2021-05-05 10:13:49 -07:00
|
|
|
---
|
|
|
|
id: 5e8f2f13c4cdbe86b5c72da2
|
2021-07-16 11:03:16 +05:30
|
|
|
title: '使用 RNN 進行自然語言處理:訓練模型'
|
2021-05-05 10:13:49 -07:00
|
|
|
challengeType: 11
|
|
|
|
videoId: hEUiK7j9UI8
|
2021-10-03 12:24:27 -07:00
|
|
|
bilibiliIds:
|
|
|
|
aid: 250542136
|
|
|
|
bvid: BV19v411w7Fi
|
|
|
|
cid: 409138327
|
2021-05-05 10:13:49 -07:00
|
|
|
dashedName: natural-language-processing-with-rnns-training-the-model
|
|
|
|
---
|
|
|
|
|
|
|
|
# --question--
|
|
|
|
|
|
|
|
## --text--
|
|
|
|
|
2021-07-16 11:03:16 +05:30
|
|
|
填寫下面的空白以將你模型的檢查點保存在 `./checkpoints` 目錄中,並調用最新的檢查點進行訓練:
|
2021-05-05 10:13:49 -07:00
|
|
|
|
|
|
|
```py
|
|
|
|
checkpoint_dir = __A__
|
|
|
|
checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt_{epoch}')
|
|
|
|
|
|
|
|
checkpoint_callback = tf.keras.callbacks.__B__(
|
|
|
|
filepath=checkpoint_prefix,
|
|
|
|
save_weights_only=True
|
|
|
|
)
|
|
|
|
|
|
|
|
history = model.fit(data, epochs=2, callbacks=[__C__])
|
|
|
|
```
|
|
|
|
|
|
|
|
## --answers--
|
|
|
|
|
|
|
|
A: `'./training_checkpoints'`
|
|
|
|
|
|
|
|
B: `ModelCheckpoint`
|
|
|
|
|
|
|
|
C: `checkpoint_prefix`
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
A: `'./checkpoints'`
|
|
|
|
|
|
|
|
B: `ModelCheckpoint`
|
|
|
|
|
|
|
|
C: `checkpoint_callback`
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
A: `'./checkpoints'`
|
|
|
|
|
|
|
|
B: `BaseLogger`
|
|
|
|
|
|
|
|
C: `checkpoint_callback`
|
|
|
|
|
|
|
|
## --video-solution--
|
|
|
|
|
|
|
|
2
|
|
|
|
|