143 lines
2.6 KiB
Markdown
143 lines
2.6 KiB
Markdown
![]() |
---
|
|||
|
id: 5900f3e81000cf542c50fefb
|
|||
|
title: 'Problem 124: Ordered radicals'
|
|||
|
challengeType: 5
|
|||
|
forumTopicId: 301751
|
|||
|
dashedName: problem-124-ordered-radicals
|
|||
|
---
|
|||
|
|
|||
|
# --description--
|
|||
|
|
|||
|
The radical of $n$, $rad(n)$, is the product of the distinct prime factors of $n$. For example, $504 = 2^3 × 3^2 × 7$, so $rad(504) = 2 × 3 × 7 = 42$.
|
|||
|
|
|||
|
If we calculate $rad(n)$ for $1 ≤ n ≤ 10$, then sort them on $rad(n)$, and sorting on $n$ if the radical values are equal, we get:
|
|||
|
|
|||
|
<div style="text-align: center;">
|
|||
|
<table cellpadding="2" cellspacing="0" border="0" align="center">
|
|||
|
<tbody>
|
|||
|
<tr>
|
|||
|
<td colspan="2">$Unsorted$</td>
|
|||
|
<td></td>
|
|||
|
<td colspan="3">$Sorted$</td>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td>$n$</td>
|
|||
|
<td>$rad(n)$</td>
|
|||
|
<td></td>
|
|||
|
<td>$n$</td>
|
|||
|
<td>$rad(n)$</td>
|
|||
|
<td>$k$</td>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td>1</td>
|
|||
|
<td>1</td>
|
|||
|
<td></td>
|
|||
|
<td>1</td>
|
|||
|
<td>1</td>
|
|||
|
<td>1</td>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td>2</td>
|
|||
|
<td>2</td>
|
|||
|
<td></td>
|
|||
|
<td>2</td>
|
|||
|
<td>2</td>
|
|||
|
<td>2</td>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td>3</td>
|
|||
|
<td>3</td>
|
|||
|
<td></td>
|
|||
|
<td>4</td>
|
|||
|
<td>2</td>
|
|||
|
<td>3</td>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td>4</td>
|
|||
|
<td>2</td>
|
|||
|
<td></td>
|
|||
|
<td>8</td>
|
|||
|
<td>2</td>
|
|||
|
<td>4</td>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td>5</td>
|
|||
|
<td>5</td>
|
|||
|
<td></td>
|
|||
|
<td>3</td>
|
|||
|
<td>3</td>
|
|||
|
<td>5</td>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td>6</td>
|
|||
|
<td>6</td>
|
|||
|
<td></td>
|
|||
|
<td>9</td>
|
|||
|
<td>3</td>
|
|||
|
<td>6</td>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td>7</td>
|
|||
|
<td>7</td>
|
|||
|
<td></td>
|
|||
|
<td>5</td>
|
|||
|
<td>5</td>
|
|||
|
<td>7</td>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td>8</td>
|
|||
|
<td>2</td>
|
|||
|
<td></td>
|
|||
|
<td>6</td>
|
|||
|
<td>6</td>
|
|||
|
<td>8</td>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td>9</td>
|
|||
|
<td>3</td>
|
|||
|
<td></td>
|
|||
|
<td>7</td>
|
|||
|
<td>7</td>
|
|||
|
<td>9</td>
|
|||
|
</tr>
|
|||
|
<tr>
|
|||
|
<td>10</td>
|
|||
|
<td>10</td>
|
|||
|
<td></td>
|
|||
|
<td>10</td>
|
|||
|
<td>10</td>
|
|||
|
<td>10</td>
|
|||
|
</tr>
|
|||
|
</tbody>
|
|||
|
</table>
|
|||
|
</div><br>
|
|||
|
|
|||
|
Let $E(k)$ be the $k$th element in the sorted $n$ column; for example, $E(4) = 8$ and $E(6) = 9$. If $rad(n)$ is sorted for $1 ≤ n ≤ 100000$, find $E(10000)$.
|
|||
|
|
|||
|
# --hints--
|
|||
|
|
|||
|
`orderedRadicals()` should return `21417`.
|
|||
|
|
|||
|
```js
|
|||
|
assert.strictEqual(orderedRadicals(), 21417);
|
|||
|
```
|
|||
|
|
|||
|
# --seed--
|
|||
|
|
|||
|
## --seed-contents--
|
|||
|
|
|||
|
```js
|
|||
|
function orderedRadicals() {
|
|||
|
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
orderedRadicals();
|
|||
|
```
|
|||
|
|
|||
|
# --solutions--
|
|||
|
|
|||
|
```js
|
|||
|
// solution required
|
|||
|
```
|