2021-06-15 00:49:18 -07:00
---
id: 5900f48d1000cf542c50ff9f
2021-11-17 06:20:53 -08:00
title: 'Problema 288: Um fatorial enorme'
2021-06-15 00:49:18 -07:00
challengeType: 5
forumTopicId: 301939
dashedName: problem-288-an-enormous-factorial
---
# --description--
2021-11-17 06:20:53 -08:00
Para qualquer número primo $p$, o número $N(p,q)$ é definido por $N(p,q) = \sum_{n=0}^q T_n \times p^n$ com $T_n$ gerado pelo seguinte gerador aleatório de números:
2021-06-15 00:49:18 -07:00
2022-04-05 23:36:59 +05:30
$$\begin{align} & S_0 = 290797 \\\\
& S_{n + 1} = {S_n}^2\bmod 50.515.093 \\\\ & T_n = S_n\bmod p \end{align}$$
2021-06-15 00:49:18 -07:00
2021-11-17 06:20:53 -08:00
Considere $Nfac(p,q)$ como o fatorial de $N(p,q)$.
2021-06-15 00:49:18 -07:00
2021-11-17 06:20:53 -08:00
Considere $NF(p,q)$ como o número de divisores $p$ em $Nfac(p,q)$.
2021-06-15 00:49:18 -07:00
2021-11-17 06:20:53 -08:00
Você é informado de que $NF(3,10000) \bmod 3^{20} = 624.955.285$.
2021-06-15 00:49:18 -07:00
2021-11-17 06:20:53 -08:00
Encontre $NF(61,{10}^7)\bmod {61}^{10}$.
2021-06-15 00:49:18 -07:00
# --hints--
2021-11-17 06:20:53 -08:00
`enormousFactorial()` deve retornar `605857431263982000` .
2021-06-15 00:49:18 -07:00
```js
2021-11-17 06:20:53 -08:00
assert.strictEqual(enormousFactorial(), 605857431263982000);
2021-06-15 00:49:18 -07:00
```
# --seed--
## --seed-contents--
```js
2021-11-17 06:20:53 -08:00
function enormousFactorial() {
2021-06-15 00:49:18 -07:00
return true;
}
2021-11-17 06:20:53 -08:00
enormousFactorial();
2021-06-15 00:49:18 -07:00
```
# --solutions--
```js
// solution required
```