2021-06-15 00:49:18 -07:00
---
id: 5900f4f91000cf542c51000c
2021-09-07 07:47:37 -07:00
title: 'Problema 397: Triângulo na parábola'
2021-06-15 00:49:18 -07:00
challengeType: 5
forumTopicId: 302062
dashedName: problem-397-triangle-on-parabola
---
# --description--
2021-09-07 07:47:37 -07:00
Na parábola $y = \frac{x^2}{k}$, três pontos $A(a, \frac{a^2}{k})$, $B(b, \frac{b^2}{k})$ e $C(c, \frac{c^2}{k})$ são escolhidos.
2021-06-15 00:49:18 -07:00
2021-09-07 07:47:37 -07:00
Considere que $F(K, X)$ é o número de quadras de inteiros $(k, a, b, c)$, de tal forma que pelo menos um ângulo do triângulo $ABC$ é 45°, com $1 ≤ k ≤ K$ e $-X ≤ a < b < c ≤ X$.
2021-06-15 00:49:18 -07:00
2021-11-12 07:35:39 -08:00
Por exemplo, $F(1, 10) = 41$ e $F(10, 100) = 12.492$.
2021-09-07 07:47:37 -07:00
Encontre $F({10}^6, {10}^9)$.
2021-06-15 00:49:18 -07:00
# --hints--
2021-09-07 07:47:37 -07:00
`triangleOnParabola()` deve retornar `141630459461893730` .
2021-06-15 00:49:18 -07:00
```js
2021-09-07 07:47:37 -07:00
assert.strictEqual(triangleOnParabola(), 141630459461893730);
2021-06-15 00:49:18 -07:00
```
# --seed--
## --seed-contents--
```js
2021-09-07 07:47:37 -07:00
function triangleOnParabola() {
2021-06-15 00:49:18 -07:00
return true;
}
2021-09-07 07:47:37 -07:00
triangleOnParabola();
2021-06-15 00:49:18 -07:00
```
# --solutions--
```js
// solution required
```