<imgclass="img-responsive center-block"alt="triângulo isósceles com lados chamados de L - dois lados com o mesmo comprimento e a base do triângulo chamada de b. A altura do triângulo é chamada de h e vai da base do triângulo ao ângulo entre os lados L"src="https://cdn.freecodecamp.org/curriculum/project-euler/special-isosceles-triangles.png"style="background-color: white; padding: 10px;"/>
Usando o teorema de Pitágoras, pode ser visto que a altura do triângulo, $h = \sqrt{{17}^2 - 8^2} = 15$, que é uma unidade menor que o comprimento da base.
Com $b = 272$ e $L = 305$, obtemos $h = 273$, que é um a mais do que o comprimento da base, e este é o segundo menor triângulo isósceles com a propriedade $h = b ± 1$.
Encontre $\sum{L}$ para os doze menores triângulos isósceles para os quais $h = b ± 1$ e $b$, $L$ são números inteiros positivos.