2018-09-30 23:01:58 +01:00
|
|
|
---
|
|
|
|
id: 5900f4771000cf542c50ff89
|
|
|
|
title: 'Problem 266: Pseudo Square Root'
|
2020-11-27 19:02:05 +01:00
|
|
|
challengeType: 5
|
2019-08-05 09:17:33 -07:00
|
|
|
forumTopicId: 301915
|
2021-01-13 03:31:00 +01:00
|
|
|
dashedName: problem-266-pseudo-square-root
|
2018-09-30 23:01:58 +01:00
|
|
|
---
|
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
# --description--
|
|
|
|
|
2018-09-30 23:01:58 +01:00
|
|
|
The divisors of 12 are: 1,2,3,4,6 and 12.
|
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
The largest divisor of 12 that does not exceed the square root of 12 is 3.
|
2018-09-30 23:01:58 +01:00
|
|
|
|
2021-07-24 09:09:54 +02:00
|
|
|
We shall call the largest divisor of an integer $n$ that does not exceed the square root of $n$ the pseudo square root ($PSR$) of $n$.
|
2018-09-30 23:01:58 +01:00
|
|
|
|
2021-07-24 09:09:54 +02:00
|
|
|
It can be seen that $PSR(3102) = 47$.
|
2018-09-30 23:01:58 +01:00
|
|
|
|
2021-07-24 09:09:54 +02:00
|
|
|
Let $p$ be the product of the primes below 190. Find $PSR(p)\bmod {10}^{16}$.
|
2018-09-30 23:01:58 +01:00
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
# --hints--
|
2018-09-30 23:01:58 +01:00
|
|
|
|
2021-07-24 09:09:54 +02:00
|
|
|
`pseudoSquareRoot()` should return `1096883702440585`.
|
2018-09-30 23:01:58 +01:00
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
```js
|
2021-07-24 09:09:54 +02:00
|
|
|
assert.strictEqual(pseudoSquareRoot(), 1096883702440585);
|
2018-09-30 23:01:58 +01:00
|
|
|
```
|
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
# --seed--
|
2018-09-30 23:01:58 +01:00
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
## --seed-contents--
|
2018-09-30 23:01:58 +01:00
|
|
|
|
|
|
|
```js
|
2021-07-24 09:09:54 +02:00
|
|
|
function pseudoSquareRoot() {
|
2020-09-15 09:57:40 -07:00
|
|
|
|
2018-09-30 23:01:58 +01:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2021-07-24 09:09:54 +02:00
|
|
|
pseudoSquareRoot();
|
2018-09-30 23:01:58 +01:00
|
|
|
```
|
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
# --solutions--
|
2018-09-30 23:01:58 +01:00
|
|
|
|
|
|
|
```js
|
|
|
|
// solution required
|
|
|
|
```
|