2018-10-10 18:03:03 -04:00
|
|
|
|
---
|
|
|
|
|
id: 5900f41a1000cf542c50ff2d
|
2020-12-16 00:37:30 -07:00
|
|
|
|
title: 问题174:计算可以形成一个,两个,三个......不同排列的“空心”方形薄片的数量
|
2018-10-10 18:03:03 -04:00
|
|
|
|
challengeType: 5
|
|
|
|
|
videoUrl: ''
|
|
|
|
|
---
|
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --description--
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
我们将方形薄片定义为具有方形“孔”的方形轮廓,使得该形状具有垂直和水平对称性。给定八个瓷砖,可以仅以一种方式形成薄层:3x3正方形,中间有1x1个孔。但是,使用32个瓷砖可以形成两个不同的薄片。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
如果t表示使用的瓦片数,我们将说t = 8是类型L(1)并且t = 32是类型L(2)。令N(n)为t≤1000000的数,使得t为L(n)型;例如,N(15)= 832.对于1≤n≤10,ΣN(n)是多少?
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --hints--
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
`euler174()`应该返回209566。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
|
|
|
|
```js
|
2020-12-16 00:37:30 -07:00
|
|
|
|
assert.strictEqual(euler174(), 209566);
|
2018-10-10 18:03:03 -04:00
|
|
|
|
```
|
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --solutions--
|
2020-08-13 17:24:35 +02:00
|
|
|
|
|