2018-10-10 18:03:03 -04:00
---
id: 5900f4a31000cf542c50ffb6
2021-02-06 04:42:36 +00:00
title: 'Problem 311: Biclinic Integral Quadrilaterals'
2018-10-10 18:03:03 -04:00
challengeType: 5
2021-02-06 04:42:36 +00:00
forumTopicId: 301967
2021-01-13 03:31:00 +01:00
dashedName: problem-311-biclinic-integral-quadrilaterals
2018-10-10 18:03:03 -04:00
---
2020-12-16 00:37:30 -07:00
# --description--
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
ABCD is a convex, integer sided quadrilateral with 1 ≤ AB < BC < CD < AD.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
BD has integer length. O is the midpoint of BD. AO has integer length.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
We'll call ABCD a biclinic integral quadrilateral if AO = CO ≤ BO = DO.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
For example, the following quadrilateral is a biclinic integral quadrilateral: AB = 19, BC = 29, CD = 37, AD = 43, BD = 48 and AO = CO = 23.
Let B(N) be the number of distinct biclinic integral quadrilaterals ABCD that satisfy AB2+BC2+CD2+AD2 ≤ N. We can verify that B(10 000) = 49 and B(1 000 000) = 38239.
Find B(10 000 000 000).
2018-10-10 18:03:03 -04:00
2020-12-16 00:37:30 -07:00
# --hints--
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
`euler311()` should return 2466018557.
2018-10-10 18:03:03 -04:00
```js
2020-12-16 00:37:30 -07:00
assert.strictEqual(euler311(), 2466018557);
2018-10-10 18:03:03 -04:00
```
2021-01-13 03:31:00 +01:00
# --seed--
## --seed-contents--
```js
function euler311() {
return true;
}
euler311();
```
2020-12-16 00:37:30 -07:00
# --solutions--
2020-08-13 17:24:35 +02:00
2021-01-13 03:31:00 +01:00
```js
// solution required
```