2018-09-30 23:01:58 +01:00
---
id: 5900f4de1000cf542c50fff0
title: 'Problem 369: Badugi'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 302030
2021-01-13 03:31:00 +01:00
dashedName: problem-369-badugi
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
In a standard 52 card deck of playing cards, a set of 4 cards is a Badugi if it contains 4 cards with no pairs and no two cards of the same suit.
2018-09-30 23:01:58 +01:00
2021-07-29 21:48:17 +02:00
Let $f(n)$ be the number of ways to choose $n$ cards with a 4 card subset that is a Badugi. For example, there are $2\\,598\\,960$ ways to choose five cards from a standard 52 card deck, of which $514\\,800$ contain a 4 card subset that is a Badugi, so $f(5) = 514800$.
2018-09-30 23:01:58 +01:00
2021-07-29 21:48:17 +02:00
Find $\sum f(n)$ for $4 ≤ n ≤ 13$.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2021-07-29 21:48:17 +02:00
`badugi()` should return `862400558448` .
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
2021-07-29 21:48:17 +02:00
assert.strictEqual(badugi(), 862400558448);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
2021-07-29 21:48:17 +02:00
function badugi() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
2021-07-29 21:48:17 +02:00
badugi();
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```