2021-06-15 00:49:18 -07:00
|
|
|
|
---
|
|
|
|
|
id: 5900f3e71000cf542c50fefa
|
2021-11-04 07:53:18 -07:00
|
|
|
|
title: 'Problema 123: Resto dos quadrados dos primos'
|
2021-06-15 00:49:18 -07:00
|
|
|
|
challengeType: 5
|
|
|
|
|
forumTopicId: 301750
|
|
|
|
|
dashedName: problem-123-prime-square-remainders
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
# --description--
|
|
|
|
|
|
2021-11-04 07:53:18 -07:00
|
|
|
|
Considere $p_n$ o $n$-ésimo número primo: 2, 3, 5, 7, 11, ..., e $r$ o resto da divisão quando ${(p_n−1)}^n + {(p_n+1)}^n$ é dividido por ${p_n}^2$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
2021-11-04 07:53:18 -07:00
|
|
|
|
Por exemplo, quando $n = 3, p_3 = 5$ e $4^3 + 6^3 = 280 ≡ 5\\ mod\\ 25$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
2021-11-04 07:53:18 -07:00
|
|
|
|
O menor valor de $n$ para o qual o resto excede $10^9$ é 7037.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
2021-11-04 07:53:18 -07:00
|
|
|
|
Encontre o menor valor de $n$ para o qual o resto excede $10^{10}$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
|
|
# --hints--
|
|
|
|
|
|
2021-11-04 07:53:18 -07:00
|
|
|
|
`primeSquareRemainders()` deve retornar `21035`.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
|
|
```js
|
2021-11-04 07:53:18 -07:00
|
|
|
|
assert.strictEqual(primeSquareRemainders(), 21035);
|
2021-06-15 00:49:18 -07:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
# --seed--
|
|
|
|
|
|
|
|
|
|
## --seed-contents--
|
|
|
|
|
|
|
|
|
|
```js
|
2021-11-04 07:53:18 -07:00
|
|
|
|
function primeSquareRemainders() {
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
2021-11-04 07:53:18 -07:00
|
|
|
|
primeSquareRemainders();
|
2021-06-15 00:49:18 -07:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
# --solutions--
|
|
|
|
|
|
|
|
|
|
```js
|
|
|
|
|
// solution required
|
|
|
|
|
```
|