2018-10-10 18:03:03 -04:00
---
id: 5900f5231000cf542c510034
2021-02-06 04:42:36 +00:00
title: 'Problem 438: Integer part of polynomial equation''s solutions'
2018-10-10 18:03:03 -04:00
challengeType: 5
2021-02-06 04:42:36 +00:00
forumTopicId: 302109
2021-01-13 03:31:00 +01:00
dashedName: problem-438-integer-part-of-polynomial-equations-solutions
2018-10-10 18:03:03 -04:00
---
2020-12-16 00:37:30 -07:00
# --description--
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
For an n-tuple of integers t = (a1, ..., an), let (x1, ..., xn) be the solutions of the polynomial equation xn + a1xn-1 + a2xn-2 + ... + an-1x + an = 0.
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
Consider the following two conditions: x1, ..., xn are all real. If x1, ..., xn are sorted, ⌊xi⌋ = i for 1 ≤ i ≤ n. (⌊·⌋: floor function.)
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
In the case of n = 4, there are 12 n-tuples of integers which satisfy both conditions. We define S(t) as the sum of the absolute values of the integers in t. For n = 4 we can verify that ∑S(t) = 2087 for all n-tuples t which satisfy both conditions.
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
Find ∑S(t) for n = 7.
2018-10-10 18:03:03 -04:00
2020-12-16 00:37:30 -07:00
# --hints--
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
`euler438()` should return 2046409616809.
2018-10-10 18:03:03 -04:00
```js
2020-12-16 00:37:30 -07:00
assert.strictEqual(euler438(), 2046409616809);
2018-10-10 18:03:03 -04:00
```
2021-01-13 03:31:00 +01:00
# --seed--
## --seed-contents--
```js
function euler438() {
return true;
}
euler438();
```
2020-12-16 00:37:30 -07:00
# --solutions--
2020-08-13 17:24:35 +02:00
2021-01-13 03:31:00 +01:00
```js
// solution required
```