2018-10-10 18:03:03 -04:00
---
id: 5900f4ed1000cf542c50ffff
2021-02-06 04:42:36 +00:00
title: 'Problem 383: Divisibility comparison between factorials'
2018-10-10 18:03:03 -04:00
challengeType: 5
2021-02-06 04:42:36 +00:00
forumTopicId: 302047
2021-01-13 03:31:00 +01:00
dashedName: problem-383-divisibility-comparison-between-factorials
2018-10-10 18:03:03 -04:00
---
2020-12-16 00:37:30 -07:00
# --description--
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
Let f5(n) be the largest integer x for which 5x divides n.
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
For example, f5(625000) = 7.
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
Let T5(n) be the number of integers i which satisfy f5((2·i-1)!) < 2·f5(i!) and 1 ≤ i ≤ n. It can be verified that T5(103) = 68 and T5(109) = 2408210.
Find T5(1018).
2018-10-10 18:03:03 -04:00
2020-12-16 00:37:30 -07:00
# --hints--
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
`euler383()` should return 22173624649806.
2018-10-10 18:03:03 -04:00
```js
2020-12-16 00:37:30 -07:00
assert.strictEqual(euler383(), 22173624649806);
2018-10-10 18:03:03 -04:00
```
2021-01-13 03:31:00 +01:00
# --seed--
## --seed-contents--
```js
function euler383() {
return true;
}
euler383();
```
2020-12-16 00:37:30 -07:00
# --solutions--
2020-08-13 17:24:35 +02:00
2021-01-13 03:31:00 +01:00
```js
// solution required
```