2021-06-15 00:49:18 -07:00
|
|
|
---
|
|
|
|
id: 5900f4ea1000cf542c50fffc
|
2022-03-04 19:46:29 +05:30
|
|
|
title: 'Problema 381: (primo-k) fattoriale'
|
2021-06-15 00:49:18 -07:00
|
|
|
challengeType: 5
|
|
|
|
forumTopicId: 302045
|
|
|
|
dashedName: problem-381-prime-k-factorial
|
|
|
|
---
|
|
|
|
|
|
|
|
# --description--
|
|
|
|
|
2022-03-04 19:46:29 +05:30
|
|
|
Per un numero primo $p$ sia $S(p) = (\sum (p - k)!)\bmod (p)$ for $1 ≤ k ≤ 5$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2022-03-04 19:46:29 +05:30
|
|
|
Per esempio, per $p = 7$,
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2022-03-04 19:46:29 +05:30
|
|
|
$$(7 - 1)! + (7 - 2)! + (7 - 3)! + (7 - 4)! + (7 - 5)! = 6! + 5! + 4! + 3! + 2! = 720 + 120 + 24 + 6 + 2 = 872$$
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2022-03-04 19:46:29 +05:30
|
|
|
Come $872\bmod (7) = 4$, $S(7) = 4$.
|
|
|
|
|
|
|
|
Si può verificare che $\sum S(p) = 480$ per $5 ≤ p < 100$.
|
|
|
|
|
|
|
|
Trova $\sum S(p)$ per $5 ≤ p < {10}^8$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
# --hints--
|
|
|
|
|
2022-03-04 19:46:29 +05:30
|
|
|
`primeKFactorial()` dovrebbe restituire `139602943319822`.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
```js
|
2022-03-04 19:46:29 +05:30
|
|
|
assert.strictEqual(primeKFactorial(), 139602943319822);
|
2021-06-15 00:49:18 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
# --seed--
|
|
|
|
|
|
|
|
## --seed-contents--
|
|
|
|
|
|
|
|
```js
|
2022-03-04 19:46:29 +05:30
|
|
|
function primeKFactorial() {
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2022-03-04 19:46:29 +05:30
|
|
|
primeKFactorial();
|
2021-06-15 00:49:18 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
# --solutions--
|
|
|
|
|
|
|
|
```js
|
|
|
|
// solution required
|
|
|
|
```
|