2021-06-15 00:49:18 -07:00
|
|
|
---
|
|
|
|
id: 5900f5361000cf542c510048
|
2022-02-23 18:40:00 +05:30
|
|
|
title: 'Problema 457: Un polinomiale modulo il quadrato di un primo'
|
2021-06-15 00:49:18 -07:00
|
|
|
challengeType: 5
|
|
|
|
forumTopicId: 302131
|
|
|
|
dashedName: problem-457-a-polynomial-modulo-the-square-of-a-prime
|
|
|
|
---
|
|
|
|
|
|
|
|
# --description--
|
|
|
|
|
2022-02-23 18:40:00 +05:30
|
|
|
Sia $f(n) = n^2 - 3n - 1$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2022-02-23 18:40:00 +05:30
|
|
|
Sia $p$ un numero primo.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2022-02-23 18:40:00 +05:30
|
|
|
Sia $R(p)$ il più piccolo numero intero positivo $n$ tale che $f(n)\bmod p^2 = 0$ se esiste un numero intero $n$, altrimenti $R(p) = 0$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2022-02-23 18:40:00 +05:30
|
|
|
Sia $SR(L)$ pari a $\sum R(p)$ per tutti i primi non superiori a $L$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2022-02-23 18:40:00 +05:30
|
|
|
Trova $SR({10}^7)$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
# --hints--
|
|
|
|
|
2022-02-23 18:40:00 +05:30
|
|
|
`polynomialModuloSquareOfPrime()` dovrebbe restituire `2647787126797397000`.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
```js
|
2022-02-23 18:40:00 +05:30
|
|
|
assert.strictEqual(polynomialModuloSquareOfPrime(), 2647787126797397000);
|
2021-06-15 00:49:18 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
# --seed--
|
|
|
|
|
|
|
|
## --seed-contents--
|
|
|
|
|
|
|
|
```js
|
2022-02-23 18:40:00 +05:30
|
|
|
function polynomialModuloSquareOfPrime() {
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2022-02-23 18:40:00 +05:30
|
|
|
polynomialModuloSquareOfPrime();
|
2021-06-15 00:49:18 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
# --solutions--
|
|
|
|
|
|
|
|
```js
|
|
|
|
// solution required
|
|
|
|
```
|