2018-10-10 18:03:03 -04:00
---
id: 5900f4a51000cf542c50ffb7
2021-02-06 04:42:36 +00:00
title: 'Problem 312: Cyclic paths on Sierpiński graphs'
2018-10-10 18:03:03 -04:00
challengeType: 5
2021-02-06 04:42:36 +00:00
forumTopicId: 301968
2021-01-13 03:31:00 +01:00
dashedName: problem-312-cyclic-paths-on-sierpiski-graphs
2018-10-10 18:03:03 -04:00
---
2020-12-16 00:37:30 -07:00
# --description--
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
\- A Sierpiński graph of order-1 (S1) is an equilateral triangle.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
\- Sn+1 is obtained from Sn by positioning three copies of Sn so that every pair of copies has one common corner.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
Let C(n) be the number of cycles that pass exactly once through all the vertices of Sn. For example, C(3) = 8 because eight such cycles can be drawn on S3, as shown below:
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
It can also be verified that : C(1) = C(2) = 1 C(5) = 71328803586048 C(10 000) mod 108 = 37652224 C(10 000) mod 138 = 617720485
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
Find C(C(C(10 000))) mod 138.
2018-10-10 18:03:03 -04:00
2020-12-16 00:37:30 -07:00
# --hints--
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
`euler312()` should return 324681947.
2018-10-10 18:03:03 -04:00
```js
2020-12-16 00:37:30 -07:00
assert.strictEqual(euler312(), 324681947);
2018-10-10 18:03:03 -04:00
```
2021-01-13 03:31:00 +01:00
# --seed--
## --seed-contents--
```js
function euler312() {
return true;
}
euler312();
```
2020-12-16 00:37:30 -07:00
# --solutions--
2020-08-13 17:24:35 +02:00
2021-01-13 03:31:00 +01:00
```js
// solution required
```