed-Parameter Algorithms (video)](https://www.youtube.com/watch?v=4q-jmGrmxKs&index=25&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - Peter Norvig discusses near-optimal solutions to traveling salesman problem: + - [Jupyter Notebook](http://nbviewer.jupyter.org/url/norvig.com/ipython/TSP.ipynb) + - Pages 1048 - 1140 in CLRS if you have it. + +- ### Caches + - [ ] LRU cache: + - [ ] [The Magic of LRU Cache (100 Days of Google Dev) (video)](https://www.youtube.com/watch?v=R5ON3iwx78M) + - [ ] [Implementing LRU (video)](https://www.youtube.com/watch?v=bq6N7Ym81iI) + - [ ] [LeetCode - 146 LRU Cache (C++) (video)](https://www.youtube.com/watch?v=8-FZRAjR7qU) + - [ ] CPU cache: + - [ ] [MIT 6.004 L15: The Memory Hierarchy (video)](https://www.youtube.com/watch?v=vjYF_fAZI5E&list=PLrRW1w6CGAcXbMtDFj205vALOGmiRc82-&index=24) + - [ ] [MIT 6.004 L16: Cache Issues (video)](https://www.youtube.com/watch?v=ajgC3-pyGlk&index=25&list=PLrRW1w6CGAcXbMtDFj205vALOGmiRc82-) + +- ### Processes and Threads + - [ ] Computer Science 162 - Operating Systems (25 videos): + - for processes and threads see videos 1-11 + - [Operating Systems and System Programming (video)](https://www.youtube.com/playlist?list=PL-XXv-cvA_iBDyz-ba4yDskqMDY6A1w_c) + - [What Is The Difference Between A Process And A Thread?](https://www.quora.com/What-is-the-difference-between-a-process-and-a-thread) + - Covers: + - Processes, Threads, Concurrency issues + - difference between processes and threads + - processes + - threads + - locks + - mutexes + - semaphores + - monitors + - how they work + - deadlock + - livelock + - CPU activity, interrupts, context switching + - Modern concurrency constructs with multicore processors + - Process resource needs (memory: code, static storage, stack, heap, and also file descriptors, i/o) + - Thread resource needs (shares above (minus stack) with other threads in the same process but each has its own pc, stack counter, registers, and stack) + - Forking is really copy on write (read-only) until the new process writes to memory, then it does a full copy. + - Context switching + - How context switching is initiated by the operating system and underlying hardware + - [ ] [threads in C++ (series - 10 videos)](https://www.youtube.com/playlist?list=PL5jc9xFGsL8E12so1wlMS0r0hTQoJL74M) + - [ ] concurrency in Python (videos): + - [ ] [Short series on threads](https://www.youtube.com/playlist?list=PL1H1sBF1VAKVMONJWJkmUh6_p8g4F2oy1) + - [ ] [Python Threads](https://www.youtube.com/watch?v=Bs7vPNbB9JM) + - [ ] [Understanding the Python GIL (2010)](https://www.youtube.com/watch?v=Obt-vMVdM8s) + - [reference](http://www.dabeaz.com/GIL) + - [ ] [David Beazley - Python Concurrency From the Ground Up: LIVE! - PyCon 2015](https://www.youtube.com/watch?v=MCs5OvhV9S4) + - [ ] [Keynote David Beazley - Topics of Interest (Python Asyncio)](https://www.youtube.com/watch?v=ZzfHjytDceU) + - [ ] [Mutex in Python](https://www.youtube.com/watch?v=0zaPs8OtyKY) + +- ### Papers + - These are Google papers and well-known papers. + - Reading all from end to end with full comprehension will likely take more time than you have. I recommend being selective on papers and their sections. + - [ ] [1978: Communicating Sequential Processes](http://spinroot.com/courses/summer/Papers/hoare_1978.pdf) + - [implemented in Go](https://godoc.org/github.com/thomas11/csp) + - [Love classic papers?](https://www.cs.cmu.edu/~crary/819-f09/) + - [ ] [2003: The Google File System](http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf) + - replaced by Colossus in 2012 + - [ ] [2004: MapReduce: Simplified Data Processing on Large Clusters]( http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf) + - mostly replaced by Cloud Dataflow? + - [ ] [2007: What Every Programmer Should Know About Memory (very long, and the author encourages skipping of some sections)](https://www.akkadia.org/drepper/cpumemory.pdf) + - [ ] [2012: Google's Colossus](https://www.wired.com/2012/07/google-colossus/) + - paper not available + - [ ] 2012: AddressSanitizer: A Fast Address Sanity Checker: + - [paper](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37752.pdf) + - [video](https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany) + - [ ] 2013: Spanner: Google’s Globally-Distributed Database: + - [paper](http://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf) + - [video](https://www.usenix.org/node/170855) + - [ ] [2014: Machine Learning: The High-Interest Credit Card of Technical Debt](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43146.pdf) + - [ ] [2015: Continuous Pipelines at Google](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43790.pdf) + - [ ] [2015: High-Availability at Massive Scale: Building Google’s Data Infrastructure for Ads](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44686.pdf) + - [ ] [2015: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems](http://download.tensorflow.org/paper/whitepaper2015.pdf ) + - [ ] [2015: How Developers Search for Code: A Case Study](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43835.pdf) + - [ ] [2016: Borg, Omega, and Kubernetes](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44843.pdf) + +- ### Testing + - To cover: + - how unit testing works + - what are mock objects + - what is integration testing + - what is dependency injection + - [ ] [Agile Software Testing with James Bach (video)](https://www.youtube.com/watch?v=SAhJf36_u5U) + - [ ] [Open Lecture by James Bach on Software Testing (video)](https://www.youtube.com/watch?v=ILkT_HV9DVU) + - [ ] [Steve Freeman - Test-Driven Development (that’s not what we meant) (video)](https://vimeo.com/83960706) + - [slides](http://gotocon.com/dl/goto-berlin-2013/slides/SteveFreeman_TestDrivenDevelopmentThatsNotWhatWeMeant.pdf) + - [ ] [TDD is dead. Long live testing.](http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html) + - [ ] [Is TDD dead? (video)](https://www.youtube.com/watch?v=z9quxZsLcfo) + - [ ] [Video series (152 videos) - not all are needed (video)](https://www.youtube.com/watch?v=nzJapzxH_rE&list=PLAwxTw4SYaPkWVHeC_8aSIbSxE_NXI76g) + - [ ] [Test-Driven Web Development with Python](http://www.obeythetestinggoat.com/pages/book.html#toc) + - [ ] Dependency injection: + - [ ] [video](https://www.youtube.com/watch?v=IKD2-MAkXyQ) + - [ ] [Tao Of Testing](http://jasonpolites.github.io/tao-of-testing/ch3-1.1.html) + - [ ] [How to write tests](http://jasonpolites.github.io/tao-of-testing/ch4-1.1.html) + +- ### Scheduling + - in an OS, how it works + - can be gleaned from Operating System videos + +- ### Implement system routines + - understand what lies beneath the programming APIs you use + - can you implement them? + +- ### String searching & manipulations + - [ ] [Sedgewick - Suffix Arrays (video)](https://www.youtube.com/watch?v=HKPrVm5FWvg) + - [ ] [Sedgewick - Substring Search (videos)](https://www.youtube.com/watch?v=2LvvVFCEIv8&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=5) + - [ ] [1. Introduction to Substring Search](https://www.youtube.com/watch?v=2LvvVFCEIv8&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=5) + - [ ] [2. Brute-Force Substring Search](https://www.youtube.com/watch?v=CcDXwIGEXYU&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=4) + - [ ] [3. Knuth-Morris Pratt](https://www.youtube.com/watch?v=n-7n-FDEWzc&index=3&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) + - [ ] [4. Boyer-Moore](https://www.youtube.com/watch?v=fI7Ch6pZXfM&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66&index=2) + - [ ] [5. Rabin-Karp](https://www.youtube.com/watch?v=QzI0p6zDjK4&index=1&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) + - [ ] [Search pattern in text (video)](https://www.coursera.org/learn/data-structures/lecture/tAfHI/search-pattern-in-text) + + If you need more detail on this subject, see "String Matching" section in [Additional Detail on Some Subjects](#additional-detail-on-some-subjects) + +--- + +## System Design, Scalability, Data Handling +- **You can expect system design questions if you have 4+ years of experience.** +- Scalability and System Design are very large topics with many topics and resources, since + there is a lot to consider when designing a software/hardware system that can scale. + Expect to spend quite a bit of time on this. +- Considerations from Yegge: + - scalability + - Distill large data sets to single values + - Transform one data set to another + - Handling obscenely large amounts of data + - system design + - features sets + - interfaces + - class hierarchies + - designing a system under certain constraints + - simplicity and robustness + - tradeoffs + - performance analysis and optimization +- [ ] **START HERE**: [System Design from HiredInTech](http://www.hiredintech.com/system-design/) +- [ ] [How Do I Prepare To Answer Design Questions In A Technical Inverview?](https://www.quora.com/How-do-I-prepare-to-answer-design-questions-in-a-technical-interview?redirected_qid=1500023) +- [ ] [8 Things You Need to Know Before a System Design Interview](http://blog.gainlo.co/index.php/2015/10/22/8-things-you-need-to-know-before-system-design-interviews/) +- [ ] [Algorithm design](http://www.hiredintech.com/algorithm-design/) +- [ ] [Database Normalization - 1NF, 2NF, 3NF and 4NF (video)](https://www.youtube.com/watch?v=UrYLYV7WSHM) +- [ ] [System Design Interview](https://github.com/checkcheckzz/system-design-interview) - There are a lot of resources in this one. Look through the articles and examples. I put some of them below. +- [ ] [How to ace a systems design interview](http://www.palantir.com/2011/10/how-to-rock-a-systems-design-interview/) +- [ ] [Numbers Everyone Should Know](http://everythingisdata.wordpress.com/2009/10/17/numbers-everyone-should-know/) +- [ ] [How long does it take to make a context switch?](http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html) +- [ ] [Transactions Across Datacenters (video)](https://www.youtube.com/watch?v=srOgpXECblk) +- [ ] [A plain English introduction to CAP Theorem](http://ksat.me/a-plain-english-introduction-to-cap-theorem/) +- [ ] Paxos Consensus algorithm: + - [short video](https://www.youtube.com/watch?v=s8JqcZtvnsM) + - [extended video with use case and multi-paxos](https://www.youtube.com/watch?v=JEpsBg0AO6o) + - [paper](http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf) +- [ ] [Consistent Hashing](http://www.tom-e-white.com/2007/11/consistent-hashing.html) +- [ ] [NoSQL Patterns](http://horicky.blogspot.com/2009/11/nosql-patterns.html) +- [ ] Scalability: + - [ ] [Great overview (video)](https://www.youtube.com/watch?v=-W9F__D3oY4) + - [ ] Short series: + - [Clones](http://www.lecloud.net/post/7295452622/scalability-for-dummies-part-1-clones) + - [Database](http://www.lecloud.net/post/7994751381/scalability-for-dummies-part-2-database) + - [Cache](http://www.lecloud.net/post/9246290032/scalability-for-dummies-part-3-cache) + - [Asynchronism](http://www.lecloud.net/post/9699762917/scalability-for-dummies-part-4-asynchronism) + - [ ] [Scalable Web Architecture and Distributed Systems](http://www.aosabook.org/en/distsys.html) + - [ ] [Fallacies of Distributed Computing Explained](https://pages.cs.wisc.edu/~zuyu/files/fallacies.pdf) + - [ ] [Pragmatic Programming Techniques](http://horicky.blogspot.com/2010/10/scalable-system-design-patterns.html) + - [extra: Google Pregel Graph Processing](http://horicky.blogspot.com/2010/07/google-pregel-graph-processing.html) + - [ ] [Jeff Dean - Building Software Systems At Google and Lessons Learned (video)](https://www.youtube.com/watch?v=modXC5IWTJI) + - [ ] [Introduction to Architecting Systems for Scale](http://lethain.com/introduction-to-architecting-systems-for-scale/) + - [ ] [Scaling mobile games to a global audience using App Engine and Cloud Datastore (video)](https://www.youtube.com/watch?v=9nWyWwY2Onc) + - [ ] [How Google Does Planet-Scale Engineering for Planet-Scale Infra (video)](https://www.youtube.com/watch?v=H4vMcD7zKM0) + - [ ] [The Importance of Algorithms](https://www.topcoder.com/community/data-science/data-science-tutorials/the-importance-of-algorithms/) + - [ ] [Sharding](http://highscalability.com/blog/2009/8/6/an-unorthodox-approach-to-database-design-the-coming-of-the.html) + - [ ] [Scale at Facebook (2009)](https://www.infoq.com/presentations/Scale-at-Facebook) + - [ ] [Scale at Facebook (2012), "Building for a Billion Users" (video)](https://www.youtube.com/watch?v=oodS71YtkGU) + - [ ] [Engineering for the Long Game - Astrid Atkinson Keynote(video)](https://www.youtube.com/watch?v=p0jGmgIrf_M&list=PLRXxvay_m8gqVlExPC5DG3TGWJTaBgqSA&index=4) + - [ ] [7 Years Of YouTube Scalability Lessons In 30 Minutes](http://highscalability.com/blog/2012/3/26/7-years-of-youtube-scalability-lessons-in-30-minutes.html) + - [video](https://www.youtube.com/watch?v=G-lGCC4KKok) + - [ ] [How PayPal Scaled To Billions Of Transactions Daily Using Just 8VMs](http://highscalability.com/blog/2016/8/15/how-paypal-scaled-to-billions-of-transactions-daily-using-ju.html) + - [ ] [How to Remove Duplicates in Large Datasets](https://blog.clevertap.com/how-to-remove-duplicates-in-large-datasets/) + - [ ] [A look inside Etsy's scale and engineering culture with Jon Cowie (video)](https://www.youtube.com/watch?v=3vV4YiqKm1o) + - [ ] [What Led Amazon to its Own Microservices Architecture](http://thenewstack.io/led-amazon-microservices-architecture/) + - [ ] [To Compress Or Not To Compress, That Was Uber's Question](https://eng.uber.com/trip-data-squeeze/) + - [ ] [Asyncio Tarantool Queue, Get In The Queue](http://highscalability.com/blog/2016/3/3/asyncio-tarantool-queue-get-in-the-queue.html) + - [ ] [When Should Approximate Query Processing Be Used?](http://highscalability.com/blog/2016/2/25/when-should-approximate-query-processing-be-used.html) + - [ ] [Google's Transition From Single Datacenter, To Failover, To A Native Multihomed Architecture]( http://highscalability.com/blog/2016/2/23/googles-transition-from-single-datacenter-to-failover-to-a-n.html) + - [ ] [Spanner](http://highscalability.com/blog/2012/9/24/google-spanners-most-surprising-revelation-nosql-is-out-and.html) + - [ ] [Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System](http://highscalability.com/blog/2016/2/15/egnyte-architecture-lessons-learned-in-building-and-scaling.html) + - [ ] [Machine Learning Driven Programming: A New Programming For A New World](http://highscalability.com/blog/2016/7/6/machine-learning-driven-programming-a-new-programming-for-a.html) + - [ ] [The Image Optimization Technology That Serves Millions Of Requests Per Day](http://highscalability.com/blog/2016/6/15/the-image-optimization-technology-that-serves-millions-of-re.html) + - [ ] [A Patreon Architecture Short](http://highscalability.com/blog/2016/2/1/a-patreon-architecture-short.html) + - [ ] [Tinder: How Does One Of The Largest Recommendation Engines Decide Who You'll See Next?](http://highscalability.com/blog/2016/1/27/tinder-how-does-one-of-the-largest-recommendation-engines-de.html) + - [ ] [Design Of A Modern Cache](http://highscalability.com/blog/2016/1/25/design-of-a-modern-cache.html) + - [ ] [Live Video Streaming At Facebook Scale](http://highscalability.com/blog/2016/1/13/live-video-streaming-at-facebook-scale.html) + - [ ] [A Beginner's Guide To Scaling To 11 Million+ Users On Amazon's AWS](http://highscalability.com/blog/2016/1/11/a-beginners-guide-to-scaling-to-11-million-users-on-amazons.html) + - [ ] [How Does The Use Of Docker Effect Latency?](http://highscalability.com/blog/2015/12/16/how-does-the-use-of-docker-effect-latency.html) + - [ ] [Does AMP Counter An Existential Threat To Google?](http://highscalability.com/blog/2015/12/14/does-amp-counter-an-existential-threat-to-google.html) + - [ ] [A 360 Degree View Of The Entire Netflix Stack](http://highscalability.com/blog/2015/11/9/a-360-degree-view-of-the-entire-netflix-stack.html) + - [ ] [Latency Is Everywhere And It Costs You Sales - How To Crush It](http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it) + - [ ] [Serverless (very long, just need the gist)](http://martinfowler.com/articles/serverless.html) + - [ ] [What Powers Instagram: Hundreds of Instances, Dozens of Technologies](http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances) + - [ ] [Cinchcast Architecture - Producing 1,500 Hours Of Audio Every Day](http://highscalability.com/blog/2012/7/16/cinchcast-architecture-producing-1500-hours-of-audio-every-d.html) + - [ ] [Justin.Tv's Live Video Broadcasting Architecture](http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html) + - [ ] [Playfish's Social Gaming Architecture - 50 Million Monthly Users And Growing](http://highscalability.com/blog/2010/9/21/playfishs-social-gaming-architecture-50-million-monthly-user.html) + - [ ] [TripAdvisor Architecture - 40M Visitors, 200M Dynamic Page Views, 30TB Data](http://highscalability.com/blog/2011/6/27/tripadvisor-architecture-40m-visitors-200m-dynamic-page-view.html) + - [ ] [PlentyOfFish Architecture](http://highscalability.com/plentyoffish-architecture) + - [ ] [Salesforce Architecture - How They Handle 1.3 Billion Transactions A Day](http://highscalability.com/blog/2013/9/23/salesforce-architecture-how-they-handle-13-billion-transacti.html) + - [ ] [ESPN's Architecture At Scale - Operating At 100,000 Duh Nuh Nuhs Per Second](http://highscalability.com/blog/2013/11/4/espns-architecture-at-scale-operating-at-100000-duh-nuh-nuhs.html) + - [ ] See "Messaging, Serialization, and Queueing Systems" way below for info on some of the technologies that can glue services together + - [ ] Twitter: + - [O'Reilly MySQL CE 2011: Jeremy Cole, "Big and Small Data at @Twitter" (video)](https://www.youtube.com/watch?v=5cKTP36HVgI) + - [Timelines at Scale](https://www.infoq.com/presentations/Twitter-Timeline-Scalability) + - For even more, see "Mining Massive Datasets" video series in the Video Series section. +- [ ] Practicing the system design process: Here are some ideas to try working through on paper, each with some documentation on how it was handled in the real world: + - review: [System Design from HiredInTech](http://www.hiredintech.com/system-design/) + - [cheat sheet](https://github.com/jwasham/google-interview-university/blob/master/extras/cheat%20sheets/system-design.pdf) + - flow: + 1. Understand the problem and scope: + - define the use cases, with interviewer's help + - suggest additional features + - remove items that interviewer deems out of scope + - assume high availability is required, add as a use case + 2. Think about constraints: + - ask how many requests per month + - ask how many requests per second (they may volunteer it or make you do the math) + - estimate reads vs. writes percentage + - keep 80/20 rule in mind when estimating + - how much data written per second + - total storage required over 5 years + - how much data read per second + 3. Abstract design: + - layers (service, data, caching) + - infrastructure: load balancing, messaging + - rough overview of any key algorithm that drives the service + - consider bottlenecks and determine solutions + - Exercises: + - [Design a CDN network: old article](http://repository.cmu.edu/cgi/viewcontent.cgi?article=2112&context=compsci) + - [Design a random unique ID generation system](https://blog.twitter.com/2010/announcing-snowflake) + - [Design an online multiplayer card game](http://www.indieflashblog.com/how-to-create-an-asynchronous-multiplayer-game.html) + - [Design a key-value database](http://www.slideshare.net/dvirsky/introduction-to-redis) + - [Design a function to return the top k requests during past time interval]( https://icmi.cs.ucsb.edu/research/tech_reports/reports/2005-23.pdf) + - [Design a picture sharing system](http://highscalability.com/blog/2011/12/6/instagram-architecture-14-million-users-terabytes-of-photos.html) + - [Design a recommendation system](http://ijcai13.org/files/tutorial_slides/td3.pdf) + - [Design a URL-shortener system: copied from above](http://www.hiredintech.com/system-design/the-system-design-process/) + - [Design a cache system](https://www.adayinthelifeof.nl/2011/02/06/memcache-internals/) + +--- + +## Final Review + + This section will have shorter videos that can you watch pretty quickly to review most of the important concepts. + It's nice if you want a refresher often. + +- [ ] Series of 2-3 minutes short subject videos (23 videos) + - [Videos](https://www.youtube.com/watch?v=r4r1DZcx1cM&list=PLmVb1OknmNJuC5POdcDv5oCS7_OUkDgpj&index=22) +- [ ] Series of 2-5 minutes short subject videos - Michael Sambol (18 videos): + - [Videos](https://www.youtube.com/channel/UCzDJwLWoYCUQowF_nG3m5OQ) +- [ ] [Sedgewick Videos - Algorithms I](https://www.youtube.com/user/algorithmscourses/playlists?shelf_id=2&view=50&sort=dd) + - [ ] [01. Union-Find](https://www.youtube.com/watch?v=8mYfZeHtdNc&list=PLe-ggMe31CTexoNYnMhbHaWhQ0dvcy43t) + - [ ] [02. Analysis of Algorithms](https://www.youtube.com/watch?v=ZN-nFW0mEpg&list=PLe-ggMe31CTf0_bkOhh7sa5uqeppp3Sr0) + - [ ] [03. Stacks and Queues](https://www.youtube.com/watch?v=TIC1gappbP8&list=PLe-ggMe31CTe-9jhnj3P_3mmrCh0A7iHh) + - [ ] [04. Elementary Sorts](https://www.youtube.com/watch?v=CD2AL6VO0ak&list=PLe-ggMe31CTe_5WhGV0F--7CK8MoRUqBd) + - [ ] [05. Mergesort](https://www.youtube.com/watch?v=4nKwesx_c8E&list=PLe-ggMe31CTeunC6GZHFBmQx7EKtjbGf9) + - [ ] [06. Quicksort](https://www.youtube.com/watch?v=5M5A7qPWk84&list=PLe-ggMe31CTeE3x2-nF1-toca1QpuXwE1) + - [ ] [07. Priority Queues](https://www.youtube.com/watch?v=G9TMe0KC0w0&list=PLe-ggMe31CTducy9LDiGVkdSv0NfiRwn5) + - [ ] [08. Elementary Symbol Tables](https://www.youtube.com/watch?v=up_nlilw3ac&list=PLe-ggMe31CTc3a8nKRDxFZZrWrBvkc9SG) + - [ ] [09. Balanced Search Trees](https://www.youtube.com/watch?v=qC1BLLPK_5w&list=PLe-ggMe31CTf7jHH_mFT50kayjCEA6Rhu) + - [ ] [10. Geometric Applications of BST](https://www.youtube.com/watch?v=Wl30aGAp6TY&list=PLe-ggMe31CTdBsRIw0hXln0hilRs-DqAx) + - [ ] [11. Hash Tables](https://www.youtube.com/watch?v=QA8fJGO-i9o&list=PLe-ggMe31CTcKxIRGqqThMts2eHtSrf11) +- [ ] [Sedgewick Videos - Algorithms II](https://www.youtube.com/user/algorithmscourses/playlists?flow=list&shelf_id=3&view=50) + - [ ] [01. Undirected Graphs](https://www.youtube.com/watch?v=GmVhD-mmMBg&list=PLe-ggMe31CTc0zDzANxl4I2MhMoRVlbRM) + - [ ] [02. Directed Graphs](https://www.youtube.com/watch?v=_z-JsVaUS40&list=PLe-ggMe31CTcEwaU8a1P1Gd95A77HV85K) + - [ ] [03. Minimum Spanning Trees](https://www.youtube.com/watch?v=t8fNk9tfVYY&list=PLe-ggMe31CTceUZxDesGfHGLE7kcSafqj) + - [ ] [04. Shortest Paths](https://www.youtube.com/watch?v=HoGSiB7tSeI&list=PLe-ggMe31CTePpG3jbeOTsnGUGZDKxgZD) + - [ ] [05. Maximum Flow](https://www.youtube.com/watch?v=rYIKlFstBqE&list=PLe-ggMe31CTduQ68XQ-sVj32wYJIspTma) + - [ ] [06. Radix Sorts](https://www.youtube.com/watch?v=HKPrVm5FWvg&list=PLe-ggMe31CTcNvUX9E3tQeM6ntrdR8e53) + - [ ] [07. Tries](https://www.youtube.com/watch?v=00YaFPcC65g&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [08. Substring Search](https://www.youtube.com/watch?v=QzI0p6zDjK4&list=PLe-ggMe31CTdAdjXB3lIuf2maubzo9t66) + - [ ] [09. Regular Expressions](https://www.youtube.com/watch?v=TQWNQsJSPnk&list=PLe-ggMe31CTetTlJWouM42fyttyKPgSDh) + - [ ] [10. Data Compression](https://www.youtube.com/watch?v=at9tjpxcBh8&list=PLe-ggMe31CTciifRRo6yY0Yt0mzgIXXVZ) + - [ ] [11. Reductions](https://www.youtube.com/watch?v=Ow5x-ooMGv8&list=PLe-ggMe31CTe_yliW5vc3yO-dj1LSSDyF) + - [ ] [12. Linear Programming](https://www.youtube.com/watch?v=rWhcLyiLZLA&list=PLe-ggMe31CTdy6dKzMgkWFuTTN1H8B-E1) + - [ ] [13. Intractability](https://www.youtube.com/watch?v=6qcaaDp4cdQ&list=PLe-ggMe31CTcZCjluBHw53e_ek2k9Kn-S) + +--- + +## Coding Question Practice + +Now that you know all the computer science topics above, it's time to practice answering coding problems. + +**Coding question practice is not about memorizing answers to programming problems.** + +Why you need to practice doing programming problems: +- problem recognition, and where the right data structures and algorithms fit in +- gathering requirements for the problem +- talking your way through the problem like you will in the interview +- coding on a whiteboard or paper, not a computer +- coming up with time and space complexity for your solutions +- testing your solutions + +There is a great intro for methodical, communicative problem solving in an interview. You'll get this from the programming +interview books, too, but I found this outstanding: +[Algorithm design canvas](http://www.hiredintech.com/algorithm-design/) + +[My Process for Coding Interview (Book) Exercises](https://googleyasheck.com/my-process-for-coding-interview-exercises/) + +No whiteboard at home? That makes sense. I'm a weirdo and have a big whiteboard. Instead of a whiteboard, pick up a +large drawing pad from an art store. You can sit on the couch and practice. This is my "sofa whiteboard". +I added the pen in the photo for scale. If you use a pen, you'll wish you could erase. Gets messy quick. + +![my sofa whiteboard](https://dng5l3qzreal6.cloudfront.net/2016/Oct/art_board_sm_2-1476233630368.jpg) + +Supplemental: + +- [Mathematics for Topcoders](https://www.topcoder.com/community/data-science/data-science-tutorials/mathematics-for-topcoders/) +- [Dynamic Programming – From Novice to Advanced](https://www.topcoder.com/community/data-science/data-science-tutorials/dynamic-programming-from-novice-to-advanced/) +- [MIT Interview Materials](https://web.archive.org/web/20160906124824/http://courses.csail.mit.edu/iap/interview/materials.php) +- [Exercises for getting better at a given language](http://exercism.io/languages) + +**Read and Do Programming Problems (in this order):** + +- [ ] [Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition](http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html) + - answers in C, C++ and Java +- [ ] [Cracking the Coding Interview, 6th Edition](http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/) + - answers in Java + +See [Book List above](#book-list) + +## Coding exercises/challenges + +Once you've learned your brains out, put those brains to work. +Take coding challenges every day, as many as you can. + +- [ ] [How to Find a Solution](https://www.topcoder.com/community/data-science/data-science-tutorials/how-to-find-a-solution/) +- [ ] [How to Dissect a Topcoder Problem Statement](https://www.topcoder.com/community/data-science/data-science-tutorials/how-to-dissect-a-topcoder-problem-statement/) + +Challenge sites: +- [LeetCode](https://leetcode.com/) +- [TopCoder](https://www.topcoder.com/) +- [Project Euler (math-focused)](https://projecteuler.net/index.php?section=problems) +- [Codewars](http://www.codewars.com) +- [HackerRank](https://www.hackerrank.com/) +- [Codility](https://codility.com/programmers/) +- [InterviewCake](https://www.interviewcake.com/) +- [Geeks for Geeks](http://www.geeksforgeeks.org/) +- [InterviewBit](https://www.interviewbit.com/invite/icjf) + +Maybe: +- [Mock interviewers from big companies](http://www.gainlo.co/) + +## Once you're closer to the interview + +- [ ] Cracking The Coding Interview Set 2 (videos): + - [Cracking The Code Interview](https://www.youtube.com/watch?v=4NIb9l3imAo) + - [Cracking the Coding Interview - Fullstack Speaker Series](https://www.youtube.com/watch?v=Eg5-tdAwclo) + - [Ask Me Anything: Gayle Laakmann McDowell (author of Cracking the Coding Interview)](https://www.youtube.com/watch?v=1fqxMuPmGak) + +## Your Resume + +- [Ten Tips for a (Slightly) Less Awful Resume](http://steve-yegge.blogspot.co.uk/2007_09_01_archive.html) +- See Resume prep items in Cracking The Coding Interview and back of Programming Interviews Exposed + + +## Be thinking of for when the interview comes + +Think of about 20 interview questions you'll get, along with the lines of the items below. Have 2-3 answers for each. +Have a story, not just data, about something you accomplished. + +- Why do you want this job? +- What's a tough problem you've solved? +- Biggest challenges faced? +- Best/worst designs seen? +- Ideas for improving an existing Google product. +- How do you work best, as an individual and as part of a team? +- Which of your skills or experiences would be assets in the role and why? +- What did you most enjoy at [job x / project y]? +- What was the biggest challenge you faced at [job x / project y]? +- What was the hardest bug you faced at [job x / project y]? +- What did you learn at [job x / project y]? +- What would you have done better at [job x / project y]? + +## Have questions for the interviewer + + Some of mine (I already may know answer to but want their opinion or team perspective): + +- How large is your team? +- What does your dev cycle look like? Do you do waterfall/sprints/agile? +- Are rushes to deadlines common? Or is there flexibility? +- How are decisions made in your team? +- How many meetings do you have per week? +- Do you feel your work environment helps you concentrate? +- What are you working on? +- What do you like about it? +- What is the work life like? + +## Once You've Got The Job + +Congratulations! + +- [10 things I wish I knew on my first day at Google](https://medium.com/@moonstorming/10-things-i-wish-i-knew-on-my-first-day-at-google-107581d87286#.livxn7clw) + +Keep learning. + +You're never really done. + +--- + + ***************************************************************************************************** + ***************************************************************************************************** + + Everything below this point is optional. These are my recommendations, not Google's. + By studying these, you'll get greater exposure to more CS concepts, and will be better prepared for + any software engineering job. You'll be a much more well-rounded software engineer. + + ***************************************************************************************************** + ***************************************************************************************************** + +--- + +## Additional Books + +- [ ] [The Unix Programming Environment](http://product.half.ebay.com/The-UNIX-Programming-Environment-by-Brian-W-Kernighan-and-Rob-Pike-1983-Other/54385&tg=info) + - an oldie but a goodie +- [ ] [The Linux Command Line: A Complete Introduction](https://www.amazon.com/dp/1593273894/) + - a modern option +- [ ] [TCP/IP Illustrated Series](https://en.wikipedia.org/wiki/TCP/IP_Illustrated) +- [ ] [Head First Design Patterns](https://www.amazon.com/gp/product/0596007124/) + - a gentle introduction to design patterns +- [ ] [Design Patterns: Elements of Reusable Object-Oriente​d Software](https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612) + - aka the "Gang Of Four" book, or GOF + - the canonical design patterns book +- [ ] [Site Reliability Engineering](https://landing.google.com/sre/book.html) + - [Site Reliability Engineering: How Google Runs Production Systems](https://landing.google.com/sre/) +- [ ] [UNIX and Linux System Administration Handbook, 4th Edition](https://www.amazon.com/UNIX-Linux-System-Administration-Handbook/dp/0131480057/) + +## Additional Learning + +- ### Dynamic Programming + - This subject can be pretty difficult, as each DP soluble problem must be defined as a recursion relation, and coming up with it can be tricky. + - I suggest looking at many examples of DP problems until you have a solid understanding of the pattern involved. + - [ ] Videos: + - the Skiena videos can be hard to follow since he sometimes uses the whiteboard, which is too small to see + - [ ] [Skiena: CSE373 2012 - Lecture 19 - Introduction to Dynamic Programming (video)](https://youtu.be/Qc2ieXRgR0k?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1718) + - [ ] [Skiena: CSE373 2012 - Lecture 20 - Edit Distance (video)](https://youtu.be/IsmMhMdyeGY?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=2749) + - [ ] [Skiena: CSE373 2012 - Lecture 21 - Dynamic Programming Examples (video)](https://youtu.be/o0V9eYF4UI8?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=406) + - [ ] [Skiena: CSE373 2012 - Lecture 22 - Applications of Dynamic Programming (video)](https://www.youtube.com/watch?v=dRbMC1Ltl3A&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=22) + - [ ] [Simonson: Dynamic Programming 0 (starts at 59:18) (video)](https://youtu.be/J5aJEcOr6Eo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3558) + - [ ] [Simonson: Dynamic Programming I - Lecture 11 (video)](https://www.youtube.com/watch?v=0EzHjQ_SOeU&index=11&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [Simonson: Dynamic programming II - Lecture 12 (video)](https://www.youtube.com/watch?v=v1qiRwuJU7g&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=12) + - [ ] List of individual DP problems (each is short): + [Dynamic Programming (video)](https://www.youtube.com/playlist?list=PLrmLmBdmIlpsHaNTPP_jHHDx_os9ItYXr) + - [ ] Yale Lecture notes: + - [ ] [Dynamic Programming](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#dynamicProgramming) + - [ ] Coursera: + - [ ] [The RNA secondary structure problem (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/80RrW/the-rna-secondary-structure-problem) + - [ ] [A dynamic programming algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/PSonq/a-dynamic-programming-algorithm) + - [ ] [Illustrating the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/oUEK2/illustrating-the-dp-algorithm) + - [ ] [Running time of the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/nfK2r/running-time-of-the-dp-algorithm) + - [ ] [DP vs. recursive implementation (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/M999a/dp-vs-recursive-implementation) + - [ ] [Global pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/UZ7o6/global-pairwise-sequence-alignment) + - [ ] [Local pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/WnNau/local-pairwise-sequence-alignment) + +- ### Compilers + - [ ] [How a Compiler Works in ~1 minute (video)](https://www.youtube.com/watch?v=IhC7sdYe-Jg) + - [ ] [Harvard CS50 - Compilers (video)](https://www.youtube.com/watch?v=CSZLNYF4Klo) + - [ ] [C++ (video)](https://www.youtube.com/watch?v=twodd1KFfGk) + - [ ] [Understanding Compiler Optimization (C++) (video)](https://www.youtube.com/watch?v=FnGCDLhaxKU) + +- ### Floating Point Numbers + - [ ] simple 8-bit: [Representation of Floating Point Numbers - 1 (video - there is an error in calculations - see video description)](https://www.youtube.com/watch?v=ji3SfClm8TU) + - [ ] 32 bit: [IEEE754 32-bit floating point binary (video)](https://www.youtube.com/watch?v=50ZYcZebIec) + +- ### Unicode + - [ ] [The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets]( http://www.joelonsoftware.com/articles/Unicode.html) + - [ ] [What Every Programmer Absolutely, Positively Needs To Know About Encodings And Character Sets To Work With Text](http://kunststube.net/encoding/) + +- ### Endianness + - [ ] [Big And Little Endian](https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Data/endian.html) + - [ ] [Big Endian Vs Little Endian (video)](https://www.youtube.com/watch?v=JrNF0KRAlyo) + - [ ] [Big And Little Endian Inside/Out (video)](https://www.youtube.com/watch?v=oBSuXP-1Tc0) + - Very technical talk for kernel devs. Don't worry if most is over your head. + - The first half is enough. + +- ### Emacs and vi(m) + - suggested by Yegge, from an old Amazon recruiting post: Familiarize yourself with a unix-based code editor + - vi(m): + - [Editing With vim 01 - Installation, Setup, and The Modes (video)](https://www.youtube.com/watch?v=5givLEMcINQ&index=1&list=PL13bz4SHGmRxlZVmWQ9DvXo1fEg4UdGkr) + - [VIM Adventures](http://vim-adventures.com/) + - set of 4 videos: + - [The vi/vim editor - Lesson 1](https://www.youtube.com/watch?v=SI8TeVMX8pk) + - [The vi/vim editor - Lesson 2](https://www.youtube.com/watch?v=F3OO7ZIOaJE) + - [The vi/vim editor - Lesson 3](https://www.youtube.com/watch?v=ZYEccA_nMaI) + - [The vi/vim editor - Lesson 4](https://www.youtube.com/watch?v=1lYD5gwgZIA) + - [Using Vi Instead of Emacs](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#Using_Vi_instead_of_Emacs) + - emacs: + - [Basics Emacs Tutorial (video)](https://www.youtube.com/watch?v=hbmV1bnQ-i0) + - set of 3 (videos): + - [Emacs Tutorial (Beginners) -Part 1- File commands, cut/copy/paste, cursor commands](https://www.youtube.com/watch?v=ujODL7MD04Q) + - [Emacs Tutorial (Beginners) -Part 2- Buffer management, search, M-x grep and rgrep modes](https://www.youtube.com/watch?v=XWpsRupJ4II) + - [Emacs Tutorial (Beginners) -Part 3- Expressions, Statements, ~/.emacs file and packages](https://www.youtube.com/watch?v=paSgzPso-yc) + - [Evil Mode: Or, How I Learned to Stop Worrying and Love Emacs (video)](https://www.youtube.com/watch?v=JWD1Fpdd4Pc) + - [Writing C Programs With Emacs](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#Writing_C_programs_with_Emacs) + - [(maybe) Org Mode In Depth: Managing Structure (video)](https://www.youtube.com/watch?v=nsGYet02bEk) + +- ### Unix command line tools + - suggested by Yegge, from an old Amazon recruiting post. I filled in the list below from good tools. + - [ ] bash + - [ ] cat + - [ ] grep + - [ ] sed + - [ ] awk + - [ ] curl or wget + - [ ] sort + - [ ] tr + - [ ] uniq + - [ ] [strace](https://en.wikipedia.org/wiki/Strace) + - [ ] [tcpdump](https://danielmiessler.com/study/tcpdump/) + +- ### Information theory (videos) + - [ ] [Khan Academy](https://www.khanacademy.org/computing/computer-science/informationtheory) + - [ ] more about Markov processes: + - [ ] [Core Markov Text Generation](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/waxgx/core-markov-text-generation) + - [ ] [Core Implementing Markov Text Generation](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/gZhiC/core-implementing-markov-text-generation) + - [ ] [Project = Markov Text Generation Walk Through](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/EUjrq/project-markov-text-generation-walk-through) + - See more in MIT 6.050J Information and Entropy series below. + +- ### Parity & Hamming Code (videos) + - [ ] [Intro](https://www.youtube.com/watch?v=q-3BctoUpHE) + - [ ] [Parity](https://www.youtube.com/watch?v=DdMcAUlxh1M) + - [ ] Hamming Code: + - [Error detection](https://www.youtube.com/watch?v=1A_NcXxdoCc) + - [Error correction](https://www.youtube.com/watch?v=JAMLuxdHH8o) + - [ ] [Error Checking](https://www.youtube.com/watch?v=wbH2VxzmoZk) + +- ### Entropy + - also see videos below + - make sure to watch information theory videos first + - [ ] [Information Theory, Claude Shannon, Entropy, Redundancy, Data Compression & Bits (video)](https://youtu.be/JnJq3Py0dyM?t=176) + +- ### Cryptography + - also see videos below + - make sure to watch information theory videos first + - [ ] [Khan Academy Series](https://www.khanacademy.org/computing/computer-science/cryptography) + - [ ] [Cryptography: Hash Functions](https://www.youtube.com/watch?v=KqqOXndnvic&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=30) + - [ ] [Cryptography: Encryption](https://www.youtube.com/watch?v=9TNI2wHmaeI&index=31&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + +- ### Compression + - make sure to watch information theory videos first + - [ ] Computerphile (videos): + - [ ] [Compression](https://www.youtube.com/watch?v=Lto-ajuqW3w) + - [ ] [Entropy in Compression](https://www.youtube.com/watch?v=M5c_RFKVkko) + - [ ] [Upside Down Trees (Huffman Trees)](https://www.youtube.com/watch?v=umTbivyJoiI) + - [ ] [EXTRA BITS/TRITS - Huffman Trees](https://www.youtube.com/watch?v=DV8efuB3h2g) + - [ ] [Elegant Compression in Text (The LZ 77 Method)](https://www.youtube.com/watch?v=goOa3DGezUA) + - [ ] [Text Compression Meets Probabilities](https://www.youtube.com/watch?v=cCDCfoHTsaU) + - [ ] [Compressor Head videos](https://www.youtube.com/playlist?list=PLOU2XLYxmsIJGErt5rrCqaSGTMyyqNt2H) + - [ ] [(optional) Google Developers Live: GZIP is not enough!](https://www.youtube.com/watch?v=whGwm0Lky2s) + +- ### Networking + - **if you have networking experience or want to be a systems engineer, expect questions** + - otherwise, this is just good to know + - [ ] [Khan Academy](https://www.khanacademy.org/computing/computer-science/internet-intro) + - [ ] [UDP and TCP: Comparison of Transport Protocols](https://www.youtube.com/watch?v=Vdc8TCESIg8) + - [ ] [TCP/IP and the OSI Model Explained!](https://www.youtube.com/watch?v=e5DEVa9eSN0) + - [ ] [Packet Transmission across the Internet. Networking & TCP/IP tutorial.](https://www.youtube.com/watch?v=nomyRJehhnM) + - [ ] [HTTP](https://www.youtube.com/watch?v=WGJrLqtX7As) + - [ ] [SSL and HTTPS](https://www.youtube.com/watch?v=S2iBR2ZlZf0) + - [ ] [SSL/TLS](https://www.youtube.com/watch?v=Rp3iZUvXWlM) + - [ ] [HTTP 2.0](https://www.youtube.com/watch?v=E9FxNzv1Tr8) + - [ ] [Video Series (21 videos)](https://www.youtube.com/playlist?list=PLEbnTDJUr_IegfoqO4iPnPYQui46QqT0j) + - [ ] [Subnetting Demystified - Part 5 CIDR Notation](https://www.youtube.com/watch?v=t5xYI0jzOf4) + +- ### Computer Security + - [MIT (23 videos)](https://www.youtube.com/playlist?list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Introduction, Threat Models](https://www.youtube.com/watch?v=GqmQg-cszw4&index=1&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Control Hijacking Attacks](https://www.youtube.com/watch?v=6bwzNg5qQ0o&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh&index=2) + - [ ] [Buffer Overflow Exploits and Defenses](https://www.youtube.com/watch?v=drQyrzRoRiA&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh&index=3) + - [ ] [Privilege Separation](https://www.youtube.com/watch?v=6SIJmoE9L9g&index=4&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Capabilities](https://www.youtube.com/watch?v=8VqTSY-11F4&index=5&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Sandboxing Native Code](https://www.youtube.com/watch?v=VEV74hwASeU&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh&index=6) + - [ ] [Web Security Model](https://www.youtube.com/watch?v=chkFBigodIw&index=7&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Securing Web Applications](https://www.youtube.com/watch?v=EBQIGy1ROLY&index=8&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Symbolic Execution](https://www.youtube.com/watch?v=yRVZPvHYHzw&index=9&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Network Security](https://www.youtube.com/watch?v=SIEVvk3NVuk&index=11&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Network Protocols](https://www.youtube.com/watch?v=QOtA76ga_fY&index=12&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + - [ ] [Side-Channel Attacks](https://www.youtube.com/watch?v=PuVMkSEcPiI&index=15&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + +- ### Garbage collection + - [ ] [Garbage collection (Java); Augmenting data str (video)](https://www.youtube.com/watch?v=StdfeXaKGEc&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=25) + - [ ] [Compilers (video)](https://www.youtube.com/playlist?list=PLO9y7hOkmmSGTy5z6HZ-W4k2y8WXF7Bff) + - [ ] [GC in Python (video)](https://www.youtube.com/watch?v=iHVs_HkjdmI) + - [ ] [Deep Dive Java: Garbage Collection is Good!](https://www.infoq.com/presentations/garbage-collection-benefits) + - [ ] [Deep Dive Python: Garbage Collection in CPython (video)](https://www.youtube.com/watch?v=P-8Z0-MhdQs&list=PLdzf4Clw0VbOEWOS_sLhT_9zaiQDrS5AR&index=3) + +- ### Parallel Programming + - [ ] [Coursera (Scala)](https://www.coursera.org/learn/parprog1/home/week/1) + - [ ] [Efficient Python for High Performance Parallel Computing (video)](https://www.youtube.com/watch?v=uY85GkaYzBk) + +- ### Messaging, Serialization, and Queueing Systems + - [ ] [Thrift](https://thrift.apache.org/) + - [Tutorial](http://thrift-tutorial.readthedocs.io/en/latest/intro.html) + - [ ] [Protocol Buffers](https://developers.google.com/protocol-buffers/) + - [Tutorials](https://developers.google.com/protocol-buffers/docs/tutorials) + - [ ] [gRPC](http://www.grpc.io/) + - [gRPC 101 for Java Developers (video)](https://www.youtube.com/watch?v=5tmPvSe7xXQ&list=PLcTqM9n_dieN0k1nSeN36Z_ppKnvMJoly&index=1) + - [ ] [Redis](http://redis.io/) + - [Tutorial](http://try.redis.io/) + - [ ] [Amazon SQS (queue)](https://aws.amazon.com/sqs/) + - [ ] [Amazon SNS (pub-sub)](https://aws.amazon.com/sns/) + - [ ] [RabbitMQ](https://www.rabbitmq.com/) + - [Get Started](https://www.rabbitmq.com/getstarted.html) + - [ ] [Celery](http://www.celeryproject.org/) + - [First Steps With Celery](http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html) + - [ ] [ZeroMQ](http://zeromq.org/) + - [Intro - Read The Manual](http://zeromq.org/intro:read-the-manual) + - [ ] [ActiveMQ](http://activemq.apache.org/) + - [ ] [Kafka](http://kafka.apache.org/documentation.html#introduction) + - [ ] [MessagePack](http://msgpack.org/index.html) + - [ ] [Avro](https://avro.apache.org/) + +- ### Fast Fourier Transform + - [ ] [An Interactive Guide To The Fourier Transform](https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/) + - [ ] [What is a Fourier transform? What is it used for?](http://www.askamathematician.com/2012/09/q-what-is-a-fourier-transform-what-is-it-used-for/) + - [ ] [What is the Fourier Transform? (video)](https://www.youtube.com/watch?v=Xxut2PN-V8Q) + - [ ] [Divide & Conquer: FFT (video)](https://www.youtube.com/watch?v=iTMn0Kt18tg&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=4) + - [ ] [Understanding The FFT](http://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/) + +- ### Bloom Filter + - Given a Bloom filter with m bits and k hashing functions, both insertion and membership testing are O(k) + - [Bloom Filters](https://www.youtube.com/watch?v=-SuTGoFYjZs) + - [Bloom Filters | Mining of Massive Datasets | Stanford University](https://www.youtube.com/watch?v=qBTdukbzc78) + - [Tutorial](http://billmill.org/bloomfilter-tutorial/) + - [How To Write A Bloom Filter App](http://blog.michaelschmatz.com/2016/04/11/how-to-write-a-bloom-filter-cpp/) + +- ### HyperLogLog + - [How To Count A Billion Distinct Objects Using Only 1.5KB Of Memory](http://highscalability.com/blog/2012/4/5/big-data-counting-how-to-count-a-billion-distinct-objects-us.html) + +- ### Locality-Sensitive Hashing + - used to determine the similarity of documents + - the opposite of MD5 or SHA which are used to determine if 2 documents/strings are exactly the same. + - [Simhashing (hopefully) made simple](http://ferd.ca/simhashing-hopefully-made-simple.html) + +- ### van Emde Boas Trees + - [ ] [Divide & Conquer: van Emde Boas Trees (video)](https://www.youtube.com/watch?v=hmReJCupbNU&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=6) + - [ ] [MIT Lecture Notes](https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2012/lecture-notes/MIT6_046JS12_lec15.pdf) + +- ### Augmented Data Structures + - [ ] [CS 61B Lecture 39: Augmenting Data Structures](https://youtu.be/zksIj9O8_jc?list=PL4BBB74C7D2A1049C&t=950) + +- ### Tries + - Note there are different kinds of tries. Some have prefixes, some don't, and some use string instead of bits + to track the path. + - I read through code, but will not implement. + - [ ] [Sedgewick - Tries (3 videos)](https://www.youtube.com/playlist?list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [1. R Way Tries](https://www.youtube.com/watch?v=buq2bn8x3Vo&index=3&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [2. Ternary Search Tries](https://www.youtube.com/watch?v=LelV-kkYMIg&index=2&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ) + - [ ] [3. Character Based Operations](https://www.youtube.com/watch?v=00YaFPcC65g&list=PLe-ggMe31CTe9IyG9MB8vt5xUJeYgOYRQ&index=1) + - [ ] [Notes on Data Structures and Programming Techniques](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#Tries) + - [ ] Short course videos: + - [ ] [Introduction To Tries (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/08Xyf/core-introduction-to-tries) + - [ ] [Performance Of Tries (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/PvlZW/core-performance-of-tries) + - [ ] [Implementing A Trie (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/DFvd3/core-implementing-a-trie) + - [ ] [The Trie: A Neglected Data Structure](https://www.toptal.com/java/the-trie-a-neglected-data-structure) + - [ ] [TopCoder - Using Tries](https://www.topcoder.com/community/data-science/data-science-tutorials/using-tries/) + - [ ] [Stanford Lecture (real world use case) (video)](https://www.youtube.com/watch?v=TJ8SkcUSdbU) + - [ ] [MIT, Advanced Data Structures, Strings (can get pretty obscure about halfway through)](https://www.youtube.com/watch?v=NinWEPPrkDQ&index=16&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf) + +- ### Balanced search trees + - Know least one type of balanced binary tree (and know how it's implemented): + - "Among balanced search trees, AVL and 2/3 trees are now passé, and red-black trees seem to be more popular. + A particularly interesting self-organizing data structure is the splay tree, which uses rotations + to move any accessed key to the root." - Skiena + - Of these, I chose to implement a splay tree. From what I've read, you won't implement a + balanced search tree in your interview. But I wanted exposure to coding one up + and let's face it, splay trees are the bee's knees. I did read a lot of red-black tree code. + - splay tree: insert, search, delete functions + If you end up implementing red/black tree try just these: + - search and insertion functions, skipping delete + - I want to learn more about B-Tree since it's used so widely with very large data sets. + - [ ] [Self-balancing binary search tree](https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree) + + - [ ] **AVL trees** + - In practice: + From what I can tell, these aren't used much in practice, but I could see where they would be: + The AVL tree is another structure supporting O(log n) search, insertion, and removal. It is more rigidly + balanced than red–black trees, leading to slower insertion and removal but faster retrieval. This makes it + attractive for data structures that may be built once and loaded without reconstruction, such as language + dictionaries (or program dictionaries, such as the opcodes of an assembler or interpreter). + - [ ] [MIT AVL Trees / AVL Sort (video)](https://www.youtube.com/watch?v=FNeL18KsWPc&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=6) + - [ ] [AVL Trees (video)](https://www.coursera.org/learn/data-structures/lecture/Qq5E0/avl-trees) + - [ ] [AVL Tree Implementation (video)](https://www.coursera.org/learn/data-structures/lecture/PKEBC/avl-tree-implementation) + - [ ] [Split And Merge](https://www.coursera.org/learn/data-structures/lecture/22BgE/split-and-merge) + + - [ ] **Splay trees** + - In practice: + Splay trees are typically used in the implementation of caches, memory allocators, routers, garbage collectors, + data compression, ropes (replacement of string used for long text strings), in Windows NT (in the virtual memory, + networking and file system code) etc. + - [ ] [CS 61B: Splay Trees (video)](https://www.youtube.com/watch?v=Najzh1rYQTo&index=23&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd) + - [ ] MIT Lecture: Splay Trees: + - Gets very mathy, but watch the last 10 minutes for sure. + - [Video](https://www.youtube.com/watch?v=QnPl_Y6EqMo) + + - [ ] **Red/black trees** + - these are a translation of a 2-3 tree (see below) + - In practice: + Red–black trees offer worst-case guarantees for insertion time, deletion time, and search time. + Not only does this make them valuable in time-sensitive applications such as real-time applications, + but it makes them valuable building blocks in other data structures which provide worst-case guarantees; + for example, many data structures used in computational geometry can be based on red–black trees, and + the Completely Fair Scheduler used in current Linux kernels uses red–black trees. In the version 8 of Java, + the Collection HashMap has been modified such that instead of using a LinkedList to store identical elements with poor + hashcodes, a Red-Black tree is used. + - [ ] [Aduni - Algorithms - Lecture 4 (link jumps to starting point) (video)](https://youtu.be/1W3x0f_RmUo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3871) + - [ ] [Aduni - Algorithms - Lecture 5 (video)](https://www.youtube.com/watch?v=hm2GHwyKF1o&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=5) + - [ ] [Black Tree](https://en.wikipedia.org/wiki/Red%E2%80%93black_tree) + - [ ] [An Introduction To Binary Search And Red Black Tree](https://www.topcoder.com/community/data-science/data-science-tutorials/an-introduction-to-binary-search-and-red-black-trees/) + + - [ ] **2-3 search trees** + - In practice: + 2-3 trees have faster inserts at the expense of slower searches (since height is more compared to AVL trees). + - You would use 2-3 tree very rarely because its implementation involves different types of nodes. Instead, people use Red Black trees. + - [ ] [23-Tree Intuition and Definition (video)](https://www.youtube.com/watch?v=C3SsdUqasD4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=2) + - [ ] [Binary View of 23-Tree](https://www.youtube.com/watch?v=iYvBtGKsqSg&index=3&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [2-3 Trees (student recitation) (video)](https://www.youtube.com/watch?v=TOb1tuEZ2X4&index=5&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + + - [ ] **2-3-4 Trees (aka 2-4 trees)** + - In practice: + For every 2-4 tree, there are corresponding red–black trees with data elements in the same order. The insertion and deletion + operations on 2-4 trees are also equivalent to color-flipping and rotations in red–black trees. This makes 2-4 trees an + important tool for understanding the logic behind red–black trees, and this is why many introductory algorithm texts introduce + 2-4 trees just before red–black trees, even though **2-4 trees are not often used in practice**. + - [ ] [CS 61B Lecture 26: Balanced Search Trees (video)](https://www.youtube.com/watch?v=zqrqYXkth6Q&index=26&list=PL4BBB74C7D2A1049C) + - [ ] [Bottom Up 234-Trees (video)](https://www.youtube.com/watch?v=DQdMYevEyE4&index=4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [Top Down 234-Trees (video)](https://www.youtube.com/watch?v=2679VQ26Fp4&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=5) + + - [ ] **N-ary (K-ary, M-ary) trees** + - note: the N or K is the branching factor (max branches) + - binary trees are a 2-ary tree, with branching factor = 2 + - 2-3 trees are 3-ary + - [ ] [K-Ary Tree](https://en.wikipedia.org/wiki/K-ary_tree) + + - [ ] **B-Trees** + - fun fact: it's a mystery, but the B could stand for Boeing, Balanced, or Bayer (co-inventor) + - In Practice: + B-Trees are widely used in databases. Most modern filesystems use B-trees (or Variants). In addition to + its use in databases, the B-tree is also used in filesystems to allow quick random access to an arbitrary + block in a particular file. The basic problem is turning the file block i address into a disk block + (or perhaps to a cylinder-head-sector) address. + - [ ] [B-Tree](https://en.wikipedia.org/wiki/B-tree) + - [ ] [Introduction to B-Trees (video)](https://www.youtube.com/watch?v=I22wEC1tTGo&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6&index=6) + - [ ] [B-Tree Definition and Insertion (video)](https://www.youtube.com/watch?v=s3bCdZGrgpA&index=7&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [B-Tree Deletion (video)](https://www.youtube.com/watch?v=svfnVhJOfMc&index=8&list=PLA5Lqm4uh9Bbq-E0ZnqTIa8LRaL77ica6) + - [ ] [MIT 6.851 - Memory Hierarchy Models (video)](https://www.youtube.com/watch?v=V3omVLzI0WE&index=7&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf) + - covers cache-oblivious B-Trees, very interesting data structures + - the first 37 minutes are very technical, may be skipped (B is block size, cache line size) + + +- ### k-D Trees + - great for finding number of points in a rectangle or higher dimension object + - a good fit for k-nearest neighbors + - [ ] [Kd Trees (video)](https://www.youtube.com/watch?v=W94M9D_yXKk) + - [ ] [kNN K-d tree algorithm (video)](https://www.youtube.com/watch?v=Y4ZgLlDfKDg) + +- ### Skip lists + - "These are somewhat of a cult data structure" - Skiena + - [ ] [Randomization: Skip Lists (video)](https://www.youtube.com/watch?v=2g9OSRKJuzM&index=10&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [For animations and a little more detail](https://en.wikipedia.org/wiki/Skip_list) + +- ### Network Flows + - [ ] [Ford-Fulkerson in 5 minutes (video)](https://www.youtube.com/watch?v=v1VgJmkEJW0) + - [ ] [Ford-Fulkerson Algorithm (video)](https://www.youtube.com/watch?v=v1VgJmkEJW0) + - [ ] [Network Flows (video)](https://www.youtube.com/watch?v=2vhN4Ice5jI) + +- ### Disjoint Sets & Union Find + - [ ] [UCB 61B - Disjoint Sets; Sorting & selection (video)](https://www.youtube.com/watch?v=MAEGXTwmUsI&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd&index=21) + - [ ] [Sedgewick Algorithms - Union-Find (6 videos)](https://www.youtube.com/watch?v=8mYfZeHtdNc&list=PLe-ggMe31CTexoNYnMhbHaWhQ0dvcy43t) + +- ### Math for Fast Processing + - [ ] [Integer Arithmetic, Karatsuba Multiplication (video)](https://www.youtube.com/watch?v=eCaXlAaN2uE&index=11&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [The Chinese Remainder Theorem (used in cryptography) (video)](https://www.youtube.com/watch?v=ru7mWZJlRQg) + +- ### Treap + - Combination of a binary search tree and a heap + - [ ] [Treap](https://en.wikipedia.org/wiki/Treap) + - [ ] [Data Structures: Treaps explained (video)](https://www.youtube.com/watch?v=6podLUYinH8) + - [ ] [Applications in set operations](https://www.cs.cmu.edu/~scandal/papers/treaps-spaa98.pdf) + +- ### Linear Programming (videos) + - [ ] [Linear Programming](https://www.youtube.com/watch?v=M4K6HYLHREQ) + - [ ] [Finding minimum cost](https://www.youtube.com/watch?v=2ACJ9ewUC6U) + - [ ] [Finding maximum value](https://www.youtube.com/watch?v=8AA_81xI3ik) + - [ ] [Solve Linear Equations with Python - Simplex Algorithm](https://www.youtube.com/watch?v=44pAWI7v5Zk) + +- ### Geometry, Convex hull (videos) + - [ ] [Graph Alg. IV: Intro to geometric algorithms - Lecture 9](https://youtu.be/XIAQRlNkJAw?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3164) + - [ ] [Geometric Algorithms: Graham & Jarvis - Lecture 10](https://www.youtube.com/watch?v=J5aJEcOr6Eo&index=10&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [Divide & Conquer: Convex Hull, Median Finding](https://www.youtube.com/watch?v=EzeYI7p9MjU&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=2) + +- ### Discrete math + - see videos below + +- ### Machine Learning + - [ ] Why ML? + - [ ] [How Google Is Remaking Itself As A Machine Learning First Company](https://backchannel.com/how-google-is-remaking-itself-as-a-machine-learning-first-company-ada63defcb70) + - [ ] [Large-Scale Deep Learning for Intelligent Computer Systems (video)](https://www.youtube.com/watch?v=QSaZGT4-6EY) + - [ ] [Deep Learning and Understandability versus Software Engineering and Verification by Peter Norvig](https://www.youtube.com/watch?v=X769cyzBNVw) + - [ ] [Google's Cloud Machine learning tools (video)](https://www.youtube.com/watch?v=Ja2hxBAwG_0) + - [ ] [Google Developers' Machine Learning Recipes (Scikit Learn & Tensorflow) (video)](https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal) + - [ ] [Tensorflow (video)](https://www.youtube.com/watch?v=oZikw5k_2FM) + - [ ] [Tensorflow Tutorials](https://www.tensorflow.org/versions/r0.11/tutorials/index.html) + - [ ] [Practical Guide to implementing Neural Networks in Python (using Theano)](http://www.analyticsvidhya.com/blog/2016/04/neural-networks-python-theano/) + - Courses: + - [Great starter course: Machine Learning](https://www.coursera.org/learn/machine-learning) + - [videos only](https://www.youtube.com/playlist?list=PLZ9qNFMHZ-A4rycgrgOYma6zxF4BZGGPW) + - see videos 12-18 for a review of linear algebra (14 and 15 are duplicates) + - [Neural Networks for Machine Learning](https://www.coursera.org/learn/neural-networks) + - [Google's Deep Learning Nanodegree](https://www.udacity.com/course/deep-learning--ud730) + - [Google/Kaggle Machine Learning Engineer Nanodegree](https://www.udacity.com/course/machine-learning-engineer-nanodegree-by-google--nd009) + - [Self-Driving Car Engineer Nanodegree](https://www.udacity.com/drive) + - [Metis Online Course ($99 for 2 months)](http://www.thisismetis.com/explore-data-science) + - Resources: + - Books: + - [Python Machine Learning](https://www.amazon.com/Python-Machine-Learning-Sebastian-Raschka/dp/1783555130/) + - [Data Science from Scratch: First Principles with Python](https://www.amazon.com/Data-Science-Scratch-Principles-Python/dp/149190142X) + - [Introduction to Machine Learning with Python](https://www.amazon.com/Introduction-Machine-Learning-Python-Scientists/dp/1449369413/) + - [Machine Learning for Software Engineers](https://github.com/ZuzooVn/machine-learning-for-software-engineers) + - Data School: http://www.dataschool.io/ + +- ### Go + - [ ] Videos: + - [ ] [Why Learn Go?](https://www.youtube.com/watch?v=FTl0tl9BGdc) + - [ ] [Go Programming](https://www.youtube.com/watch?v=CF9S4QZuV30) + - [ ] [A Tour of Go](https://www.youtube.com/watch?v=ytEkHepK08c) + - [ ] Books: + - [ ] [An Introduction to Programming in Go (read free online)](https://www.golang-book.com/books/intro) + - [ ] [The Go Programming Language (Donovan & Kernighan)](https://www.amazon.com/Programming-Language-Addison-Wesley-Professional-Computing/dp/0134190440) + - [ ] [Bootcamp](https://www.golang-book.com/guides/bootcamp) + +-- + +## Additional Detail on Some Subjects + + I added these to reinforce some ideas already presented above, but didn't want to include them + above because it's just too much. It's easy to overdo it on a subject. + You want to get hired in this century, right? + +- [ ] **Union-Find** + - [ ] [Overview](https://www.coursera.org/learn/data-structures/lecture/JssSY/overview) + - [ ] [Naive Implementation](https://www.coursera.org/learn/data-structures/lecture/EM5D0/naive-implementations) + - [ ] [Trees](https://www.coursera.org/learn/data-structures/lecture/Mxu0w/trees) + - [ ] [Union By Rank](https://www.coursera.org/learn/data-structures/lecture/qb4c2/union-by-rank) + - [ ] [Path Compression](https://www.coursera.org/learn/data-structures/lecture/Q9CVI/path-compression) + - [ ] [Analysis Options](https://www.coursera.org/learn/data-structures/lecture/GQQLN/analysis-optional) + +- [ ] **More Dynamic Programming** (videos) + - [ ] [6.006: Dynamic Programming I: Fibonacci, Shortest Paths](https://www.youtube.com/watch?v=OQ5jsbhAv_M&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=19) + - [ ] [6.006: Dynamic Programming II: Text Justification, Blackjack](https://www.youtube.com/watch?v=ENyox7kNKeY&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=20) + - [ ] [6.006: DP III: Parenthesization, Edit Distance, Knapsack](https://www.youtube.com/watch?v=ocZMDMZwhCY&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=21) + - [ ] [6.006: DP IV: Guitar Fingering, Tetris, Super Mario Bros.](https://www.youtube.com/watch?v=tp4_UXaVyx8&index=22&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb) + - [ ] [6.046: Dynamic Programming & Advanced DP](https://www.youtube.com/watch?v=Tw1k46ywN6E&index=14&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + - [ ] [6.046: Dynamic Programming: All-Pairs Shortest Paths](https://www.youtube.com/watch?v=NzgFUwOaoIw&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=15) + - [ ] [6.046: Dynamic Programming (student recitation)](https://www.youtube.com/watch?v=krZI60lKPek&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=12) + +- [ ] **Advanced Graph Processing** (videos) + - [ ] [Synchronous Distributed Algorithms: Symmetry-Breaking. Shortest-Paths Spanning Trees](https://www.youtube.com/watch?v=mUBmcbbJNf4&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=27) + - [ ] [Asynchronous Distributed Algorithms: Shortest-Paths Spanning Trees](https://www.youtube.com/watch?v=kQ-UQAzcnzA&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp&index=28) + +- [ ] MIT **Probability** (mathy, and go slowly, which is good for mathy things) (videos): + - [ ] [MIT 6.042J - Probability Introduction](https://www.youtube.com/watch?v=SmFwFdESMHI&index=18&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Conditional Probability](https://www.youtube.com/watch?v=E6FbvM-FGZ8&index=19&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Independence](https://www.youtube.com/watch?v=l1BCv3qqW4A&index=20&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Random Variables](https://www.youtube.com/watch?v=MOfhhFaQdjw&list=PLB7540DEDD482705B&index=21) + - [ ] [MIT 6.042J - Expectation I](https://www.youtube.com/watch?v=gGlMSe7uEkA&index=22&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Expectation II](https://www.youtube.com/watch?v=oI9fMUqgfxY&index=23&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Large Deviations](https://www.youtube.com/watch?v=q4mwO2qS2z4&index=24&list=PLB7540DEDD482705B) + - [ ] [MIT 6.042J - Random Walks](https://www.youtube.com/watch?v=56iFMY8QW2k&list=PLB7540DEDD482705B&index=25) + +- [ ] [Simonson: Approximation Algorithms (video)](https://www.youtube.com/watch?v=oDniZCmNmNw&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=19) + +- [ ] **String Matching** + - [ ] Rabin-Karp (videos): + - [Rabin Karps Algorithm](https://www.coursera.org/learn/data-structures/lecture/c0Qkw/rabin-karps-algorithm) + - [Precomputing](https://www.coursera.org/learn/data-structures/lecture/nYrc8/optimization-precomputation) + - [Optimization: Implementation and Analysis](https://www.coursera.org/learn/data-structures/lecture/h4ZLc/optimization-implementation-and-analysis) + - [Table Doubling, Karp-Rabin](https://www.youtube.com/watch?v=BRO7mVIFt08&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=9) + - [Rolling Hashes, Amortized Analysis](https://www.youtube.com/watch?v=w6nuXg0BISo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=32) + - [ ] Knuth-Morris-Pratt (KMP): + - [TThe Knuth-Morris-Pratt (KMP) String Matching Algorithm](https://www.youtube.com/watch?v=5i7oKodCRJo) + - [ ] Boyer–Moore string search algorithm + - [Boyer-Moore String Search Algorithm](https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm) + - [Advanced String Searching Boyer-Moore-Horspool Algorithms (video)](https://www.youtube.com/watch?v=QDZpzctPf10) + - [ ] [Coursera: Algorithms on Strings](https://www.coursera.org/learn/algorithms-on-strings/home/week/1) + - starts off great, but by the time it gets past KMP it gets more complicated than it needs to be + - nice explanation of tries + - can be skipped + +- [ ] **Sorting** + + - [ ] Stanford lectures on sorting: + - [ ] [Lecture 15 | Programming Abstractions (video)](https://www.youtube.com/watch?v=ENp00xylP7c&index=15&list=PLFE6E58F856038C69) + - [ ] [Lecture 16 | Programming Abstractions (video)](https://www.youtube.com/watch?v=y4M9IVgrVKo&index=16&list=PLFE6E58F856038C69) + - [ ] Shai Simonson, [Aduni.org](http://www.aduni.org/): + - [ ] [Algorithms - Sorting - Lecture 2 (video)](https://www.youtube.com/watch?v=odNJmw5TOEE&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=2) + - [ ] [Algorithms - Sorting II - Lecture 3 (video)](https://www.youtube.com/watch?v=hj8YKFTFKEE&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=3) + - [ ] Steven Skiena lectures on sorting: + - [ ] [lecture begins at 26:46 (video)](https://youtu.be/ute-pmMkyuk?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1600) + - [ ] [lecture begins at 27:40 (video)](https://www.youtube.com/watch?v=yLvp-pB8mak&index=8&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [lecture begins at 35:00 (video)](https://www.youtube.com/watch?v=q7K9otnzlfE&index=9&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) + - [ ] [lecture begins at 23:50 (video)](https://www.youtube.com/watch?v=TvqIGu9Iupw&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=10) + +## Video Series + +Sit back and enjoy. "Netflix and skill" :P + +- [ ] [List of individual Dynamic Programming problems (each is short)](https://www.youtube.com/playlist?list=PLrmLmBdmIlpsHaNTPP_jHHDx_os9ItYXr) + +- [ ] [x86 Architecture, Assembly, Applications (11 videos)](https://www.youtube.com/playlist?list=PL038BE01D3BAEFDB0) + +- [ ] [MIT 18.06 Linear Algebra, Spring 2005 (35 videos)](https://www.youtube.com/playlist?list=PLE7DDD91010BC51F8) + +- [ ] [Excellent - MIT Calculus Revisited: Single Variable Calculus](https://www.youtube.com/playlist?list=PL3B08AE665AB9002A) + +- [ ] [Computer Science 70, 001 - Spring 2015 - Discrete Mathematics and Probability Theory](https://www.youtube.com/playlist?list=PL-XXv-cvA_iD8wQm8U0gG_Z1uHjImKXFy) + +- [ ] [Discrete Mathematics by Shai Simonson (19 videos)](https://www.youtube.com/playlist?list=PL3o9D4Dl2FJ9q0_gtFXPh_H4POI5dK0yG) + +- [ ] [Discrete Mathematics Part 1 by Sarada Herke (5 videos)](https://www.youtube.com/playlist?list=PLGxuz-nmYlQPOc4w1Kp2MZrdqOOm4Jxeo) + +- [ ] CSE373 - Analysis of Algorithms (25 videos) + - [Skiena lectures from Algorithm Design Manual](https://www.youtube.com/watch?v=ZFjhkohHdAA&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=1) + +- [ ] [UC Berkeley 61B (Spring 2014): Data Structures (25 videos)](https://www.youtube.com/watch?v=mFPmKGIrQs4&list=PL-XXv-cvA_iAlnI-BQr9hjqADPBtujFJd) + +- [ ] [UC Berkeley 61B (Fall 2006): Data Structures (39 videos)](https://www.youtube.com/playlist?list=PL4BBB74C7D2A1049C) + +- [ ] [UC Berkeley 61C: Machine Structures (26 videos)](https://www.youtube.com/watch?v=gJJeUFyuvvg&list=PL-XXv-cvA_iCl2-D-FS5mk0jFF6cYSJs_) + +- [ ] [OOSE: Software Dev Using UML and Java (21 videos)](https://www.youtube.com/playlist?list=PLJ9pm_Rc9HesnkwKlal_buSIHA-jTZMpO) + +- [ ] [UC Berkeley CS 152: Computer Architecture and Engineering (20 videos)](https://www.youtube.com/watch?v=UH0QYvtP7Rk&index=20&list=PLkFD6_40KJIwEiwQx1dACXwh-2Fuo32qr) + +- [ ] [MIT 6.004: Computation Structures (49 videos)](https://www.youtube.com/playlist?list=PLrRW1w6CGAcXbMtDFj205vALOGmiRc82-) + +- [ ] [Carnegie Mellon - Computer Architecture Lectures (39 videos)](https://www.youtube.com/playlist?list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq) + +- [ ] [MIT 6.006: Intro to Algorithms (47 videos)](https://www.youtube.com/watch?v=HtSuA80QTyo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&nohtml5=False) + +- [ ] [MIT 6.033: Computer System Engineering (22 videos)](https://www.youtube.com/watch?v=zm2VP0kHl1M&list=PL6535748F59DCA484) + +- [ ] [MIT 6.034 Artificial Intelligence, Fall 2010 (30 videos)](https://www.youtube.com/playlist?list=PLUl4u3cNGP63gFHB6xb-kVBiQHYe_4hSi) + +- [ ] [MIT 6.042J: Mathematics for Computer Science, Fall 2010 (25 videos)](https://www.youtube.com/watch?v=L3LMbpZIKhQ&list=PLB7540DEDD482705B) + +- [ ] [MIT 6.046: Design and Analysis of Algorithms (34 videos)](https://www.youtube.com/watch?v=2P-yW7LQr08&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp) + +- [ ] [MIT 6.050J: Information and Entropy, Spring 2008 (19 videos)](https://www.youtube.com/watch?v=phxsQrZQupo&list=PL_2Bwul6T-A7OldmhGODImZL8KEVE38X7) + +- [ ] [MIT 6.851: Advanced Data Structures (22 videos)](https://www.youtube.com/watch?v=T0yzrZL1py0&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf&index=1) + +- [ ] [MIT 6.854: Advanced Algorithms, Spring 2016 (24 videos)](https://www.youtube.com/playlist?list=PL6ogFv-ieghdoGKGg2Bik3Gl1glBTEu8c) + +- [ ] [Harvard COMPSCI 224: Advanced Algorithms (25 videos)](https://www.youtube.com/playlist?list=PL2SOU6wwxB0uP4rJgf5ayhHWgw7akUWSf) + +- [ ] [MIT 6.858 Computer Systems Security, Fall 2014](https://www.youtube.com/watch?v=GqmQg-cszw4&index=1&list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh) + +- [ ] [Stanford: Programming Paradigms (27 videos)](https://www.youtube.com/view_play_list?p=9D558D49CA734A02) + +- [ ] [Introduction to Cryptography by Christof Paar](https://www.youtube.com/playlist?list=PL6N5qY2nvvJE8X75VkXglSrVhLv1tVcfy) + - [Course Website along with Slides and Problem Sets](http://www.crypto-textbook.com/) + +- [ ] [Mining Massive Datasets - Stanford University (94 videos)](https://www.youtube.com/playlist?list=PLLssT5z_DsK9JDLcT8T62VtzwyW9LNepV) + +- [ ] [Graph Theory by Sarada Herke (67 videos)](https://www.youtube.com/user/DrSaradaHerke/playlists?shelf_id=5&view=50&sort=dd) + +## Computer Science Courses + +- [Directory of Online CS Courses](https://github.com/open-source-society/computer-science) +- [Directory of CS Courses (many with online lectures)](https://github.com/prakhar1989/awesome-courses) + From bb862f5a9debb3bbf58573deb6fa835969586b2a Mon Sep 17 00:00:00 2001 From: Elliptica Date: Sat, 24 Dec 2016 13:55:07 +0200 Subject: [PATCH 094/109] Translate next paragraph --- README-uk.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/README-uk.md b/README-uk.md index 07f48c9..6b6e1c0 100644 --- a/README-uk.md +++ b/README-uk.md @@ -9,10 +9,10 @@ Original: [англійською](README.md) ![Програмування у дошки — з серіалу «Silicon Valley» HBO](https://dng5l3qzreal6.cloudfront.net/2016/Aug/coding_board_small-1470866369118.jpg) -This long list has been extracted and expanded from **Google's coaching notes**, so these are the things you need to know. -There are extra items I added at the bottom that may come up in the interview or be helpful in solving a problem. Many items are from -Steve Yegge's "[Get that job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html)" and are reflected -sometimes word-for-word in Google's coaching notes. +Цей довгий список був видобутий і розширений з **тренувальних нотаток Google**, отже це речі, які ви повинні знати. +Тут є додаткові пункти, які я додав знизу — вони можуть зустрітися в інтерв’ю або бути корисними у вирішенні завдань. +Багато пунктів взято з «[Get that job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html)» Steve Yegge, +вони іноді дослівно відображаються в тренувальних нотатках Google. I've pared down what you need to know from what Yegge recommends. I've altered Yegge's requirements from information received from my contact at Google. This is meant for **new software engineers** or those switching from From f8f6747f4acc0ee61d52e1140be69e098e5beb6b Mon Sep 17 00:00:00 2001 From: Sourabh Mhaisekar Date: Sat, 24 Dec 2016 21:53:42 +0530 Subject: [PATCH 095/109] Update README-hn.md --- README-hn.md | 59 ++++++++++++++++++++++++++-------------------------- 1 file changed, 30 insertions(+), 29 deletions(-) diff --git a/README-hn.md b/README-hn.md index 7467220..643dabd 100644 --- a/README-hn.md +++ b/README-hn.md @@ -178,21 +178,21 @@ It is free to do so, but sometimes the classes are not in session so you have to I'd appreciate your help converting the MOOC video links to public sources to replace the online course videos over time. I like using university lectures. -## Interview Process & General Interview Prep +## इंटरव्यू प्रकिया और साधारण इंटरव्यू तयारी -- [ ] Videos: - - [ ] [How to Work at Google - Candidate Coaching Session (video)](https://www.youtube.com/watch?v=oWbUtlUhwa8&feature=youtu.be) - - [ ] [Google Recruiters Share Technical Interview Tips (video)](https://www.youtube.com/watch?v=qc1owf2-220&feature=youtu.be) - - [ ] [How to Work at Google: Tech Resume Preparation (video)](https://www.youtube.com/watch?v=8npJLXkcmu8) +- [ ] विडियो: +    - [ ] [गूगल में कैसे काम करे -  उमीदवार अनुशिक्षण सत्र (विडियो)](https://www.youtube.com/watch?v=oWbUtlUhwa8&feature=youtu.be) +    - [ ] [गूगल भर्तीकर्ताओं की तकनीकी इंटरव्यू टिप्स (विडियो)](https://www.youtube.com/watch?v=qc1owf2-220&feature=youtu.be) +    - [ ] [गूगल में कैसे काम करे: तकनीकी रिज्यूमे तयारी (विडियो)](https://www.youtube.com/watch?v=8npJLXkcmu8) -- [ ] Articles: - - [ ] [Becoming a Googler in Three Steps](http://www.google.com/about/careers/lifeatgoogle/hiringprocess/) - - [ ] [Get That Job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html) +- [ ] लेख: +    - [ ] [तिन कदमोमे गूगलर बने](http://www.google.com/about/careers/lifeatgoogle/hiringprocess/) +    - [ ] [गूगल में वो नौकरी लो](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html) - all the things he mentions that you need to know are listed below - - [ ] _(very dated)_ [How To Get A Job At Google, Interview Questions, Hiring Process](http://dondodge.typepad.com/the_next_big_thing/2010/09/how-to-get-a-job-at-google-interview-questions-hiring-process.html) - - [ ] [Phone Screen Questions](http://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions) +    - [ ] _(बहोत पुराना)_ [गूगल में नौकरी कैसे ले, इन्तेविएव प्रश्न, Hiring Process](http://dondodge.typepad.com/the_next_big_thing/2010/09/how-to-get-a-job-at-google-interview-questions-hiring-process.html) + - [ ] [फोन स्क्रीन वाले सवाल](http://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions) -- [ ] Additional (not suggested by Google but I added): +- [ ] अतिरिक्त (not suggested by Google but I added): - [ ] [ABC: Always Be Coding](https://medium.com/always-be-coding/abc-always-be-coding-d5f8051afce2#.4heg8zvm4) - [ ] [Four Steps To Google Without A Degree](https://medium.com/always-be-coding/four-steps-to-google-without-a-degree-8f381aa6bd5e#.asalo1vfx) - [ ] [Whiteboarding](https://medium.com/@dpup/whiteboarding-4df873dbba2e#.hf6jn45g1) @@ -201,48 +201,49 @@ It is free to do so, but sometimes the classes are not in session so you have to - [ ] Cracking The Coding Interview Set 1: - [ ] [Gayle L McDowell - Cracking The Coding Interview (video)](https://www.youtube.com/watch?v=rEJzOhC5ZtQ) - [ ] [Cracking the Coding Interview with Author Gayle Laakmann McDowell (video)](https://www.youtube.com/watch?v=aClxtDcdpsQ) - - [ ] How to Get a Job at the Big 4: - - [ ] ['How to Get a Job at the Big 4 - Amazon, Facebook, Google & Microsoft' (video)](https://www.youtube.com/watch?v=YJZCUhxNCv8) - - [ ] [Failing at Google Interviews](http://alexbowe.com/failing-at-google-interviews/) +    - [ ] बड़े ४ मैं नौकरी कैसे ले: +        - [ ] ['बड़े ४ मैं नौकरी कैसे ले - Amazon, Facebook, Google और Microsoft' (विडियो)](https://www.youtube.com/watch?v=YJZCUhxNCv8) +    - [ ] [गूगल इंटरव्यू में असफलता](http://alexbowe.com/failing-at-google-interviews/) -## Pick One Language for the Interview +## इंटरव्यू के लिए एक संगणक भाषा चुने -I wrote this short article about it: [Important: Pick One Language for the Google Interview](https://googleyasheck.com/important-pick-one-language-for-the-google-interview/) +मैं इसके बारे में इस छोटे से लेख लिखा था: [महत्वपूर्ण: गूगल इंटरव्यू के लिए एक भाषा चुनें](https://googleyasheck.com/important-pick-one-language-for-the-google-interview/) -You can use a language you are comfortable in to do the coding part of the interview, but for Google, these are solid choices: +इंटरव्यू मैं आप कोंसिभी एक भाषा जिसमे आप आरामदायक हो वो चुन सकते हैं, पर गूगल के लिए निम्नलिखित भाषाएँ अच्छी रहेगी: - C++ - Java - Python -You could also use these, but read around first. There may be caveats: +आप निम्न्लिहित भाषाएँ भी चुन सकते हैं, पर उन्हें सावधानीसे चुने - JavaScript - Ruby -You need to be very comfortable in the language, and be knowledgeable. +आप भाषा में बहुत सहज हो, और उसकी जानकार होने की जरूरत है. + +विकल्पों के बारे में अधिक पढ़ें: -Read more about choices: - http://www.byte-by-byte.com/choose-the-right-language-for-your-coding-interview/ - http://blog.codingforinterviews.com/best-programming-language-jobs/ - https://www.quora.com/What-is-the-best-language-to-program-in-for-an-in-person-Google-interview -[See language resources here](programming-language-resources.md) +[भाषा संसाधनोंको यहाँ देखें](programming-language-resources.md) -You'll see some C, C++, and Python learning included below, because I'm learning. There are a few books involved, see the bottom. +क्युकी में मैं पढ़ रहा हूँ, आपको कुछ C, C++, और Python शामिल दिखेगा. वहाँ कुछ शामिल किताबें, नीचे आखिर में देख ले. -## Before you Get Started +## प्रारंभ करने से पहले -This list grew over many months, and yes, it kind of got out of hand. +इस सूची में कई महीनों से वृद्धि हुई है, और हाँ, यह एक तरह से हाथ से बाहर हो गयी हैं -Here are some mistakes I made so you'll have a better experience. +निचे कुछ गलतिया हैं जो मैंने की हैं तो आपका अनुभव बेहतर होगा -### 1. You Won't Remember it All +### १. आपसे यह सब याद नहीं होगा -I watched hours of videos and took copious notes, and months later there was much I didn't remember. I spent 3 days going -through my notes and making flashcards so I could review (see below). +मैंने घंटो वीडिय के विडियो देखे और टिप्पणिया लिखी, और महीनो बाद मुजे कुछ याद नहीं रहा. सबकी समीक्षा करने के लिए मैंने 3 दिन मेरी तिप्पनिओयो और flashcards बनाने में बितायें (नीचे देखें). + +### २. फ्लाश्कार्ड्स का उपयोग कीजिये -### 2. Use Flashcards To solve the problem, I made a little flashcards site where I could add flashcards of 2 types: general and code. Each card has different formatting. From bef547d058e1e863d11d3414ed096ccd59e7135a Mon Sep 17 00:00:00 2001 From: John Washam Date: Sun, 25 Dec 2016 12:06:23 -0800 Subject: [PATCH 096/109] Added link to Hindi. --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 054fe2c..5cc50a8 100644 --- a/README.md +++ b/README.md @@ -3,8 +3,8 @@ Translations: - [中文版本](README-cn.md) - [Español (in progress)](README-es.md) [Issue #80](https://github.com/jwasham/google-interview-university/issues/80) -- हिन्दी (in progress) [Issue #81](https://github.com/jwasham/google-interview-university/issues/81) -- [עברית (in progress)](README-he.md) [Issue #82] (https://github.com/jwasham/google-interview-university/issues/82) +- [हिन्दी (in progress)](README-hn.md) [Issue #81](https://github.com/jwasham/google-interview-university/issues/81) +- [עברית (in progress)](README-he.md) [Issue #82](https://github.com/jwasham/google-interview-university/issues/82) ## What is it? From 0ae96f53264f2add4b3077304cb65ace6fa0eba0 Mon Sep 17 00:00:00 2001 From: Ram Bharose Rana Date: Mon, 26 Dec 2016 15:25:30 +0530 Subject: [PATCH 097/109] Hindi translation in progress made title changes --- README-hn.md | 30 +++++++++++++++--------------- 1 file changed, 15 insertions(+), 15 deletions(-) diff --git a/README-hn.md b/README-hn.md index 643dabd..03f7754 100644 --- a/README-hn.md +++ b/README-hn.md @@ -1,34 +1,34 @@ # Google Interview University -## यह क्या हे? +## यह क्या है? -यह मेरा वेब डेवलपर से गूगल सॉफ्टवेर इंजिनियर बनाने की अद्ययन योजना हैं. +यह मेरा वेब डेवलपर से गूगल सॉफ्टवेर इंजिनियर बनाने की अध्ययन योजना हैं. ![Coding at the whiteboard - from HBO's Silicon Valley](https://dng5l3qzreal6.cloudfront.net/2016/Aug/coding_board_small-1470866369118.jpg) -यह लम्बी सूचि **गूगल कोचिंग नोट्स** से छाती एव विस्तारित की गयी हैं, ताकि इन बातो को आपको पता चल सके. मैंने आपके इंटरव्यू में मदत कर सकने वाले कुछ अतिरिक्त विषय सूचि के आखिर में डाले हे. +यह लम्बी सूची **गूगल कोचिंग नोट्स** से उद्धरण एव विस्तारित की गयी हैं, ताकि इन बातो को आपको पता चल सके. मैंने आपके इंटरव्यू में मदद कर सकने वाले कुछ अतिरिक्त विषय सूचि के, आखिर में डाले है. -अनेक विषय स्टीव येग्गे की "[Get that job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html)" से हैं. +अनेक विषय, **स्टीव येग्गे** की "[Get that job at Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html)" से हैं. --- ## अनुक्रमणिका -- [यह क्या हे?](#यह-क्या-हे) -- [इसका उपयोग क्यू करे?](#इसका-उपयोग-क्यू-करे) +- [यह क्या है?](#यह-क्या-है ) +- [इसका उपयोग क्यों करे?](#इसका-उपयोग-क्यों-करे) - [इसका कैसे उपयोग करे?](#इसका-कैसे-उपयोग-करे) -- [गूगली मूड में आ जाएँ](#गूगली-मूड-में-आ-जाएँ) -- [क्या मुजे नौकरी मिली?](#क्या-मुजे-नौकरी-मिली) +- [गूगल की मुद्रा में आ जाएँ](#गूगल-की-मुद्रा-में-आ-जाएँ) +- [क्या मुझे नौकरी मिली?](#क्या-मुझे-नौकरी-मिली) - [मेरे साथ चले](#मेरे-साथ-चले) -- [कभीबी आप चालक नहीं हो ऐसा ना सोचो](#कभीबी-आप-चालक-नहीं-हो-ऐसा-ना-सोचो) +- [अपने आप को कमजोर मत समझो ](#अपने-आप-को-कमजोर-मत-समझो ) - [गूगल के बारे में](#गूगल-के-बारे-में) - [विडियो संसाधनों के बारे में](#विडियो-संसाधनों-के-बारे-में) - [इंटरव्यू प्रकिया और साधारण इंटरव्यू तयारी](#interview-process--general-interview-prep) -- [इंटरव्यू के लिए एक संगणक भाषा चुने](#pick-one-language-for-the-interview) +- [इंटरव्यू के लिए एक भाषा चुने](#pick-one-language-for-the-interview) - [प्रारंभ करने से पहले](#before-you-get-started) - [एअसमे क्या समाविष्ट नहीं हे](#what-you-wont-see-covered) -- [शर्त ज्ञान](#prerequisite-knowledge) +- [पूर्व प्रयोजनीय ज्ञान](#prerequisite-knowledge) - [दैनिक योजना](#the-daily-plan) -- [अल्गोरिथम जटिलत / बिग-O / Asymptotic analysis](#algorithmic-complexity--big-o--asymptotic-analysis) +- [अल्गोरिथम जटिलता / बिग-O / Asymptotic analysis](#algorithmic-complexity--big-o--asymptotic-analysis) - [डेटा संरचनाएं](#data-structures) - [ऐरे](#arrays) - [लिंक्ड लिस्ट](#linked-lists) @@ -38,15 +38,15 @@ - [अधिक जानकारी](#more-knowledge) - [एन्दिंनेस](#endianness) - [बाइनरी सर्च](#binary-search) - - [बितवाईस ऑपेरशन](#bitwise-operations) + - [बिट-वाईस ऑपेरशन](#bitwise-operations) - [ट्रीज](#trees) - [ट्रीज पृष्टभूमि और तिपनिया](#trees---notes--background) - [बाइनरी सर्च ट्री: BST](#binary-search-trees-bsts) - [हीप / प्रायोरिटी क्यू / बाइनरी हीप](#heap--priority-queue--binary-heap) - - [त्रिएस](#tries) + - [ट्राइस](#tries) - [बैलेंस्ड सर्च ट्री](#balanced-search-trees) - [N-ary (K-ary, M-ary) ट्री](#n-ary-k-ary-m-ary-trees) -- [सोर्टिंग](#sorting) +- [सॉर्टिंग](#sorting) - [ग्राफ](#graphs) - [और अधिक जानकारी](#even-more-knowledge) - [रिकर्शन](#recursion) From 24fe5be8bd685bbfa7af317aef0870aacec1320e Mon Sep 17 00:00:00 2001 From: John Washam Date: Mon, 26 Dec 2016 15:32:58 -0800 Subject: [PATCH 098/109] Added new directory for translated README files. --- translations/how-to.md | 11 +++++++++++ 1 file changed, 11 insertions(+) create mode 100644 translations/how-to.md diff --git a/translations/how-to.md b/translations/how-to.md new file mode 100644 index 0000000..222a811 --- /dev/null +++ b/translations/how-to.md @@ -0,0 +1,11 @@ +Please put new translation README files here. + +I'll migrate the existing translations when they are ready. + +To start a new translation, please: + +1. Make an issue (for collaboration with other translators) +2. Make a pull request to collaborate and commit to. +3. Let me know when it's ready to pull. + +Thank you! From 50869e4be28f5a6bfdbd21ea36f1833edc759b65 Mon Sep 17 00:00:00 2001 From: John Washam Date: Mon, 26 Dec 2016 15:36:39 -0800 Subject: [PATCH 099/109] Testing out moving Chinese translation. --- README.md | 2 +- README-cn.md => translations/README-cn.md | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) rename README-cn.md => translations/README-cn.md (99%) diff --git a/README.md b/README.md index 7b96d7a..850498f 100644 --- a/README.md +++ b/README.md @@ -1,7 +1,7 @@ # Google Interview University Translations: -- [中文版本](README-cn.md) +- [中文版本](translations/README-cn.md) - [Español (in progress)](README-es.md) [Issue #80](https://github.com/jwasham/google-interview-university/issues/80) - [हिन्दी (in progress)](README-hn.md) [Issue #81](https://github.com/jwasham/google-interview-university/issues/81) - [עברית (in progress)](README-he.md) [Issue #82](https://github.com/jwasham/google-interview-university/issues/82) diff --git a/README-cn.md b/translations/README-cn.md similarity index 99% rename from README-cn.md rename to translations/README-cn.md index 6a3c439..7eaa59c 100644 --- a/README-cn.md +++ b/translations/README-cn.md @@ -234,7 +234,7 @@ - http://blog.codingforinterviews.com/best-programming-language-jobs/ - https://www.quora.com/What-is-the-best-language-to-program-in-for-an-in-person-Google-interview -[在此查看相关语言的资源](programming-language-resources.md) +[在此查看相关语言的资源](../programming-language-resources.md) 由于,我正在学习C、C++ 和 Python。因此,在下面你会看到部分关于它们的学习资料。相关书籍请看文章的底部。 From fbcb915d1f67614ee62f81d18d7b66945272fc27 Mon Sep 17 00:00:00 2001 From: John Washam Date: Mon, 26 Dec 2016 15:37:34 -0800 Subject: [PATCH 100/109] Moving back Chinese translation. --- translations/README-cn.md => README-cn.md | 2 +- README.md | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) rename translations/README-cn.md => README-cn.md (99%) diff --git a/translations/README-cn.md b/README-cn.md similarity index 99% rename from translations/README-cn.md rename to README-cn.md index 7eaa59c..6a3c439 100644 --- a/translations/README-cn.md +++ b/README-cn.md @@ -234,7 +234,7 @@ - http://blog.codingforinterviews.com/best-programming-language-jobs/ - https://www.quora.com/What-is-the-best-language-to-program-in-for-an-in-person-Google-interview -[在此查看相关语言的资源](../programming-language-resources.md) +[在此查看相关语言的资源](programming-language-resources.md) 由于,我正在学习C、C++ 和 Python。因此,在下面你会看到部分关于它们的学习资料。相关书籍请看文章的底部。 diff --git a/README.md b/README.md index 850498f..7b96d7a 100644 --- a/README.md +++ b/README.md @@ -1,7 +1,7 @@ # Google Interview University Translations: -- [中文版本](translations/README-cn.md) +- [中文版本](README-cn.md) - [Español (in progress)](README-es.md) [Issue #80](https://github.com/jwasham/google-interview-university/issues/80) - [हिन्दी (in progress)](README-hn.md) [Issue #81](https://github.com/jwasham/google-interview-university/issues/81) - [עברית (in progress)](README-he.md) [Issue #82](https://github.com/jwasham/google-interview-university/issues/82) From 4536d3aa56ba9e8ec798505d46344313e5ede68f Mon Sep 17 00:00:00 2001 From: "Carlos L. Torres" Date: Wed, 28 Dec 2016 01:30:01 -0600 Subject: [PATCH 101/109] Include other influential Google papers These Google papers have been very influential to the industry. - Chubby, heavily influenced Apache Zookeeper and etcd - Bigtable, along with Amazon DynamoDB paper, triggered the whole "movement" of NoSQL datastores. - Dapper inspired Twitter's Zipkin and others - Dremel, which basically is the implementation of their BigQuery service. Good luck in your interview! --- README.md | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/README.md b/README.md index 7b96d7a..bc68b21 100644 --- a/README.md +++ b/README.md @@ -1104,7 +1104,12 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - replaced by Colossus in 2012 - [ ] [2004: MapReduce: Simplified Data Processing on Large Clusters]( http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf) - mostly replaced by Cloud Dataflow? + - [ ] [2006: Bigtable: A Distributed Storage System for Structured Data](https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf) + - [ ] [2006: The Chubby Lock Service for Loosely-Coupled Distributed Systems](https://research.google.com/archive/chubby-osdi06.pdf) - [ ] [2007: What Every Programmer Should Know About Memory (very long, and the author encourages skipping of some sections)](https://www.akkadia.org/drepper/cpumemory.pdf) + - [ ] [2010: Dapper, a Large-Scale Distributed Systems Tracing Infrastructure](https://research.google.com/pubs/archive/36356.pdf) + - [ ] [2010: Dremel: Interactive Analysis of Web-Scale Datasets](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36632.pdf) + - [An Inside Look at Google BigQuery](https://cloud.google.com/files/BigQueryTechnicalWP.pdf) - [ ] [2012: Google's Colossus](https://www.wired.com/2012/07/google-colossus/) - paper not available - [ ] 2012: AddressSanitizer: A Fast Address Sanity Checker: From 82e8e734d40c0a4fb4053324c996c74f25a0b615 Mon Sep 17 00:00:00 2001 From: John Washam Date: Wed, 28 Dec 2016 10:12:17 -0800 Subject: [PATCH 102/109] Removed broken link. --- README.md | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/README.md b/README.md index bc68b21..817d0bb 100644 --- a/README.md +++ b/README.md @@ -1105,11 +1105,11 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [ ] [2004: MapReduce: Simplified Data Processing on Large Clusters]( http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf) - mostly replaced by Cloud Dataflow? - [ ] [2006: Bigtable: A Distributed Storage System for Structured Data](https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf) + - [An Inside Look at Google BigQuery](https://cloud.google.com/files/BigQueryTechnicalWP.pdf) - [ ] [2006: The Chubby Lock Service for Loosely-Coupled Distributed Systems](https://research.google.com/archive/chubby-osdi06.pdf) - [ ] [2007: What Every Programmer Should Know About Memory (very long, and the author encourages skipping of some sections)](https://www.akkadia.org/drepper/cpumemory.pdf) - [ ] [2010: Dapper, a Large-Scale Distributed Systems Tracing Infrastructure](https://research.google.com/pubs/archive/36356.pdf) - [ ] [2010: Dremel: Interactive Analysis of Web-Scale Datasets](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36632.pdf) - - [An Inside Look at Google BigQuery](https://cloud.google.com/files/BigQueryTechnicalWP.pdf) - [ ] [2012: Google's Colossus](https://www.wired.com/2012/07/google-colossus/) - paper not available - [ ] 2012: AddressSanitizer: A Fast Address Sanity Checker: @@ -1285,7 +1285,6 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [Design a random unique ID generation system](https://blog.twitter.com/2010/announcing-snowflake) - [Design an online multiplayer card game](http://www.indieflashblog.com/how-to-create-an-asynchronous-multiplayer-game.html) - [Design a key-value database](http://www.slideshare.net/dvirsky/introduction-to-redis) - - [Design a function to return the top k requests during past time interval]( https://icmi.cs.ucsb.edu/research/tech_reports/reports/2005-23.pdf) - [Design a picture sharing system](http://highscalability.com/blog/2011/12/6/instagram-architecture-14-million-users-terabytes-of-photos.html) - [Design a recommendation system](http://ijcai13.org/files/tutorial_slides/td3.pdf) - [Design a URL-shortener system: copied from above](http://www.hiredintech.com/system-design/the-system-design-process/) From 97f5670347c2274bd1ba11cbc0459dc2ca026732 Mon Sep 17 00:00:00 2001 From: John Washam Date: Wed, 28 Dec 2016 20:52:47 -0800 Subject: [PATCH 103/109] Removed mistaken checkboxes. --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 817d0bb..6c88c81 100644 --- a/README.md +++ b/README.md @@ -178,7 +178,7 @@ Everything below is an outline, and you should tackle the items in order from to I'm using Github's special markdown flavor, including tasks lists to check progress. -- [x] Create a new branch so you can check items like this, just put an x in the brackets: [x] +**Create a new branch so you can check items like this, just put an x in the brackets: [x]** Fork a branch and follow the commands below @@ -234,7 +234,7 @@ I'm on the journey, too. Follow along: ## About Google -- [x] For students - [Google Careers: Technical Development Guide](https://www.google.com/about/careers/students/guide-to-technical-development.html) +- [ ] For students - [Google Careers: Technical Development Guide](https://www.google.com/about/careers/students/guide-to-technical-development.html) - [ ] How Search Works: - [ ] [The Evolution of Search (video)](https://www.youtube.com/watch?v=mTBShTwCnD4) - [ ] [How Search Works - the story](https://www.google.com/insidesearch/howsearchworks/thestory/) From f90458454c7209919a5166b70353b8c91c9a43f8 Mon Sep 17 00:00:00 2001 From: John Washam Date: Thu, 29 Dec 2016 09:57:24 -0800 Subject: [PATCH 104/109] Updated links to my flash cards. --- README.md | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 6c88c81..1269f6c 100644 --- a/README.md +++ b/README.md @@ -476,7 +476,10 @@ I made a mobile-first website so I could review on my phone and tablet, wherever Make your own for free: - [Flashcards site repo](https://github.com/jwasham/computer-science-flash-cards) -- [My flash cards database](https://github.com/jwasham/computer-science-flash-cards/blob/master/cards-jwasham.db): Keep in mind I went overboard and have cards covering everything from assembly language and Python trivia to machine learning and statistics. It's way too much for what's required by Google. +- [My flash cards database (old - 1200 cards)](https://github.com/jwasham/computer-science-flash-cards/blob/master/cards-jwasham.db): +- [My flash cards database (new - 1800 cards)](https://github.com/jwasham/computer-science-flash-cards/blob/master/cards-jwasham-extreme.db): + +Keep in mind I went overboard and have cards covering everything from assembly language and Python trivia to machine learning and statistics. It's way too much for what's required by Google. **Note on flashcards:** The first time you recognize you know the answer, don't mark it as known. You have to see the same card and answer it several times correctly before you really know it. Repetition will put that knowledge deeper in From 69f0cae494dced6a5402d706f16272aa65ea2630 Mon Sep 17 00:00:00 2001 From: John Washam Date: Thu, 29 Dec 2016 10:12:12 -0800 Subject: [PATCH 105/109] Added discussion area. --- discussions/how-to.md | 12 ++++++++++++ discussions/interviews/google-interviews.md | 11 +++++++++++ 2 files changed, 23 insertions(+) create mode 100644 discussions/how-to.md create mode 100644 discussions/interviews/google-interviews.md diff --git a/discussions/how-to.md b/discussions/how-to.md new file mode 100644 index 0000000..c5a5a8e --- /dev/null +++ b/discussions/how-to.md @@ -0,0 +1,12 @@ +To start a new discussion, make a new file, and if necessary, a directory: + +examples: + +- interviews/google-interviews.md +- interviews/amazon-interviews.md + +**Please do not discuss interview questions.** +That's not fair to the employees who invest many hours into +preparing, creating, improving, and calibrating their questions +in order to make good hiring decisions. (even if you didn't sign an NDA) +Discussing topics covered (BSTs, heaps, etc) is ok. diff --git a/discussions/interviews/google-interviews.md b/discussions/interviews/google-interviews.md new file mode 100644 index 0000000..de84102 --- /dev/null +++ b/discussions/interviews/google-interviews.md @@ -0,0 +1,11 @@ +# Google Interview Experiences + +**Please do not discuss interview questions.** +That's not fair to the employees who invest many hours into +preparing, creating, improving, and calibrating their questions +in order to make good hiring decisions. (even if you didn't sign an NDA) +Discussing topics covered (BSTs, heaps, etc) is ok. + + +@jwasham: Hi everyone! + From 09554568ec6ba34f284edb6a36cdb5c82868f892 Mon Sep 17 00:00:00 2001 From: Pavlo Kapyshin Date: Fri, 30 Dec 2016 15:39:55 +0200 Subject: [PATCH 106/109] Move translation into dedicated dir --- README-uk.md => translations/README-uk.md | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename README-uk.md => translations/README-uk.md (100%) diff --git a/README-uk.md b/translations/README-uk.md similarity index 100% rename from README-uk.md rename to translations/README-uk.md From 275163ef4e6cc2912e7c18f0144c425f17d40971 Mon Sep 17 00:00:00 2001 From: John Washam Date: Fri, 30 Dec 2016 11:33:15 -0800 Subject: [PATCH 107/109] Removed discussions. Moving to wiki. --- discussions/how-to.md | 12 ------------ discussions/interviews/google-interviews.md | 11 ----------- 2 files changed, 23 deletions(-) delete mode 100644 discussions/how-to.md delete mode 100644 discussions/interviews/google-interviews.md diff --git a/discussions/how-to.md b/discussions/how-to.md deleted file mode 100644 index c5a5a8e..0000000 --- a/discussions/how-to.md +++ /dev/null @@ -1,12 +0,0 @@ -To start a new discussion, make a new file, and if necessary, a directory: - -examples: - -- interviews/google-interviews.md -- interviews/amazon-interviews.md - -**Please do not discuss interview questions.** -That's not fair to the employees who invest many hours into -preparing, creating, improving, and calibrating their questions -in order to make good hiring decisions. (even if you didn't sign an NDA) -Discussing topics covered (BSTs, heaps, etc) is ok. diff --git a/discussions/interviews/google-interviews.md b/discussions/interviews/google-interviews.md deleted file mode 100644 index de84102..0000000 --- a/discussions/interviews/google-interviews.md +++ /dev/null @@ -1,11 +0,0 @@ -# Google Interview Experiences - -**Please do not discuss interview questions.** -That's not fair to the employees who invest many hours into -preparing, creating, improving, and calibrating their questions -in order to make good hiring decisions. (even if you didn't sign an NDA) -Discussing topics covered (BSTs, heaps, etc) is ok. - - -@jwasham: Hi everyone! - From ccfa4159c04cc373ffe19adb70179db67955e90e Mon Sep 17 00:00:00 2001 From: John Washam Date: Sun, 1 Jan 2017 14:08:42 -0800 Subject: [PATCH 108/109] Moved DP back to required, with a disclaimer. --- README.md | 53 +++++++++++++++++++++++++++-------------------------- 1 file changed, 27 insertions(+), 26 deletions(-) diff --git a/README.md b/README.md index 1269f6c..bd5ffb7 100644 --- a/README.md +++ b/README.md @@ -79,6 +79,7 @@ If you want to be a reliability engineer or systems engineer, study more from th - traversals: BFS, DFS - [Even More Knowledge](#even-more-knowledge) - [Recursion](#recursion) + - [Dynamic Programming](#dynamic-programming) - [Object-Oriented Programming](#object-oriented-programming) - [Design Patterns](#design-patterns) - [Combinatorics (n choose k) & Probability](#combinatorics-n-choose-k--probability) @@ -104,7 +105,6 @@ If you want to be a reliability engineer or systems engineer, study more from th - [Additional Books](#additional-books) - [Additional Learning](#additional-learning) - - [Dynamic Programming](#dynamic-programming) - [Compilers](#compilers) - [Floating Point Numbers](#floating-point-numbers) - [Unicode](#unicode) @@ -973,6 +973,32 @@ You'll get more graph practice in Skiena's book (see Books section below) and th - [ ] [What Is Tail Recursion Why Is It So Bad?](https://www.quora.com/What-is-tail-recursion-Why-is-it-so-bad) - [ ] [Tail Recursion (video)](https://www.youtube.com/watch?v=L1jjXGfxozc) +- ### Dynamic Programming + - **NOTE:** DP is a valuable technique, but it is not mentioned on any of the prep material Google provides. But you could get a problem where DP provides an optimal solution. So I'm including it. + - This subject can be pretty difficult, as each DP soluble problem must be defined as a recursion relation, and coming up with it can be tricky. + - I suggest looking at many examples of DP problems until you have a solid understanding of the pattern involved. + - [ ] Videos: + - the Skiena videos can be hard to follow since he sometimes uses the whiteboard, which is too small to see + - [ ] [Skiena: CSE373 2012 - Lecture 19 - Introduction to Dynamic Programming (video)](https://youtu.be/Qc2ieXRgR0k?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1718) + - [ ] [Skiena: CSE373 2012 - Lecture 20 - Edit Distance (video)](https://youtu.be/IsmMhMdyeGY?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=2749) + - [ ] [Skiena: CSE373 2012 - Lecture 21 - Dynamic Programming Examples (video)](https://youtu.be/o0V9eYF4UI8?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=406) + - [ ] [Skiena: CSE373 2012 - Lecture 22 - Applications of Dynamic Programming (video)](https://www.youtube.com/watch?v=dRbMC1Ltl3A&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=22) + - [ ] [Simonson: Dynamic Programming 0 (starts at 59:18) (video)](https://youtu.be/J5aJEcOr6Eo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3558) + - [ ] [Simonson: Dynamic Programming I - Lecture 11 (video)](https://www.youtube.com/watch?v=0EzHjQ_SOeU&index=11&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) + - [ ] [Simonson: Dynamic programming II - Lecture 12 (video)](https://www.youtube.com/watch?v=v1qiRwuJU7g&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=12) + - [ ] List of individual DP problems (each is short): + [Dynamic Programming (video)](https://www.youtube.com/playlist?list=PLrmLmBdmIlpsHaNTPP_jHHDx_os9ItYXr) + - [ ] Yale Lecture notes: + - [ ] [Dynamic Programming](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#dynamicProgramming) + - [ ] Coursera: + - [ ] [The RNA secondary structure problem (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/80RrW/the-rna-secondary-structure-problem) + - [ ] [A dynamic programming algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/PSonq/a-dynamic-programming-algorithm) + - [ ] [Illustrating the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/oUEK2/illustrating-the-dp-algorithm) + - [ ] [Running time of the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/nfK2r/running-time-of-the-dp-algorithm) + - [ ] [DP vs. recursive implementation (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/M999a/dp-vs-recursive-implementation) + - [ ] [Global pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/UZ7o6/global-pairwise-sequence-alignment) + - [ ] [Local pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/WnNau/local-pairwise-sequence-alignment) + - ### Object-Oriented Programming - [ ] [Optional: UML 2.0 Series (video)](https://www.youtube.com/watch?v=OkC7HKtiZC0&list=PLGLfVvz_LVvQ5G-LdJ8RLqe-ndo7QITYc) - [ ] Object-Oriented Software Engineering: Software Dev Using UML and Java (21 videos): @@ -1484,31 +1510,6 @@ You're never really done. ## Additional Learning -- ### Dynamic Programming - - This subject can be pretty difficult, as each DP soluble problem must be defined as a recursion relation, and coming up with it can be tricky. - - I suggest looking at many examples of DP problems until you have a solid understanding of the pattern involved. - - [ ] Videos: - - the Skiena videos can be hard to follow since he sometimes uses the whiteboard, which is too small to see - - [ ] [Skiena: CSE373 2012 - Lecture 19 - Introduction to Dynamic Programming (video)](https://youtu.be/Qc2ieXRgR0k?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=1718) - - [ ] [Skiena: CSE373 2012 - Lecture 20 - Edit Distance (video)](https://youtu.be/IsmMhMdyeGY?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=2749) - - [ ] [Skiena: CSE373 2012 - Lecture 21 - Dynamic Programming Examples (video)](https://youtu.be/o0V9eYF4UI8?list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&t=406) - - [ ] [Skiena: CSE373 2012 - Lecture 22 - Applications of Dynamic Programming (video)](https://www.youtube.com/watch?v=dRbMC1Ltl3A&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=22) - - [ ] [Simonson: Dynamic Programming 0 (starts at 59:18) (video)](https://youtu.be/J5aJEcOr6Eo?list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&t=3558) - - [ ] [Simonson: Dynamic Programming I - Lecture 11 (video)](https://www.youtube.com/watch?v=0EzHjQ_SOeU&index=11&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm) - - [ ] [Simonson: Dynamic programming II - Lecture 12 (video)](https://www.youtube.com/watch?v=v1qiRwuJU7g&list=PLFDnELG9dpVxQCxuD-9BSy2E7BWY3t5Sm&index=12) - - [ ] List of individual DP problems (each is short): - [Dynamic Programming (video)](https://www.youtube.com/playlist?list=PLrmLmBdmIlpsHaNTPP_jHHDx_os9ItYXr) - - [ ] Yale Lecture notes: - - [ ] [Dynamic Programming](http://www.cs.yale.edu/homes/aspnes/classes/223/notes.html#dynamicProgramming) - - [ ] Coursera: - - [ ] [The RNA secondary structure problem (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/80RrW/the-rna-secondary-structure-problem) - - [ ] [A dynamic programming algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/PSonq/a-dynamic-programming-algorithm) - - [ ] [Illustrating the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/oUEK2/illustrating-the-dp-algorithm) - - [ ] [Running time of the DP algorithm (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/nfK2r/running-time-of-the-dp-algorithm) - - [ ] [DP vs. recursive implementation (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/M999a/dp-vs-recursive-implementation) - - [ ] [Global pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/UZ7o6/global-pairwise-sequence-alignment) - - [ ] [Local pairwise sequence alignment (video)](https://www.coursera.org/learn/algorithmic-thinking-2/lecture/WnNau/local-pairwise-sequence-alignment) - - ### Compilers - [ ] [How a Compiler Works in ~1 minute (video)](https://www.youtube.com/watch?v=IhC7sdYe-Jg) - [ ] [Harvard CS50 - Compilers (video)](https://www.youtube.com/watch?v=CSZLNYF4Klo) From b79ba6bd0fca394e715a8a049c36a79a6395d82a Mon Sep 17 00:00:00 2001 From: John Washam Date: Sun, 1 Jan 2017 21:55:01 -0800 Subject: [PATCH 109/109] Added links to translation issues. --- README.md | 15 +++++++++++---- 1 file changed, 11 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index bd5ffb7..69c8452 100644 --- a/README.md +++ b/README.md @@ -2,10 +2,17 @@ Translations: - [中文版本](README-cn.md) -- [Español (in progress)](README-es.md) [Issue #80](https://github.com/jwasham/google-interview-university/issues/80) -- [हिन्दी (in progress)](README-hn.md) [Issue #81](https://github.com/jwasham/google-interview-university/issues/81) -- [עברית (in progress)](README-he.md) [Issue #82](https://github.com/jwasham/google-interview-university/issues/82) - +- translations in progress: + - [Español](https://github.com/jwasham/google-interview-university/issues/80) + - [हिन्दी](https://github.com/jwasham/google-interview-university/issues/81) + - [עברית](https://github.com/jwasham/google-interview-university/issues/82) + - [Bahasa Indonesia](https://github.com/jwasham/google-interview-university/issues/101) + - [Arabic](https://github.com/jwasham/google-interview-university/issues/98) + - [Vietnamese](https://github.com/jwasham/google-interview-university/issues/92) + - [Turkish](https://github.com/jwasham/google-interview-university/issues/90) + - [French](https://github.com/jwasham/google-interview-university/issues/89) + - [Russian](https://github.com/jwasham/google-interview-university/issues/87) + - [Ukrainian](https://github.com/jwasham/google-interview-university/issues/106) ## What is it?