2021-06-15 00:49:18 -07:00
---
id: 5900f4e11000cf542c50fff3
2021-11-23 11:06:14 -08:00
title: 'Problema 372: Feixe de raios'
2021-06-15 00:49:18 -07:00
challengeType: 5
forumTopicId: 302034
dashedName: problem-372-pencils-of-rays
---
# --description--
2021-11-23 11:06:14 -08:00
Considere $R(M, N)$ como o número de pontos da rede($x$, $y$) que satisfaz $M \lt x \le N$, $M \lt y \le N$ e que $\left\lfloor\frac{y^2}{x^2}\right\rfloor$ é ímpar.
2021-06-15 00:49:18 -07:00
2021-11-23 11:06:14 -08:00
Podemos verificar que $R(0, 100) = 3.019$ e $R(100, 10.000) = 29.750.422$.
Encontre $R(2 \times {10}^6, {10}^9)$.
**Observação:** $\lfloor x\rfloor$ representa a função piso.
2021-06-15 00:49:18 -07:00
# --hints--
2021-11-23 11:06:14 -08:00
`pencilsOfRays()` deve retornar `301450082318807040` .
2021-06-15 00:49:18 -07:00
```js
2021-11-23 11:06:14 -08:00
assert.strictEqual(pencilsOfRays(), 301450082318807040);
2021-06-15 00:49:18 -07:00
```
# --seed--
## --seed-contents--
```js
2021-11-23 11:06:14 -08:00
function pencilsOfRays() {
2021-06-15 00:49:18 -07:00
return true;
}
2021-11-23 11:06:14 -08:00
pencilsOfRays();
2021-06-15 00:49:18 -07:00
```
# --solutions--
```js
// solution required
```