Para cada número inteiro $p > 1$ coprimo de 10, há um multiplicador positivo de divisibilidade $m < p$ que preserva a divisibilidade por $p$ para a seguinte função em qualquer número inteiro positivo, $n$:
Quando $n$ for muito maior que $p$, $f(n)$ será menor que $n$ e a aplicação repetida de $f$ fornecerá um teste de multiplicador de divisibilidade para $p$.
$f(12345) = 1234 + 5 \times 34 = 1404$: 12345 e 1404 não são divisíveis por 113
A soma dos multiplicadores de divisibilidade dos números primos que são coprimos de 10 e menores que 1000 é 39517. Qual é a soma dos multiplicadores de divisibilidade dos números primos que são coprimos de 10 e menores que ${10}^7$?