41 lines
988 B
Markdown
41 lines
988 B
Markdown
![]() |
---
|
|||
|
id: 5900f4621000cf542c50ff74
|
|||
|
title: 'Problem 245: Coresilience'
|
|||
|
challengeType: 5
|
|||
|
forumTopicId: 301892
|
|||
|
dashedName: problem-245-coresilience
|
|||
|
---
|
|||
|
|
|||
|
# --description--
|
|||
|
|
|||
|
We shall call a fraction that cannot be cancelled down a resilient fraction. Furthermore we shall define the resilience of a denominator, R(d), to be the ratio of its proper fractions that are resilient; for example, R(12) = 4⁄11.
|
|||
|
|
|||
|
The resilience of a number d > 1 is then φ(d)d − 1 , where φ is Euler's totient function. We further define the coresilience of a number n > 1 as C(n)= n − φ(n)n − 1. The coresilience of a prime p is C(p) = 1p − 1. Find the sum of all composite integers 1 < n ≤ 2×1011, for which C(n) is a unit fraction.
|
|||
|
|
|||
|
# --hints--
|
|||
|
|
|||
|
`euler245()` should return 288084712410001.
|
|||
|
|
|||
|
```js
|
|||
|
assert.strictEqual(euler245(), 288084712410001);
|
|||
|
```
|
|||
|
|
|||
|
# --seed--
|
|||
|
|
|||
|
## --seed-contents--
|
|||
|
|
|||
|
```js
|
|||
|
function euler245() {
|
|||
|
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
euler245();
|
|||
|
```
|
|||
|
|
|||
|
# --solutions--
|
|||
|
|
|||
|
```js
|
|||
|
// solution required
|
|||
|
```
|