157 lines
2.9 KiB
Markdown
157 lines
2.9 KiB
Markdown
![]() |
---
|
|||
|
id: 599d1566a02b571412643b84
|
|||
|
title: Ethiopian multiplication
|
|||
|
challengeType: 5
|
|||
|
forumTopicId: 302257
|
|||
|
dashedName: ethiopian-multiplication
|
|||
|
---
|
|||
|
|
|||
|
# --description--
|
|||
|
|
|||
|
Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving.
|
|||
|
|
|||
|
**Method:**
|
|||
|
|
|||
|
<ol>
|
|||
|
<li>Take two numbers to be multiplied and write them down at the top of two columns</li>
|
|||
|
<li>In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of <code>1</code></li>
|
|||
|
<li>In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows <code>1</code></li>
|
|||
|
<li>Examine the table produced and discard any row where the value in the left column is even</li>
|
|||
|
<li>Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together</li>
|
|||
|
</ol>
|
|||
|
|
|||
|
**For example:** `17 × 34`
|
|||
|
|
|||
|
<pre>17 34
|
|||
|
</pre>
|
|||
|
|
|||
|
Halving the first column:
|
|||
|
|
|||
|
<pre>17 34
|
|||
|
8
|
|||
|
4
|
|||
|
2
|
|||
|
1
|
|||
|
</pre>
|
|||
|
|
|||
|
Doubling the second column:
|
|||
|
|
|||
|
<pre>17 34
|
|||
|
8 68
|
|||
|
4 136
|
|||
|
2 272
|
|||
|
1 544
|
|||
|
</pre>
|
|||
|
|
|||
|
Strike-out rows whose first cell is even:
|
|||
|
|
|||
|
<pre>17 34
|
|||
|
8 <strike>68</strike>
|
|||
|
4 <strike>136</strike>
|
|||
|
2 <strike>272</strike>
|
|||
|
1 544
|
|||
|
</pre>
|
|||
|
|
|||
|
Sum the remaining numbers in the right-hand column:
|
|||
|
|
|||
|
<!-- markdownlint-disable MD003 -->
|
|||
|
|
|||
|
<pre>17 34
|
|||
|
8 --
|
|||
|
4 ---
|
|||
|
2 ---
|
|||
|
1 544
|
|||
|
====
|
|||
|
578
|
|||
|
</pre>
|
|||
|
|
|||
|
<!-- markdownlint-enable MD003 -->
|
|||
|
|
|||
|
So `17` multiplied by `34`, by the Ethiopian method is `578`.
|
|||
|
|
|||
|
# --instructions--
|
|||
|
|
|||
|
The task is to define three named functions/methods/procedures/subroutines:
|
|||
|
|
|||
|
<ol>
|
|||
|
<li>one to halve an integer,</li>
|
|||
|
<li>one to double an integer, and</li>
|
|||
|
<li>one to state if an integer is even</li>
|
|||
|
</ol>
|
|||
|
|
|||
|
Use these functions to create a function that does Ethiopian multiplication.
|
|||
|
|
|||
|
<!-- markdownlint-disable MD046-->
|
|||
|
|
|||
|
# --hints--
|
|||
|
|
|||
|
`eth_mult` should be a function.
|
|||
|
|
|||
|
```js
|
|||
|
assert(typeof eth_mult === 'function');
|
|||
|
```
|
|||
|
|
|||
|
`eth_mult(17,34)` should return `578`.
|
|||
|
|
|||
|
```js
|
|||
|
assert.equal(eth_mult(17, 34), 578);
|
|||
|
```
|
|||
|
|
|||
|
`eth_mult(23,46)` should return `1058`.
|
|||
|
|
|||
|
```js
|
|||
|
assert.equal(eth_mult(23, 46), 1058);
|
|||
|
```
|
|||
|
|
|||
|
`eth_mult(12,27)` should return `324`.
|
|||
|
|
|||
|
```js
|
|||
|
assert.equal(eth_mult(12, 27), 324);
|
|||
|
```
|
|||
|
|
|||
|
`eth_mult(56,98)` should return `5488`.
|
|||
|
|
|||
|
```js
|
|||
|
assert.equal(eth_mult(56, 98), 5488);
|
|||
|
```
|
|||
|
|
|||
|
`eth_mult(63,74)` should return `4662`.
|
|||
|
|
|||
|
```js
|
|||
|
assert.equal(eth_mult(63, 74), 4662);
|
|||
|
```
|
|||
|
|
|||
|
# --seed--
|
|||
|
|
|||
|
## --seed-contents--
|
|||
|
|
|||
|
```js
|
|||
|
function eth_mult(a, b) {
|
|||
|
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
# --solutions--
|
|||
|
|
|||
|
```js
|
|||
|
function eth_mult(a, b) {
|
|||
|
let sum = 0; a = [a]; b = [b];
|
|||
|
|
|||
|
let half = a => a / 2,
|
|||
|
double = a => a * 2,
|
|||
|
is_even = a => a % 2 == 0;
|
|||
|
|
|||
|
while (a[0] !== 1) {
|
|||
|
a.unshift(Math.floor(half(a[0])));
|
|||
|
b.unshift(double(b[0]));
|
|||
|
}
|
|||
|
|
|||
|
for (let i = a.length - 1; i > 0; i -= 1) {
|
|||
|
if (!is_even(a[i])) {
|
|||
|
sum += b[i];
|
|||
|
}
|
|||
|
}
|
|||
|
return sum + b[0];
|
|||
|
}
|
|||
|
```
|