2021-06-15 00:49:18 -07:00
|
|
|
---
|
|
|
|
id: 5900f4ea1000cf542c50fffc
|
2021-11-23 11:06:14 -08:00
|
|
|
title: 'Problema 381: Fatorial (k-primo)'
|
2021-06-15 00:49:18 -07:00
|
|
|
challengeType: 5
|
|
|
|
forumTopicId: 302045
|
|
|
|
dashedName: problem-381-prime-k-factorial
|
|
|
|
---
|
|
|
|
|
|
|
|
# --description--
|
|
|
|
|
2021-11-23 11:06:14 -08:00
|
|
|
Para um número primo $p$, considere $S(p) = (\sum (p - k)!)\bmod (p)$ para $1 ≤ k ≤ 5$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2021-11-23 11:06:14 -08:00
|
|
|
Por exemplo, se $p = 7$,
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2021-11-23 11:06:14 -08:00
|
|
|
$$(7 - 1)! + (7 - 2)! + (7 - 3)! + (7 - 4)! + (7 - 5)! = 6! + 5! + 4! + 3! + 2! = 720 + 120 + 24 + 6 + 2 = 872$$
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2021-11-23 11:06:14 -08:00
|
|
|
Como $872\bmod (7) = 4$, $S(7) = 4$.
|
|
|
|
|
|
|
|
Pode-se verificar que $\sum S(p) = 480$ para $5 ≤ p < 100$.
|
|
|
|
|
|
|
|
Encontre a $\sum S(p)$ para $5 ≤ p < {10}^8$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
# --hints--
|
|
|
|
|
2021-11-23 11:06:14 -08:00
|
|
|
`primeKFactorial()` deve retornar `139602943319822`.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
```js
|
2021-11-23 11:06:14 -08:00
|
|
|
assert.strictEqual(primeKFactorial(), 139602943319822);
|
2021-06-15 00:49:18 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
# --seed--
|
|
|
|
|
|
|
|
## --seed-contents--
|
|
|
|
|
|
|
|
```js
|
2021-11-23 11:06:14 -08:00
|
|
|
function primeKFactorial() {
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2021-11-23 11:06:14 -08:00
|
|
|
primeKFactorial();
|
2021-06-15 00:49:18 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
# --solutions--
|
|
|
|
|
|
|
|
```js
|
|
|
|
// solution required
|
|
|
|
```
|