47 lines
1.1 KiB
Markdown
47 lines
1.1 KiB
Markdown
![]() |
---
|
|||
|
id: 5900f3fa1000cf542c50ff0c
|
|||
|
title: 'Problem 140: Modified Fibonacci golden nuggets'
|
|||
|
challengeType: 5
|
|||
|
forumTopicId: 301769
|
|||
|
dashedName: problem-140-modified-fibonacci-golden-nuggets
|
|||
|
---
|
|||
|
|
|||
|
# --description--
|
|||
|
|
|||
|
Consider the infinite polynomial series AG(x) = xG1 + x2G2 + x3G3 + ..., where Gk is the kth term of the second order recurrence relation Gk = Gk−1 + Gk−2, G1 = 1 and G2 = 4; that is, 1, 4, 5, 9, 14, 23, ... .
|
|||
|
|
|||
|
For this problem we shall be concerned with values of x for which AG(x) is a positive integer.
|
|||
|
|
|||
|
The corresponding values of x for the first five natural numbers are shown below.
|
|||
|
|
|||
|
xAG(x) (√5−1)/41 2/52 (√22−2)/63 (√137−5)/144 1/25
|
|||
|
|
|||
|
We shall call AG(x) a golden nugget if x is rational, because they become increasingly rarer; for example, the 20th golden nugget is 211345365. Find the sum of the first thirty golden nuggets.
|
|||
|
|
|||
|
# --hints--
|
|||
|
|
|||
|
`euler140()` should return 5673835352990.
|
|||
|
|
|||
|
```js
|
|||
|
assert.strictEqual(euler140(), 5673835352990);
|
|||
|
```
|
|||
|
|
|||
|
# --seed--
|
|||
|
|
|||
|
## --seed-contents--
|
|||
|
|
|||
|
```js
|
|||
|
function euler140() {
|
|||
|
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
euler140();
|
|||
|
```
|
|||
|
|
|||
|
# --solutions--
|
|||
|
|
|||
|
```js
|
|||
|
// solution required
|
|||
|
```
|