2018-10-10 18:03:03 -04:00
---
id: 5900f4931000cf542c50ffa6
2021-02-06 04:42:36 +00:00
title: 'Problem 295: Lenticular holes'
2018-10-10 18:03:03 -04:00
challengeType: 5
2021-02-06 04:42:36 +00:00
forumTopicId: 301947
2021-01-13 03:31:00 +01:00
dashedName: problem-295-lenticular-holes
2018-10-10 18:03:03 -04:00
---
2020-12-16 00:37:30 -07:00
# --description--
2021-02-06 04:42:36 +00:00
We call the convex area enclosed by two circles a lenticular hole if:
2020-12-16 00:37:30 -07:00
2021-02-06 04:42:36 +00:00
The centres of both circles are on lattice points.
2020-12-16 00:37:30 -07:00
2021-02-06 04:42:36 +00:00
The two circles intersect at two distinct lattice points.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
The interior of the convex area enclosed by both circles does not contain any lattice points.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
Consider the circles: C0: x2+y2=25 C1: (x+4)2+(y-4)2=1 C2: (x-12)2+(y-4)2=65
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
The circles C0, C1 and C2 are drawn in the picture below.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
C0 and C1 form a lenticular hole, as well as C0 and C2.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
We call an ordered pair of positive real numbers (r1, r2) a lenticular pair if there exist two circles with radii r1 and r2 that form a lenticular hole. We can verify that (1, 5) and (5, √65) are the lenticular pairs of the example above.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
Let L(N) be the number of distinct lenticular pairs (r1, r2) for which 0 < r1 ≤ r2 ≤ N. We can verify that L(10) = 30 and L(100) = 3442.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
Find L(100 000).
2018-10-10 18:03:03 -04:00
2020-12-16 00:37:30 -07:00
# --hints--
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
`euler295()` should return 4884650818.
2018-10-10 18:03:03 -04:00
```js
2020-12-16 00:37:30 -07:00
assert.strictEqual(euler295(), 4884650818);
2018-10-10 18:03:03 -04:00
```
2021-01-13 03:31:00 +01:00
# --seed--
## --seed-contents--
```js
function euler295() {
return true;
}
euler295();
```
2020-12-16 00:37:30 -07:00
# --solutions--
2020-08-13 17:24:35 +02:00
2021-01-13 03:31:00 +01:00
```js
// solution required
```