Files
freeCodeCamp/curriculum/challenges/italian/10-coding-interview-prep/project-euler/problem-157-solving-the-diophantine-equation.md

48 lines
1.7 KiB
Markdown
Raw Permalink Normal View History

---
id: 5900f4091000cf542c50ff1c
title: 'Problema 157: Risolvere l''equazione diofantina'
challengeType: 5
forumTopicId: 301788
dashedName: problem-157-solving-the-diophantine-equation
---
# --description--
Considera l'equazione diofantina $\frac{1}{a} + \frac{1}{b} = \frac{p}{{10}^n}$ con $a$, $b$, $p$, $n$ interi positivi e $a ≤ b$.
Per $n = 1$ questa equazione ha 20 soluzioni che sono elencate di seguito:
$$\begin{array}{lllll} \frac{1}{1} + \frac{1}{1} = \frac{20}{10} & \frac{1}{1} + \frac{1}{2} = \frac{15}{10} & \frac{1}{1} + \frac{1}{5} = \frac{12}{10} & \frac{1}{1} + \frac{1}{10} = \frac{11}{10} & \frac{1}{2} + \frac{1}{2} = \frac{10}{10} \\\\
\frac{1}{2} + \frac{1}{5} = \frac{7}{10} & \frac{1}{2} + \frac{1}{10} = \frac{6}{10} & \frac{1}{3} + \frac{1}{6} = \frac{5}{10} & \frac{1}{3} + \frac{1}{15} = \frac{4}{10} & \frac{1}{4} + \frac{1}{4} = \frac{5}{10} \\\\
\frac{1}{4} + \frac{1}{4} = \frac{5}{10} & \frac{1}{5} + \frac{1}{5} = \frac{4}{10} & \frac{1}{5} + \frac{1}{10} = \frac{3}{10} & \frac{1}{6} + \frac{1}{30} = \frac{2}{10} & \frac{1}{10} + \frac{1}{10} = \frac{2}{10} \\\\
\frac{1}{11} + \frac{1}{110} = \frac{1}{10} & \frac{1}{12} + \frac{1}{60} = \frac{1}{10} & \frac{1}{14} + \frac{1}{35} = \frac{1}{10} & \frac{1}{15} + \frac{1}{30} = \frac{1}{10} & \frac{1}{20} + \frac{1}{20} = \frac{1}{10} \end{array}$$
Quante soluzioni ha questa equazione per $1 ≤ n ≤ 9$?
# --hints--
`diophantineEquation()` dovrebbe restituire `53490`.
```js
assert.strictEqual(diophantineEquation(), 53490);
```
# --seed--
## --seed-contents--
```js
function diophantineEquation() {
return true;
}
diophantineEquation();
```
# --solutions--
```js
// solution required
```