2021-06-15 00:49:18 -07:00
|
|
|
---
|
|
|
|
id: 5900f5331000cf542c510045
|
2021-11-29 08:32:04 -08:00
|
|
|
title: 'Problema 454: Diofantinos recíprocos III'
|
2021-06-15 00:49:18 -07:00
|
|
|
challengeType: 5
|
|
|
|
forumTopicId: 302127
|
|
|
|
dashedName: problem-454-diophantine-reciprocals-iii
|
|
|
|
---
|
|
|
|
|
|
|
|
# --description--
|
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
Na equação a seguir, $x$, $y$, e $n$ são números inteiros positivos.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
$$\frac{1}{x} + \frac{1}{y} = \frac{1}{n}$$
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
Para um limite $L$, definimos $F(L)$ como o número de soluções que satisfazem $x < y ≤ L$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
Podemos verificar que $F(15) = 4$ e $F(1000) = 1069$.
|
|
|
|
|
|
|
|
Encontre $F({10}^{12})$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
# --hints--
|
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
`diophantineReciprocalsThree()` deve retornar `5435004633092`.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
```js
|
2021-11-29 08:32:04 -08:00
|
|
|
assert.strictEqual(diophantineReciprocalsThree(), 5435004633092);
|
2021-06-15 00:49:18 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
# --seed--
|
|
|
|
|
|
|
|
## --seed-contents--
|
|
|
|
|
|
|
|
```js
|
2021-11-29 08:32:04 -08:00
|
|
|
function diophantineReciprocalsThree() {
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
diophantineReciprocalsThree();
|
2021-06-15 00:49:18 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
# --solutions--
|
|
|
|
|
|
|
|
```js
|
|
|
|
// solution required
|
|
|
|
```
|