2021-06-15 00:49:18 -07:00
|
|
|
|
---
|
|
|
|
|
id: 5900f5131000cf542c510024
|
2021-11-29 08:32:04 -08:00
|
|
|
|
title: 'Problema 421: Fatores primos de n15+1'
|
2021-06-15 00:49:18 -07:00
|
|
|
|
challengeType: 5
|
|
|
|
|
forumTopicId: 302091
|
|
|
|
|
dashedName: problem-421-prime-factors-of-n151
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
# --description--
|
|
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
|
Números no formato $n^{15} + 1$ são compostos para cada número inteiro $n > 1$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
|
Para números inteiros positivos $n$ e $m$, considere $s(n, m)$ como a soma dos fatores primos distintos de $n^{15} + 1$ não superior a $m$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
|
Ex: $2^{15} + 1 = 3 × 3 × 11 × 331$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
|
So $s(2, 10) = 3$ e $s(2, 1000) = 3 + 11 + 331 = 345$.
|
|
|
|
|
|
|
|
|
|
E também ${10}^{15} + 1 = 7 × 11 × 13 × 211 × 241 × 2161 × 9091$.
|
|
|
|
|
|
|
|
|
|
Assim, $s(10, 100) = 31$ e $s(10, 1000) = 483$.
|
|
|
|
|
|
|
|
|
|
Encontre a $\sum s(n, {10}^8)$ para $1 ≤ n ≤ {10}^{11}$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
|
|
# --hints--
|
|
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
|
`primeFactorsOfN15Plus1()` deve retornar `2304215802083466200`.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
|
|
```js
|
2021-11-29 08:32:04 -08:00
|
|
|
|
assert.strictEqual(primeFactorsOfN15Plus1(), 2304215802083466200);
|
2021-06-15 00:49:18 -07:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
# --seed--
|
|
|
|
|
|
|
|
|
|
## --seed-contents--
|
|
|
|
|
|
|
|
|
|
```js
|
2021-11-29 08:32:04 -08:00
|
|
|
|
function primeFactorsOfN15Plus1() {
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
|
primeFactorsOfN15Plus1();
|
2021-06-15 00:49:18 -07:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
# --solutions--
|
|
|
|
|
|
|
|
|
|
```js
|
|
|
|
|
// solution required
|
|
|
|
|
```
|