2018-10-10 18:03:03 -04:00
---
id: 5900f4931000cf542c50ffa4
2021-02-06 04:42:36 +00:00
title: 'Problem 293: Pseudo-Fortunate Numbers'
2018-10-10 18:03:03 -04:00
challengeType: 5
2021-02-06 04:42:36 +00:00
forumTopicId: 301945
2021-01-13 03:31:00 +01:00
dashedName: problem-293-pseudo-fortunate-numbers
2018-10-10 18:03:03 -04:00
---
2020-12-16 00:37:30 -07:00
# --description--
2021-02-06 04:42:36 +00:00
An even positive integer N will be called admissible, if it is a power of 2 or its distinct prime factors are consecutive primes.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
The first twelve admissible numbers are 2,4,6,8,12,16,18,24,30,32,36,48.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
If N is admissible, the smallest integer M > 1 such that N+M is prime, will be called the pseudo-Fortunate number for N.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
For example, N=630 is admissible since it is even and its distinct prime factors are the consecutive primes 2,3,5 and 7. The next prime number after 631 is 641; hence, the pseudo-Fortunate number for 630 is M=11. It can also be seen that the pseudo-Fortunate number for 16 is 3.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
Find the sum of all distinct pseudo-Fortunate numbers for admissible numbers N less than 109.
2018-10-10 18:03:03 -04:00
2020-12-16 00:37:30 -07:00
# --hints--
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
`euler293()` should return 2209.
2018-10-10 18:03:03 -04:00
```js
2020-12-16 00:37:30 -07:00
assert.strictEqual(euler293(), 2209);
2018-10-10 18:03:03 -04:00
```
2021-01-13 03:31:00 +01:00
# --seed--
## --seed-contents--
```js
function euler293() {
return true;
}
euler293();
```
2020-12-16 00:37:30 -07:00
# --solutions--
2020-08-13 17:24:35 +02:00
2021-01-13 03:31:00 +01:00
```js
// solution required
```