Оскільки ми вже навчилися видаляти листові вузли з дерева, то зараз розглянемо другий випадок: видалення вузла з одним дочірнім елементом. Скажімо, у нас задане дерево з вузлами 1 — 2 — 3, де 1 - це кореневий вузол. Щоб видалити вузол 2, нам потрібно з'єднати вершину 1 з вершиною 3. Тобто для того, щоб видалити вузол, який має лише один дочірній елемент, ми робимо так, аби батьківський вузол посилався на наступний вузол у дереві.
# --instructions--
До методу `remove` ми внесли певний код, який виконує задачі з останнього завдання. Ми знаходимо цільовий вузол для видалення, а також його батька, і визначаємо кількість дочірніх елементів нашого цільового вузла. Додамо наступний випадок для цільових вузлів з одним дочірнім елементом. Тепер нам доведеться визначити, на якій гілці знаходиться дочірній елемент: лівій чи правій. Після цього ми повинні встановити правильне посилання на цей вузол у батьківському елементі. Крім того, врахуємо такий випадок, коли ціль видалення є кореневим вузлом (це означає, що батьківський вузол буде `null`). Можете сміливо змінювати початковий код на свій власний, але перевіряйте, чи він успішно проходить тестування.
# --hints--
Має існувати структура даних `BinarySearchTree`.
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
}
return typeof test == 'object';
})()
);
```
Двійкове дерево пошуку повинне мати метод під назвою `remove`.
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.remove == 'function';
})()
);
```
Спроба видалити елемент, якого не існує, повинна повертати `null`.
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
return test.remove(100) == null;
})()
);
```
Якщо кореневий вузол не має дочірніх елементів, його видалення має встановити кореневе значення `null`.
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
test.add(500);
test.remove(500);
return test.inorder() == null;
})()
);
```
Метод `remove` повинен видалити листові вузли з дерева.
```js
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
test.add(5);
test.add(3);
test.add(7);
test.add(6);
test.add(10);
test.add(12);
test.remove(3);
test.remove(12);
test.remove(10);
return test.inorder().join('') == '567';
})()
);
```
Метод `remove` повинен видалити вузли з одним дочірнім елементом.