2021-06-15 00:49:18 -07:00
---
id: 5900f4ee1000cf542c510000
2021-11-23 11:06:14 -08:00
title: 'Problema 385: Elipses dentro de triângulos'
2021-06-15 00:49:18 -07:00
challengeType: 5
forumTopicId: 302049
dashedName: problem-385-ellipses-inside-triangles
---
# --description--
2021-11-23 11:06:14 -08:00
Para qualquer triângulo $T$ no plano, pode-se mostrar que há uma elipse única com a maior área completamente dentro de $T$.
2021-06-15 00:49:18 -07:00
2021-11-23 11:06:14 -08:00
< img class = "img-responsive center-block" alt = "elipse totalmente interna ao triângulo" src = "https://cdn.freecodecamp.org/curriculum/project-euler/ellipses-inside-triangles.png" style = "background-color: white; padding: 10px;" / >
2021-06-15 00:49:18 -07:00
2021-11-23 11:06:14 -08:00
Para um $n$ dado, considere os triângulos $T$, tal que:
2021-06-15 00:49:18 -07:00
2021-11-23 11:06:14 -08:00
- os vértices de $T$ têm coordenadas em números inteiros, com valor absoluto $≤ n$, e
- os focos< sup > 1</ sup > da elipse de maior área dentro de $T$ são $(\sqrt{13}, 0)$ e $(-\sqrt{13}, 0)$.
2021-06-15 00:49:18 -07:00
2021-11-23 11:06:14 -08:00
Considere $A(n)$ como a soma das áreas de todos esses triângulos.
2021-06-15 00:49:18 -07:00
2021-11-23 11:06:14 -08:00
Por exemplo, se $n = 8$, existem dois triângulos desse tipo. Seus vértices são (-4,-3), (-4,3), (8,0) e (4,3), (4,-3), (-8,0). A área de cada triângulo é 36. Portanto, $A(8) = 36 + 36 = 72$.
2021-06-15 00:49:18 -07:00
2021-11-23 11:06:14 -08:00
Pode-se verificar que $A(10) = 252$, $A(100) = 34.632$ e $A(1000) = 3.529.008$.
2021-06-15 00:49:18 -07:00
2021-11-23 11:06:14 -08:00
Encontre $A(1.000.000.000)$.
< sup > 1< / sup > Os focos de uma elipse são dois pontos $A$ e $B$, tal que, para qualquer ponto $P$ no limite da elipse, $AP + PB$ é constante.
2021-06-15 00:49:18 -07:00
# --hints--
2021-11-23 11:06:14 -08:00
`ellipsesInsideTriangles()` deve retornar `3776957309612154000` .
2021-06-15 00:49:18 -07:00
```js
2021-11-23 11:06:14 -08:00
assert.strictEqual(ellipsesInsideTriangles(), 3776957309612154000);
2021-06-15 00:49:18 -07:00
```
# --seed--
## --seed-contents--
```js
2021-11-23 11:06:14 -08:00
function ellipsesInsideTriangles() {
2021-06-15 00:49:18 -07:00
return true;
}
2021-11-23 11:06:14 -08:00
ellipsesInsideTriangles();
2021-06-15 00:49:18 -07:00
```
# --solutions--
```js
// solution required
```