55 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			55 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | |||
|  | id: 5900f4201000cf542c50ff33 | |||
|  | title: 'Problem 180: Rational zeros of a function of three variables' | |||
|  | challengeType: 5 | |||
|  | forumTopicId: 301816 | |||
|  | dashedName: problem-180-rational-zeros-of-a-function-of-three-variables | |||
|  | --- | |||
|  | 
 | |||
|  | # --description--
 | |||
|  | 
 | |||
|  | For any integer n, consider the three functions | |||
|  | 
 | |||
|  | f1,n(x,y,z) = xn+1 + yn+1 − zn+1f2,n(x,y,z) = (xy + yz + zx)\*(xn-1 + yn-1 − zn-1)f3,n(x,y,z) = xyz\*(xn-2 + yn-2 − zn-2) | |||
|  | 
 | |||
|  | and their combination | |||
|  | 
 | |||
|  | fn(x,y,z) = f1,n(x,y,z) + f2,n(x,y,z) − f3,n(x,y,z) | |||
|  | 
 | |||
|  | We call (x,y,z) a golden triple of order k if x, y, and z are all rational numbers of the form a / b with | |||
|  | 
 | |||
|  | 0 < a < b ≤ k and there is (at least) one integer n, so that fn(x,y,z) = 0. | |||
|  | 
 | |||
|  | Let s(x,y,z) = x + y + z. | |||
|  | 
 | |||
|  | Let t = u / v be the sum of all distinct s(x,y,z) for all golden triples (x,y,z) of order 35. All the s(x,y,z) and t must be in reduced form. | |||
|  | 
 | |||
|  | Find u + v. | |||
|  | 
 | |||
|  | # --hints--
 | |||
|  | 
 | |||
|  | `euler180()` should return 285196020571078980. | |||
|  | 
 | |||
|  | ```js | |||
|  | assert.strictEqual(euler180(), 285196020571078980); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --seed--
 | |||
|  | 
 | |||
|  | ## --seed-contents--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | function euler180() { | |||
|  | 
 | |||
|  |   return true; | |||
|  | } | |||
|  | 
 | |||
|  | euler180(); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --solutions--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | // solution required | |||
|  | ``` |