2021-02-06 04:42:36 +00:00
|
|
|
---
|
|
|
|
id: 5e8f2f13c4cdbe86b5c72d9a
|
2022-03-14 22:46:48 +05:30
|
|
|
title: 'Redes Neuronales Convolucionales: Eligiendo un Modelo Pre-entrenado'
|
2021-02-06 04:42:36 +00:00
|
|
|
challengeType: 11
|
|
|
|
videoId: h1XUt1AgIOI
|
2022-03-14 22:46:48 +05:30
|
|
|
bilibiliIds:
|
|
|
|
aid: 463063633
|
|
|
|
bvid: BV1qL411x73q
|
|
|
|
cid: 409132626
|
2021-02-06 04:42:36 +00:00
|
|
|
dashedName: convolutional-neural-networks-picking-a-pretrained-model
|
|
|
|
---
|
|
|
|
|
|
|
|
# --question--
|
|
|
|
|
|
|
|
## --text--
|
|
|
|
|
2022-03-14 22:46:48 +05:30
|
|
|
Completa los siguientes espacios en blanco para utilizar el modelo pre-entrenado MobileNet V2 de Google como base para una red neuronal convolucional:
|
2021-02-06 04:42:36 +00:00
|
|
|
|
|
|
|
```py
|
|
|
|
base_model = tf.__A__.applications.__B__(input_shape=(160, 160, 3),
|
|
|
|
include_top=__C__,
|
|
|
|
weights='imagenet'
|
|
|
|
)
|
|
|
|
```
|
|
|
|
|
|
|
|
## --answers--
|
|
|
|
|
|
|
|
A: `keras`
|
|
|
|
|
|
|
|
B: `MobileNetV2`
|
|
|
|
|
|
|
|
C: `False`
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
A: `Keras`
|
|
|
|
|
|
|
|
B: `MobileNetV2`
|
|
|
|
|
|
|
|
C: `True`
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
A: `keras`
|
|
|
|
|
|
|
|
B: `mobile_net_v2`
|
|
|
|
|
|
|
|
C: `False`
|
|
|
|
|
|
|
|
## --video-solution--
|
|
|
|
|
|
|
|
1
|
|
|
|
|