<li>Para $n = 2$, temos a sequência de Fibonacci, com os valores iniciais $[1, 1]$ e $F_k^2 = F_{k-1}^2 + F_{k-2}^2$</li>
<li>Para $n = 3$, temos a sequência de tribonacci, com os valores iniciais $[1, 1, 2]$ e $F_k^3 = F_{k-1}^3 + F_{k-2}^3 + F_{k-3}^3$</li>
<li>Para $n = 4$, temos a sequência de tetranacci, com os valores iniciais $[1, 1, 2, 4]$ e $F_k^4 = F_{k-1}^4 + F_{k-2}^4 + F_{k-3}^4 + F_{k-4}^4$...</li>
<li>Para a $n>2$ mais geral, temos a sequência de Fibonacci de $n$ passos - $F_k^n$, com os valores iniciais dos primeiros $n$ valores da $(n-1)$-ésima sequência de Fibonacci da $n$-ésima etapa $F_k^{n-1}$, e o $k$-ésimo valor dessa $n$-ésima sequência sendo $F_k^n = \sum_{i=1}^{(n)} {F_{k-i}^{(n)}}$</li>
Para valores pequenos de $n$, [prefixos numéricos gregos](https://en.wikipedia.org/wiki/Number prefix#Greek_series "wp: Number prefix#Greek_series") são algumas vezes usados para nomear cada série individualmente.
As sequências aliadas podem ser geradas onde os valores iniciais são alterados: A [série de Lucas](https://en.wikipedia.org/wiki/Lucas number "wp: Lucas number") soma os dois valores anteriores, como a série de fibonacci para $n=2$, mas usa $\[2, 1]$ como seus valores iniciais.
Escreva uma função para gerar sequências numéricas de $n$ passos de Fibonacci e sequências de Lucas. O primeiro parâmetro será $n$. O segundo parâmetro será o número de elementos a serem retornados. O terceiro parâmetro especificará se será exibida a sequência de Fibonacci ou a sequência de Lucas. Se o parâmetro for `"f"`, retorne a sequência de Fibonacci. Se for `"l"`, retorne a sequência de Lucas. As sequências devem ser retornadas como um array.