2018-10-10 18:03:03 -04:00
---
id: 5900f4141000cf542c50ff26
2021-02-06 04:42:36 +00:00
title: 'Problem 167: Investigating Ulam sequences'
2018-10-10 18:03:03 -04:00
challengeType: 5
2021-02-06 04:42:36 +00:00
forumTopicId: 301801
2021-01-13 03:31:00 +01:00
dashedName: problem-167-investigating-ulam-sequences
2018-10-10 18:03:03 -04:00
---
2020-12-16 00:37:30 -07:00
# --description--
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
For two positive integers a and b, the Ulam sequence U(a,b) is defined by U(a,b)1 = a, U(a,b)2 = b and for k > 2,
U(a,b)k is the smallest integer greater than U(a,b)(k-1) which can be written in exactly one way as the sum of two distinct previous members of U(a,b).
For example, the sequence U(1,2) begins with
1, 2, 3 = 1 + 2, 4 = 1 + 3, 6 = 2 + 4, 8 = 2 + 6, 11 = 3 + 8;
5 does not belong to it because 5 = 1 + 4 = 2 + 3 has two representations as the sum of two previous members, likewise 7 = 1 + 6 = 3 + 4.
Find ∑U(2,2n+1)k for 2 ≤ n ≤10, where k = 1011.
2018-10-10 18:03:03 -04:00
2020-12-16 00:37:30 -07:00
# --hints--
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
`euler167()` should return 3916160068885.
2018-10-10 18:03:03 -04:00
```js
2020-12-16 00:37:30 -07:00
assert.strictEqual(euler167(), 3916160068885);
2018-10-10 18:03:03 -04:00
```
2021-01-13 03:31:00 +01:00
# --seed--
## --seed-contents--
```js
function euler167() {
return true;
}
euler167();
```
2020-12-16 00:37:30 -07:00
# --solutions--
2020-08-13 17:24:35 +02:00
2021-01-13 03:31:00 +01:00
```js
// solution required
```