2020-04-21 11:19:42 -04:00
|
|
|
---
|
|
|
|
id: 5e8f2f13c4cdbe86b5c72d99
|
2020-04-24 05:52:42 -05:00
|
|
|
title: 'Convolutional Neural Networks: Evaluating the Model'
|
2020-04-21 11:19:42 -04:00
|
|
|
challengeType: 11
|
|
|
|
videoId: eCATNvwraXg
|
2021-10-01 12:24:12 +08:00
|
|
|
bilibiliIds:
|
|
|
|
aid: 933030136
|
|
|
|
bvid: BV1hM4y1g7Bx
|
|
|
|
cid: 409132265
|
2021-01-13 03:31:00 +01:00
|
|
|
dashedName: convolutional-neural-networks-evaluating-the-model
|
2020-04-21 11:19:42 -04:00
|
|
|
---
|
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
# --question--
|
|
|
|
|
|
|
|
## --text--
|
|
|
|
|
|
|
|
What is **not** a good way to increase the accuracy of a convolutional neural network?
|
|
|
|
|
|
|
|
## --answers--
|
|
|
|
|
|
|
|
Augmenting the data you already have.
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
Using a pre-trained model.
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
Using your test data to retrain the model.
|
|
|
|
|
|
|
|
## --video-solution--
|
|
|
|
|
|
|
|
3
|
|
|
|
|