Files
freeCodeCamp/curriculum/challenges/ukrainian/10-coding-interview-prep/project-euler/problem-216-investigating-the-primality-of-numbers-of-the-form-2n2-1.md

47 lines
1.0 KiB
Markdown
Raw Permalink Normal View History

---
id: 5900f4451000cf542c50ff57
title: 'Завдання 216: Визначення простих чисел, які мають вигляд 2n2-1'
challengeType: 5
forumTopicId: 301858
dashedName: problem-216-investigating-the-primality-of-numbers-of-the-form-2n2-1
---
# --description--
Розглянемо числа $t(n)$, які мають вигляд $t(n) = 2n^2 - 1$, з $n > 1$.
Перші такі числа це 7, 17, 31, 49, 71, 97, 127 і 161.
Виявляється, що лише $49 = 7 \times 7$ і $161 = 7 \times 23$ не прості числа.
Для $n ≤ 10000$ існує 2202 простих числа $t(n)$.
Скільки чисел $t(n)$ є простими для $n ≤ 50\\,000\\,000$?
# --hints--
`primalityOfNumbers()` має повернути `5437849`.
```js
assert.strictEqual(primalityOfNumbers(), 5437849);
```
# --seed--
## --seed-contents--
```js
function primalityOfNumbers() {
return true;
}
primalityOfNumbers();
```
# --solutions--
```js
// solution required
```